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Abstract: Analyzing the solution space structure and evolution of 3-satisfiability (3-SAT) problem
is an important way to study the difficulty of the solving satisfiability (SAT) problem. However,
there is no unified analysis model for the spatial structure and evolution of solutions under different
constraint densities. The analysis of different phase transition points and solution regions is based
on different metric analysis models. The solution space of 3-SAT problem is obtained by planting
strategy and belief propagation. According to the distribution of the influence of frozen variables on
the solution, a label propagation algorithm based on planting strategy is proposed, is used to find
the solution cluster, and then the structure entropy is used to measure its structure information. The
structure entropy analysis model of 3-SAT problem solution space is established, and the unified
analysis framework of solution space evolution and satisfiability phase transition is given. The
experimental results show that the model is effective and can accurately analyze the evolution
process of solution space and satisfiability phase transition, and verify the accuracy of interference
phase transition point threshold predicted by long-range frustration theory.

Keywords: the satisfiability problem; structure entropy; belief propagation algorithm; label propaga-
tion algorithm

1. Introduction

The k-satisfiability (abbreviated) problem refers to a Boolean formula k given a con-
junctive normal form (CNF), in which each basic clause is a disjunction of k words to
determine whether it exists. A set of truth assignments makes the value of F true and
finds all assignments that can satisfy F. The theory and application of the SAT prob-
lem is an important topic for scholars of computer and mathematical logic [1]. The k-
satisfiability (k-SAT) problem is also the first problem to be proven to be non-deterministic
polynomial(NP)-complete.

Since the discovery of phase transition phenomenon [2–4] in solving the random
3-SAT formula in the early 1990s, researchers have found that the random SAT formula is
almost always satisfiable or unsatisfiable, depending on the size of the constraint density
α. The change point is called the satisfiable phase change point αs. In the random 3-SAT
problem, although the exact value of αs has not been studied, studies have shown that αs is
at least 3.52 and at most 4.506. Before α reaches αs, the solution space of the 3-SAT formula
undergoes several phase transitions and evolutions.

In recent years, scholars have conducted extensive research on the k-SAT problem.
The most important progress includes the prediction of the phase transition point, the
search for the strict lower bound of the satisfiability threshold, etc., and a wealth of research
results have been obtained. Among them, literature [5,6] uses the symmetric cavity method
(1RSB) in statistical physics to give the satisfiability threshold αs of the 3-SAT formula
as a function of k, and calculate the approximate value αs ≈ 4.267. Literature [7–9] used
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the 1RSB entropy cavity method [10,11] and found that before α reaches αs, the solution
space undergoes a cluster phase transition at α = αd. The solution space before the phase
transition is mainly dominated by a large solution cluster, in which there are rich internal
structures and multi-dimensional communities. As α increases, when α reaches αd, the
number of macroscopic states in the solution space will suddenly increase, that is, the
solution space will begin to evolve and split into exponentially multi-level declusters, and
solutions of different declusters cannot be reversed by a single variable. From one cluster
to another cluster, and its similarity is much lower than the internal solutions of the same
cluster, it is more difficult to use the local search algorithm to solve. After the clustering
phase transition occurs, α continues to increase, and the constrained density α undergoes a
condensed phase transition at αc. At this time, the exponential multilevel clusters decrease
sharply, but the solution space still has exponential multilevel declustering at this time, and
the declustering. The separation is obvious. In the 3-SAT problem αd = αc, literature [12,13]
used long-range frustration theory to predict the threshold of interference transition α∞

j
in the k-SAT formula. When α reaches this threshold, it indicates freezing. The argument
begins to strongly dominate each solution community in the declustering, and increasing
the α declustering will cause the community to disappear. This threshold can also be used
as the lower bound of the satisfiability phase transition point αs, but it is shown through
experiments that the prediction is accurate when k ≥ 4. When k = 3, α∞

j = 4.1897, which is
quite different from the predicted result.

In 2016, Angsheng Li proposed the structural entropy theory [14]. The structural
entropy principle of graph is essentially a measure, which is defined as determining
the minimum total number of digits required for node code that can be accessed from
the random walk in graph. This principle can completely or maximally detect the two-
dimensional and k-dimensional structure composed of the rules and order of the graph
against the random changes in the graph. They use random walk to capture the information
interaction between nodes in the graph to completely distinguish the structural noise in
the undirected graph, and use the structural entropy of the graph to study the information
interaction between nodes and the natural clustering of nodes, and achieve some new
results [15–17].

As is known to all, the internal structure of the solution space of SAT problem exists
rich and multistage community structure, the view of the evolution and phase transforma-
tion of solution space, the existing studies are all narrow discussions of α with different
constraint densities, lacking a unified generalized model. In addition, the existing research
lacks a high summary of multidimensional structure information in solution space. K-SAT
problems can be transformed into 3-SAT problems through the method of specification [18],
so 3-SAT problems are of great research significance. Inspired by structural information
theory, in this paper, we study the structural properties of the solution space of 3-SAT
problem by using the structural entropy of graphs.

This paper studies the 3-SAT problem and the community structure changes in the
problem solution space. Based on structural entropy theory, this paper proposes a two-
dimensional structural entropy measurement model and a k-dimensional solution space
measurement model to measure and analyze the evolution and phase transition of the
3-SAT solution space. We introduce the G = (n, 3, α) model to randomly generate in-
stances of the same scale with different α. Furthermore, we propose and use the belief
propagation (BP)-based planting strategy algorithm and the planting strategy-based label
propagation algorithm (LPA) to generate the 3-SAT problem and the solution space, and
study its structural information. Combined with the phase transition of the solution space
structural entropy, the phase transition of the solution space and the change in community
structure dependent on the change in α are analyzed; the structural entropy conditions
when the solution space changes in the community are obtained, which was experimentally
verified [12,13]. As result, the accuracy of the predicted interference transition threshold
α∞

j could be determined.
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2. Preliminaries
2.1. Bp Iterative Equation

Let us suppose the CNF is F = (C1, C2, · · · , Cm), the set of arguments is denoted by
{x1, x2, · · · , xn}, and i is used to represent xi. Formula F can construct a bipartite graph
G = (C ∪ X, E), termed a factor graph. The edges in figure G are divided into real edges and
imaginary edges. Among these edges, is called the argument set and C = {C1, C2, · · ·Cm}
is called the clause set. The conjunction of clauses constitutes the conjunctive normal form
formula, which is denoted as F = (C1 ∧ C2 ∧ · · · ∧ Cm) and F = (C1, C2, · · · , Cm), for short.

As shown in Figure 1, two types of information are defined on the edge of the factor
graph, namely the information µi→a(si) (si ∈ {0, 1}) transmitted by the argument to the
clause and the information na→i(si) sent by the clause to the argument [19,20]. µi→a(si)
indicates whether the argument i is in or not, the probability that the value is si under the
constraint of clause a, and the probability that the variable i takes the value of si without
the constraint of clause a. na→i(si) represents the probability that the variable i takes the
value of si to satisfy clause a. According to the cavity theory in statistical physics, the
following BP iterative equation can be obtained [21]:

µ
(t)
i→a(si) =

∏b∈(∂i\a) n(t)
b→i(si)

Zi→a (1)

n(t+1)
a→i (si) =

∑j∈(∂a\i),sj∈D δ(si ,sj)∈Qa µ
(t)
j→a
(
sj
)

Za→i (2)
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Figure 1. Factor diagram representation of BP iterative process on a random instance.

Among these formulas, Zi→a and Za→i are normalization factors, b ∈ (∂i\a) and
j ∈ (∂i\a), respectively, represent the set of clauses connected to the argument i to remove
a and the set of argument nodes connected to the constraint a to remove i. If the BP
iteration can converge, the marginal probability of argument i can be calculated according
to the information na→i(si), and the value of the argument can be obtained from the
marginal probability.
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2.2. Solution Space of 3-SAT Problem

In the 1RSB theory, a solution cluster in the solution space of a random 3-SAT problem
is regarded as a macroscopic state of the system. When the constraint density of the
random 3-CNF reaches a certain critical value αd, the structure of the solution space of
the random k-CNF formula will change qualitatively, and the number of macro-states
in the solution space will suddenly increase, that is, the solution space is split into a
large number of subspaces, each subspace contains a certain number of solutions, but
the statistical properties of different subspaces are different, and the similarity of the
solutions of different subspaces is much lower than that of the same subspace. This abrupt
phenomenon is called the cluster phase transition under the thermodynamic limit N → ∞ ,
and αd is called the confinement density of the cluster phase transition.

Take the change of solution space of k-SAT formula as an example, as shown in Figure 2.
When the constraint density α gradually increases from zero and is close to αd, although the
solution space has only one macroscopic state under the meaning of statistical significance,
more and more community structures and more and more community structures have
been accumulated in this macroscopic state. Strong point-to-set association. The point-
to-collection feature correlation length tends to be infinite as αd − α becomes smaller. In
the random k-SAT problem, when α exceeds αd until it reaches another critical value point
αc, the solution space of the random k-CNF formula will be condensed. Regarding [22],
it signifies that the statistical properties of the solution space begin to be determined by
those subspaces that contain the largest number of microscopic configurations but a small
number. In the random 3-SAT problem, αd = αc, that is, the cluster phase transition point
and the condensed phase transition point coincide. When α = αd, the number of subspaces
that determine the statistical properties of the solution space changes from the order of
O(ecN) to the order of O(Nb) (where c and b are constants).
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2.3. Two-Dimensional Structural Entropy of Undirected Graphs

The solution space is expressed as an undirected graph, which is convenient for us
to study the structural characteristics of the solution space. The real-world network is a
highly connected graph, which develops dynamically. We use random walks to obtain the
interactive information of nodes in the network, and give the concept of entropy reflecting
the dynamic complexity of the network. This is the one-dimensional structural information
of the network. Here we first recall the Shannon entropy, and then introduce the definition
of structural entropy [14].

Definition 1. For the probability vector p = (p1, . . . , pn) and
n
∑

i=1
pi = 1, then the entropy

function of the probability vector p is defined as:

H(p1, . . . , pn) = −
n

∑
i=1

pi log2 pi (3)
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We interpret − log pi as “pi’s self-information”, which also means that − log pi is

the amount of information required by a certain code. Therefore, −
n
∑

i=1
pi log2 pi is the

average amount of information in the code p = (p1, p2, · · · , pn) that determines the
probability distribution.

Definition 2. Let G = (V, E) be an undirected connected graph with n nodes and m edges. For
each node i ∈ {1, 2, · · · , n}, di is the degree of node i in graph G, let pi =

ai
2m , and then describe

the fixed distribution of random walk through probability vector p = (p1, p2, · · · , pn), then the
definition of one-dimensional structural entropy is as follows:

H1(G) = H(p) = H
(

d1

2m
, . . . ,

dn

2m

)
= −

n

∑
i=1

di
2m
· log2

di
2m

(4)

The one-dimensional structure informationH1(G) of the connected graph measures
the amount of information needed to determine the one-dimensional code of the node.
The one-dimensional code can be obtained from a random walk in G and has a stable
distribution.

Definition 3. For the undirected graph G = (V, E), assuming thatP = {X1, X2, . . . XL} is the
community of the node set Vof G, the structural entropy of graph G with respect to the partition
P is:

HP(G) =
L
∑

i=1

Vi
2m · H

[
d(j)

1
Vi

, . . . ,
d(j)

ni
Vi

]
−

L
∑

i=1

gi
2m log2

Vi
2m

= −
L
∑

i=1

Vi
2m

ni
∑

i=1

d(i)j
Vi

log2
d(i)j
Vi
−

L
∑

i=1

gi
2m log2

Vi
2m

(5)

where ni represents the number of nodes in community Xi; Vi is the volume of community Xi; that
is, the sum of degrees in community Xj; L represents the number of communities in partition P;

d(i)j is the degree of the i-th node in Xi; and gi is community Xi, which connects degrees outside the
community. If each node in graph G is regarded as a code pair (i, j), the code of the community-
containing node v is i, and the code of this node in the community is j. According to the information
theory proposed by Shannon, the first term of HP(G) is the minimum number of coding bits
required to determine the position of node v in community Xi, that is, the node that graph G can
visit through one-step random walk is v. The second item is to determine the minimum number
of coding bits required for community Xi. Therefore, the two-dimensional structural entropy is
defined as:

H2(G) = min
P

{
HP(G)

}
(6)

Definition 4. For the two-dimensional structural information of a discontinuous graph, given a
graph G, suppose it is an inductive subgraph of all connected components of G1, G2, . . . , GL, and
there is a two-dimensional structural entropy formula:

H2(G) =
∑L

i=1 Vol(Gi) · H2(Gi)

Vol(G)
(7)

where Vol(G) is the volume of the graph G, Vol(G) = ∑
g∈G

dg is defined according to the two-

dimensional structural entropy, and G is the weighted average of the two-dimensional structural
entropy of all subgraphs Gi. Specifically, if there is a subgraph, such as Gj, with only one isolated
node, the structural information of Gj is: lim

p→0
− p log2 p = 0. Therefore, for any graph G, if the G

node has no edges, then H2(G) = 0.



Symmetry 2021, 13, 2005 6 of 18

Information entropy reflects the overall amount of information in the undirected
graph, that is, the uncertainty of the undirected graph network. Based on this, the two-
dimensional structural entropy follows the principle of minimizing uncertainty to remove
structural noise and data redundancy. The degree of association between structure and
node structure can effectively measure the structural information within a community and
the structural complexity between different communities.

3. Structural Entropy Measurement Model of 3-SAT Formula
3.1. Algorithm of Planting Strategy Based on BP

Since the purpose of establishing the solution space is to study its internal structure, it
is necessary to solve a large 3-CNF. The 3-SAT problem is an NP complete problem, and it is
difficult to use a complete algorithm to find all its solutions. The information dissemination
algorithm is currently the most effective method to solve the 3-SAT problem. For example,
the belief dissemination algorithm can effectively solve the difficult areas of αd < α < αc,
and the information dissemination process can also efficiently find the frozen variables. It
is suitable for planting strategies to find α located in a large number of solutions in the easy
solution area of α < αd.

The planting solution strategy [8,23–25] starts by planting the frozen variable in the
solution group, and finds the solution clustering in the solution group by randomly flipping
the non-frozen variables through random walks. In order to make the algorithm reach a
fixed point, we start from the external nodes to fix the variables. We then fix some of the
variable nodes through the BP iterative equation, expand to decluster through a series of
unbiased random walks, and then generate the declustering with flipped labels. If we let
the assigned S ≡

{
S1, S2, . . . , SN} satisfy formula F by a set of solutions, the Hamming

distance between the two solutions is defined as:

d(S1, S2) =
N

∑
j=1

δ(Sj
1,−Sj

2) (8)

The adjacency matrix is constructed by the Hamming distance between the solutions,
and then an undirected graph of the solution space is generated. We classify the arguments:

Type A—variables that have been fixedly assigned and;
Type B—variables without fixed assignments.

In Algorithm 1, Steps 1–7 use BP iteration to calculate the satisfiable probability of
each variable and divide the variable nodes into two categories, namely, frozen variables
and non-frozen variables. In Step 8, the non-frozen variables are randomly flipped by the
walkSAT algorithm to form a solution space with the frozen variables as the core, and the
number of flips for generating each solution walkSAT is recorded. Steps 9–10 calculate the
Hamming distance between the solutions and generate the solution space adjacency matrix
to construct the solution space. The solution space obtained through the planting strategy
records the number of flips of each solution, which can be used as the basis for the next
solution space community division. The number of flips means the influence of the frozen
variable on the solution. The more the number of flips, the greater the influence, and the
more likely it is to be in the same community. The solution space generated by Algorithm 1
is shown in Figure 3.
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Algorithm 1 Algorithm of planting strategy based on BP.

Input: CNF F, maximum number of iterations tmax, convergence accuracy ε, fixed argument accuracy θ

Output: Solution space undirected graph

1. For each edge (i, a), randomly initialize the constraint to the variable information n(0)
a→i(si) ∈ [0, 1].

2. For each edge (i, a), update the information according to Equations (2) and (1).

if ∂i\a = ∅, let µ
(t−1)
i→a (si) =

1
dN

. Then, enter the value of µ
(t−1)
i→a (si) into Equation (2) to obtain n(t)

a→i(si).

3. if | n(t)
a→i(si)− n(t−1)

a→i (si) |< ε, then n∗a→i(si) = n(t)
a→i(si). Go to Step 5.

if t > tmax, t is marked as a Type B variable.
4. Go to Step 2.

5. Calculate the marginal probability ni(si) =
∏a∈∂i n∗a→i(si)

∑si∈D ∏a∈∂i n∗a→i(si)
of each variable according to the following formula.

6. if t > tmax, select variables for assignment. For each variable:
if Si < θ, Si = −∑

si

ni(si) log(n i(si))

if ni(1) > ni(0), ni is marked as fixed argument (Type A), i = 1;
else if ni(1) < ni(0): ni is marked as a Type A as i is a fixed argument;
else: i is marked as a Type B argument.
7. Traverse the CNF formula argument, if Argument A: delete the argument, update CNF formula F; else: go to Step 8.
8. Import the updated formula into the walkSAT solution and record the number of flips S f lip of each solution.
9. Use Formula (8) to calculate the distance between the solutions and construct the adjacency matrix
if d(Si, Sj)= 1, continue;
else d(Si, Sj) = 0.
10. Establish an undirected graph of the solution space according to the adjacency matrix;
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3.2. K-Dimensional Structural Entropy of Undirected Graphs

Definition 5. For the undirected connected graph G = (V, E), the multilayer partition tree T of
G is set by the method described in Section 3, and the undirected connected Graph G is divided
into k layers. If node α is a tree node and α is not the root node, then the definition of k-dimensional
structural entropy is:

HT(G) = ∑
α∈T,α 6=λ

HT(G, α),

HT(G, α) = − gα
2m log2

Vα
Vα−

(9)

Among them, m = |E|: gα is the number of edges of the nodes of the community Tα connected
to nodes outside the community and Vβ is the cumulative sum of the Tβ degree of the set Tβ . The
k-dimensional structural entropy of G is defined as follows:

HK(G) = min
T:H(T)≤K

{HT(G)} (10)
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It can be seen from the above formula that an algorithm that approximates the k-
dimensional structural information of the graph by finding the k-dimensional structure that
minimizes the entropy of this value can greatly reduce the complexity of the multidimen-
sional structural information of the graph. By finding an optimal coding tree T(H(T) ≤ K),
it is possible to make HK+1 ≤ HT∗(G). Therefore, the k-dimensional structural entropy of
G has another definition: HK(G) = HT(G).

4. Structural Metric Model of Solution Space of 3-SAT Formula
4.1. Lpa Based on Planting Strategy

The definition of structural entropy involves the concept of community division. This
means a complex network is divided into several non-overlapping communities according
to a certain method; the structural information within and between communities is then
calculated through classification and integration, and the structure of the entire network is
finally obtained. Entropy is a manifestation of important structural information, such as
the structural complexity, dynamic interaction, and uncertainty of the network.

There are no specific requirements for community division in the definition of struc-
tural entropy, but according to Formula (5), improving the accuracy of community division
is the only way to minimize network uncertainty. Currently, in broad sense, there is no
efficient community discovery algorithm that can satisfy any community at any same
time. Algorithms that perform well in individual networks may not perform satisfactorily
in community discovery in other networks. Therefore, designing an efficient community
discovery algorithm for the solution space of the 3-SAT problem can greatly improve the
accuracy of the structural entropy measurement method of the solution space in this problem.

The LPA is a semi-supervised machine-learning method based on graphs. It has the
advantage of being suitable for large-scale undirected graphs; its community discovery is
fast and the number of communities does not need to be known before each iteration.

When the node is initialized, the original LPA assigns a unique label to each node in the
network, which randomly arranges the nodes to obtain the node sequence and uses this as
the label update sequence. In the calculation, if the highest number of labels of neighboring
nodes is the same, then a neighbor is randomly selected to update the label. When using
the LPA algorithm for community discovery, the update order of tags is very sensitive; thus,
the update order of these tags affects the magnitude of community discovery. The above
two random processes will gradually increase the impact of relatively important nodes on
the community as the iteration progresses, while ignoring the differences in importance
between nodes, resulting in a “backflow” of labels, and may cause problems that did
not originally belong to the community. Nodes are included in the community, which
ultimately lead to too much difference between the results discovered by the community
and the real community.

In the solution space generated by Algorithm 1 in the previous section, an LPA based
on the planting solution strategy is proposed to optimize the belief propagation algorithm
to solve the community division of the solution space in the 3-SAT formula.

In the process of selecting the label update, the initially labeled node selects the label
with the highest occurrence in the neighbor nodes to update the label, and selects the label
to be updated according to Equation (11):

li = argmax ∑
j∈N(I)

δ(lj, l)

δij =

{
1 (i = j)
0 (i 6= j)

(11)

where li represents the label to be updated, N(i) represents the set of neighbor nodes of
node i, and lj represents the label of node i’s neighbor node j.

In the solution space calculated based on the planting strategy, the greater the number
of common neighbors between nodes, the greater the number the nodes that are affected
by the same or several frozen variables. At the same time, each node has a parameter of the
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number of flips. The smaller the number of flips, the more the node is affected by the frozen
variables. As a gradually increases, the influence of the frozen variable on the solution
space community gradually increases, so the community must be divided according to the
influence of the frozen variable on the solution. Dividing the community structure in this
way is also more accurate than the traditional LPA and can greatly reduce the uncertainty
of the solution space structural information.

The LPA based on the planting solution strategy proposed in this paper uses the
influence of the above frozen variables to determine the update order. It also uses the
similarity between nodes to measure the more common neighbors of the two nodes:
the greater the similarity of the nodes, the greater the probability of being in the same
community, thus the result of the division is more in line with the original community
distribution. The degree of a node in an undirected graph is defined as the number of
edges directly connected to the node. The connected nodes structurally indicate that there
is only one variable value between them. The similarity between nodes is calculated by the
following formula:

S(vi, vj) =

∣∣NG(vi) ∩ NG(vj)
∣∣

dvi

(12)

Among them, NG(vi) is the first-order neighbor set of nodes vi and dvi is the degree
of node vi. In this algorithm (Algorithm 2), the node update sequence is traversed, and
the similarity calculation is performed. If the current node and the node before the update
sequence are adjacent nodes, the similarity index is less than the threshold. If the label of
the node is null, then the node before the sequence is selected as the seed node; otherwise,
it is not selected as the seed node.

Algorithm 2 LPA based on planting solution strategy.

Input: Tagged network G = (V, E), threshold λ

Output: Community findings

1. If G(A) connect: go to Step 2, flag = 1;
else: Backtrack and traverse all connected subgraphs; go to Step 2, flag = 0.

2. According to the walkSAT flip result, the ascending sequence A = {i1, i2, . . . , in} of the number of nodes set flips is formed,
and the seed node set S = {} is generate.

3. t = 1 for 1 ≤ j ≤ n, let L(ij) = {}.
4. t = t + 1, j = 1; if t > n: go to Step 6.
5. j = j + 1, if j ≥ t: go to Step 4.

(1) Traverse the connected graph nodes and calculate the similarity between the nodes according to Formula (10),
if s(it, ij) < λ, go to Step 5.

(2) If ij ∈ S, L(it) ∪ {j}: go to Step 5.

(3) If ij ∈ S, L(ij) = {}, S = S ∪
{

ij

}
, L(ij) = {j}, and L(it) = L{it} ∪ {j}: go to Step 5.

(4) If ij ∈ S, L(ij) 6= {}, thus L(it) = L{it} ∪ {j}: go to Step 5.
(5) Go to Step 5

6. If there are multiple labels for node v in the network, the label with the most occurrences in its neighborhood is selected as the
label for v.

7. If there are multiple seed nodes that meet the conditions, the one with the most frequent occurrences of the label is selected as
its own label. If node v does not have an adjacent seed node that meets the conditions, keep the label as empty v.

8. Establish and traverse the node set V with empty labels in the current network, select the label with the most occurrences in
neighboring nodes as the label of v and retrospectively update to V without change.

In the above algorithm, Steps 1–7 use BP iteration to calculate the satisfiable probability
of each variable and divide the variable nodes into two categories, namely, frozen variables
and non-frozen variables. In Step 8, the non-frozen variables are randomly flipped by the
walkSAT algorithm to form a solution space with the frozen variables as the core, and the
number of flips for generating each solution walkSAT is recorded. Steps 9–10 calculate the
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Hamming distance between the solutions and generate the solution space adjacency matrix
to construct the solution space.

The number of flips means the influence of the frozen variable on the solution. The
more the number of flips, the greater the influence, and the more likely it is to be in the same
community. The solution space obtained by Algorithm 1 through the planting strategy
records the number of flips of each solution, which can be used as the basis for the next
solution space community division.

4.2. Two-Dimensional Structural Entropy of Solution Space of 3-SAT Formula

In order to obtain the structural information of the solution space of the 3-SAT formula,
the solution is represented by nodes, and the connection between nodes means that only
one argument between the two solutions has a different value. This can be completed
without any loss of the relationship between the solutions and the relationship between
the solutions and the information of each node. The solution generated by randomly
flipping the non-frozen variables on the basis of the frozen variables by walkSAT in Step 8
of Algorithm 1 is abstracted as an undirected graph. Therefore, through the research and
analysis of the solution space undirected graph, the structure information of the solution
space of the 3-SAT problem can be obtained more directly. The community structure of the
undirected graph divided by Algorithm 2 is shown in the Figure 4.
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The nodes in Figure 3 are divided into three communities, namely {1,2,3,4,5}, {7,8},
{6,9}. The division of the community structure not only depends on the inherent rela-
tionship between nodes and more importantly, divide the nodes with similar influence
distribution of the frozen variables on the solution community into the same community,
and always follows the principle of minimizing structural entropy in the process of ra-
diating other nodes. Therefore, the community structure can be maximized. It satisfies
the information minimization principle in the definition of structural entropy, that is, it
satisfies H2(G) = min

P
{HP(G)} in the definition of two-dimensional structure entropy and

HK(G) = min
T:H(T)≤K

{HT(G)} in the definition of K-dimensional structure entropy.

If the undirected graph G has no self-loops and polygons, then the probability of

a random walk in G is set pt =
d(p)

i
Vj

, the static distribution of the random walk can be

expressed as a probability vector p = (p1, p2, · · · pn), where
n
∑

i=1
pi = 1. The amount of

information about the distribution can be obtained:

I(G) = I(p) = − log2
d(j)

i
Vj

(13)

According to the theory of information entropy, in a limited set of mutually exclusive
and joint exhaustive events, entropy is the average amount of information, so the local
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structural entropy (average amount of information in the network structure) within the
community is expressed as:

Hinside(G) = −
L

∑
j=1

Vj

vol(G)

nj

∑
i=1

d(j)
i
Vj

log2
d(j)

i
Vj

(14)

In information theory, log represents the unit of entropy as “bit”, that is, the entropy

value represents the number of bits required for encoding. Therefore, −
q
∑

i=1
pi log2 pi

represents the average amount of information required to determine the number of coded
bits of i by the probability p = (p1, p2, · · · pn), where l = − logD pi is used as the number
of binary representations, indicating that 1

pi
can be represented as Dl , so − log2 pi is to

determine the amount of information needed to encode i. The local structural entropy
between communities is expressed as:

Houtside(G) = −
L

∑
j=1

gj

vol(G)
· log2

Vj

vol(G)
(15)

The community structure is divided by the LPA algorithm based on the planting
strategy, and the sum of Formulas (14) and (15) are used as the two-dimensional structural
entropy of the proposition formula, which reflects the interactivity between nodes within
the community. In addition, due to the consideration of the influence of frozen variables,
these influences are used to form communities. According to the probability of random
walk and the random flip of walkSAT, the understanding nodes are obtained by radiation
expansion. At the same time, it is changed to Algorithm 2 and it can extract structural noise
and data redundancy effectively, which satisfies the principle of minimizing the uncertainty
in the undirected graph community discovery to the greatest extent.

4.3. K-Dimensional Structure Entropy of Solution Space of 3-Sat Formula

The previous section has analyzed that the LPA based on planting strategy follows
the principle of minimizing structural entropy when dividing communities, and satisfies
HK(G) = min

T:H(T)≤K

{
HT(G)

}
in the definition of k-dimensional structural entropy. This

section introduces the construction process of the K-dimensional structural entropy com-
munity segmentation tree.

As shown in Figure 5, using Algorithm 2 iterative community division, the solution
space undirected graph can be divided into a multi-level community structure. As shown
in Figure 6, thereby constructing a split tree with a set of nodes in the graph as tree nodes.
The tree structure can be constructed according to the following regulations:

(1) Define the set Tλ = V, λ is the root node.
(2) Let α be the node on the split tree. The immediate successor node of α is αj, j = {1, 2, . . . n}

and the nodes are sorted from left to right in ascending order.
(3) Let α, β be the node on the split tree. α ⊂ β indicates that α is the initial character

segment of β. When α is not the root node, the longest initial character segment of α
is α−.

(4) For each node, {Tα|h(α) = i} is a division of V; thus (h(α) is the height of α, the height
of the root node is 0, and the height of other nodes increases according to the tree).

(5) For each node, if α is the parent node of β, Tα = ∪β−=αTβ.
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After initializing the split tree, the undirected graph is divided into communities to
obtain multiple overlapping communities M1, M2, . . . , Mn, and these overlapping com-
munities are used as the second-level nodes of the split tree, where the parent nodes are
the root nodes λ (including all nodes in the undirected graph). Each community contains
one or more nodes, and G = M1 ∪M2 ∪ . . . ∪Mn. If the number of nodes in Mi (i ∈ n) is
greater than one, continue to divide Mj, and use the sub-community Mi1, Mi2, . . . , Mij as
its child nodes. If the sub-community still contains multiple nodes, repeat the above steps
to continue dividing the community until it is in the community. When only a single node
is included, the division of the community is stopped.

For a given undirected graph G, according to the principle of information minimiza-
tion, the K-dimensional structure information of G is to determine the total number of
bits of K-dimensional coding of G. Therefore, the K-dimensional structural entropy also
provides the dynamic complexity of the quantized undirected graph G of structural infor-
mation. On the one hand, as the constraint density α reaches the satisfiability threshold
αs, a single solution cluster in the solution space of the 3-SAT formula undergoes a cluster
phase transition [7–9], and the cluster phase transition before the phase transition has rich
internal structure, and most of the solutions in the solution space are dominated by a large
solution cluster. On the other hand, it is defined by the K-dimensional structure entropy.
The K-dimensional knot structure entropy is suitable for the multi-level structure analysis
of undirected connected graphs. Therefore, The K-dimensional structure entropy is suitable
for measuring the multi-dimensional structure information of large-scale declustering
before the cluster phase transition occurs.

It can be seen from Formula (8) that all the communities of the connected undirected
graph are included in the K-dimensional structure entropy calculation based on the struc-
ture of the partition tree, and the rules and order of the K-dimensional structure graph
can be detected to the greatest extent. The order is completely extracted from the undi-
rected graph, and the order and disorder are separated from the structured data, and
the cumulative sum of the entropy of the tree nodes is calculated, which conforms to the
additivity of entropy. Therefore, the K-dimensional structure entropy takes into account the
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community segmentation of all nodes, and fully and effectively analyzes and understands
the dynamic complexity and uncertainty of spatial undirected graphs and other important
properties. The partition tree constructed by the iterative division of Algorithm 2 can effec-
tively remove the noise in the undirected graph, and minimize the information loss from
the construction of the partition tree to the calculation process of structural entropy. The
final calculation result is a highly abstract and summary of the K-dimensional information
of declustering.

5. Result Analysis

In order to ensure the accuracy of the 3-SAT formula solution space measurement
model, this section first verifies the performance of the LPA algorithm based on the planting
strategy. For the communities divided by the BP algorithm (Algorithm 1) based on the
planting strategy, the modularity standard is used to analyze the quality of the community
division. The basic principle is to regard the network as a zero-model network, and discover
the difference between the modularity of the community and the modularity of the zero
model through comparison. The greater the difference, the better the quality of community
discovery. The definition of modularity Q is:

Q =
1

2M ∑
ij

[
aij −

kik j

2M

]
δ(ci, cj) (16)

where M represents the number of edges in the network, aij represents the adjacency matrix
of the network, ki represents the degree of node i, and the function δ(ki, k j) = 1 represents
if nodes i and j are classified as the same community. Because other community discovery
algorithms (including LPA) cannot meet the pertinence of the model, a large number of
experiments are of little significance, and Algorithm 2 has similar properties to LPA, so
only the modularity of Algorithm 2 and LPA is compared. The comparison results of the
3-SAT formula under different constraint densities α are shown in Table 1.

Table 1. Algorithm 2 and LPA Modularity Comparison.

F1 F2 F3

LPA 0.3532 0.3296 0.3620
Algorithm 2 0.4236 0.4159 0.4571

Table 1 shows that in the solution space of the 3-SAT formula with different constraint
densities, the modularity of the LPA based on the planting strategy is significantly im-
proved than that of the LPA, and because Algorithm 2 is specific to the solution space
community division, it shows that Algorithm 2 is more effective to solve the division of
space community.

The hardware environment for the experiment is Intel Core i7 9750H + RTX 2060 + 16 GB
RAM, and the software environment is Windows 10 × 64 + ubuntu18.04 + xshell + Python3.7
+ Matlab. Let us use the G(n, m, α) model to generate the 3-SAT formula, where n is the
number of arguments and m is the number of clauses. We let n = 100, 125, 150, then
generate a CNF formula with a length of 100, 125, 150, and increase the value of the
constraint density by adding randomly generated clauses one by one. In the solution space
undirected graph, Algorithm 2 is used to divide the communities, and the two-dimensional
structural entropy of the solution space of the 3-SAT formula is calculated. The result is
as follows:

Figure 7 shows the change of the entropy of the two-dimensional structure when the
variable scale is 100 and the constraint density increases from 3.5 to 4.3. As the constraint
density increases, the number of solutions and the complexity of the solution space begin
to change, and the entropy of the two-dimensional structure decreases as α increases.
When the constraint density is between 3.50 and 3.74, a single decluster has a complex
community structure and the decrease in the entropy of the two-dimensional structure
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∆H2(G) is not stable enough. As the number of solutions continues to decrease, the value
of ∆H2(G) generally shows a downward trend. As the constraint density increases, the
constraint density undergoes a clustering phase transition at 3.73, and the declustering
undergoes a heterogeneous transformation. A single decluster begins to decompose
into multiple declusters, but the solution space is still dominated by one main decluster,
here. In the process, the complexity of the internal declustering community continues to
decrease, and the decrease in the constraint density around 3.92 tends to be flat. As the
value of α increases to about 4.17, the solution space changes again, and the number of
solutions continues to decrease. The frozen variable increases the impact on the solution
community, the single cluster is sharply separated into smaller clusters, and the solution
space begins. This solution space tends to be stable; and after increasing α, the solutions in
the solution space begin to disappear in clusters. It can be seen from Figure 7 that the two-
dimensional structural entropy can effectively measure the overall structural information
of the solution space.
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The literature uses symmetric cavity theory (1RSB) [5,6] to provide a 3-SAT formula
cluster phase transition point αd around 3.859, which is lower than the first phase transition
result in Figure 7. When α is near the first phase transition point, the complexity of solution
space increases sharply, which leads to a sharp increase in structural information and a
decrease in accuracy of Algorithm 2, so HP(G) < H2(G), HT(G) < HK(G). This leads
to the experimental results having lower upper bounds than those in the literature [5,6].
When CNF is more easily divided, or more accurate algorithms are used, the upper bound
of experimental results will be improved, but it cannot give a definite upper bound. These
studies suggest that the condensed phase transition point in 3-SAT is αc− αd, that is, the few
largest solution clusters that contain the most solutions in the solution space of the 3-SAT
formula cannot determine the statistical properties of the solution space. Figure 7 shows
that the second transition occurs when the constraint density is about 4.17, which is close
to the use of remote frustration theory to predict the threshold α∞

j in the literature [12,13].
After the transition, the entropy of the two-dimensional structure tends to be seg-

mented and stable. If the value of the frozen argument is large, it cannot satisfy the newly
added random clause. As α increases, the declustering of the solution space begins to
cluster and disappear, and the entropy of the two-dimensional structure also decreases
in segments. This means that at this time the frozen variables have greatly affected every
solution community, so it can be considered that this transition point is the interference
transition point predicted by the remote frustration theory.

The above results show that the two-dimensional structural entropy accurately reflects
the overall structural information of the solution space of the 3-SAT formula. The phase
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transition and the transition point of the two-dimensional structural entropy illustrate the
validity of this measurement.

Before the clustering phase transition occurs, each solution cluster in the solution
space is relatively large, and the number of solutions has not decreased sharply. It contains
complex community structures and rich multidimensional communities. The entropy of the
two-dimensional structure cannot be accurately determined. The solution space structure
is measured, that is, the decrease in the entropy of the 3.50 < α < 3.73 two-dimensional
structure shown in Figure 7 is unstable. Therefore, this section uses the k-dimensional
structural entropy to measure the k-dimensional structural information of a single decluster
of the solution space. The solution space undirected graph data constructed in the process
of calculating the entropy of the two-dimensional structure are used continuously, and
Algorithm 2 is used to iteratively partition the community, divide the partition tree, and
then calculate the k-dimensional structure entropy. The result is shown in Figure 8.
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Figure 8 shows that before the cluster phase transition occurs, the internal k-dimensional
structural information of the solution space continues to decrease, and the k-dimensional
structural entropy decreases steadily. At α = 3.62, the decline decreases and gradually
stabilizes. At α = 3.74, a clustering phase change occurs, and the solution space that
was originally a single declustering is decomposed into multiple declusterings. This phe-
nomenon shows that the k-dimensional structural entropy performs well when measuring the
solution space of single clustering, and is suitable for clustering with rich internal structure.

The above experimental results show that the 3-SAT formula can be used to solve
the spatial clustering phase transition point αd, the condensed phase transition point αc,
the threshold value of the interference transition point, and the corresponding structural
entropy threshold value. At n = 100, if HK < 48.20, then there is no cluster phase transition
in the solution space. If HK > 48.20, the solution space does undergo a cluster phase
transition: the cluster phase transition point is around αd = 3.73, the condensed phase
transition point αc = αd, the two-dimensional structural entropy H2 has an interference
transition at 24.2, and the interference transition point α∞

j = 4.17. The above structural
entropy analysis can obtain the structural entropy thresholds of the 3-SAT formula cluster-
ing phase transition points, the condensed phase transition points, and the interference
transition points at different scales. It can also estimate the clustering phase transition
point, the condensed phase transition point, and the interference transition point of the
k-SAT problem under different values.
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As a comparison of the entropy of the two-dimensional structure, Figure 9 record the
changes in the number of communities that understand the space. In order to more easily
observe the relationship between the changes in the number of communities in the 3-SAT
problem solution space and the changes in the entropy of the two-dimensional structure,
the experimental data are normalized. That is, when α is fixed, the ratio of the number of
each community to the maximum number of communities is calculated, and the ratio of the
two-dimensional structure entropy to the maximum two-dimensional structure entropy
is also calculated in the same way. Figure 9 depict the change curve of the number of
communities in the solution space of the random 3-SAT problem with n = 100, 125, 150,
respectively. From the experimental results, it can be seen that with the increase of n, the
solution space of the random 3-SAT problem becomes more complicated. The curve of the
number of communities in the solution space reaches the highest point at α = 3.74. At
this time, the community structure of the solution space is at the most complex state, and
the transition position of the condensed phase transition point moves from left to right.
The three sets of experiments all show that the solution space community structure is the
most complicated near the transition point. When α < 3.74, the number of solution space
communities increases exponentially.
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When the solution space of SAT problem is studied by using structural entropy theory,
there is no need for harsh judgment conditions, and there is no need to discuss the specific
CNF in a narrow sense, only according to the optimal partition of pairs of graphs. The
structural entropy theory is widely used, the judgment conditions are simple, and it can
extract the multidimensional structural information of the graph model to the maximum
extent, which is more effective than the methods in literature [5,6,12,13]. On the other hand,
the method in this paper cannot provide a definite upper bound or lower bound, which is
determined by the properties of structural entropy. Although the judgment conditions of
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the method in literature [5,6,12,13] are more demanding, it can provide an exact upper and
lower bound.

6. Conclusions

This paper proposes a solution space structure model based on planting strategy,
using BP planting freezing variable walkSAT to structure the solution space. Considering
that the original label propagation process will increase the influence of the remaining
labels on the final community division result, and the original label propagation cannot
divide the community well due to its strong randomness, in order to apply the results of the
above construction model, LPA based on the planting strategy is proposed. The algorithm
divides the community of solution spaces. Through experiments, we obtained the changes
of two-dimensional structure entropy and k-dimensional structure entropy under different
constraint densities of 3-SAT problems of different scales, and recorded and compared the
changes of the number of communities and the two-dimensional structure entropy. The
experiments showed that this solves the validity of the space analysis model. The next
step will continue to focus on the solution space of the SAT problem and explore a more
accurate structural entropy measurement model, so as to conduct a more detailed study
on the solution space structure and multiple phase transition points of the SAT problem,
provides ideas for future algorithms to solve SAT problems.
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