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Abstract: Determining the projection direction vector (PDV) is essential to the projection pursuit
evaluation method for high-dimensional problems under multiple uncertainties. Although the PP
method using a cloud model can facilitate interpretation of the fuzziness and randomness of the PDV,
it ignores the asymmetry of the PDV and the fact that indicators are actually distributed over finite
intervals; it quickly falls into premature defects. Therefore, a novel PP evaluation method based
on the connection cloud model (CCM) is discussed to remedy these drawbacks. In this approach,
adaptive numerical characteristics of the CCM are adopted to represent the randomness and fuzziness
of the candidate PDV and evaluation indicators. Meanwhile, to avoid complex computing and to
accelerate the convergence speed of the optimization procedure, an improved fruit fly optimization
algorithm (FOA) is set up to find the rational PDV. Alternatively, candidate PDVs are mutated
based on the mechanism “pick the best of the best” using set pair analysis (SPA) and chaos theory.
Furthermore, the applicability and reliability are discussed based on an illustrative example of slope
stability evaluation and comparisons with the neural network method and the PP evaluation method
based on the other FOAs and the genetic algorithm. Results indicate that the proposed method
with simpler code and quicker convergence speed has good global ergodicity and local searching
capabilities, and can better explore the structure of high-dimensional data with multiple uncertainties
and asymmetry of the PDV relative to other methods.

Keywords: projection pursuit; fruit fly optimization algorithm; metaheuristics; connection cloud
model; set pair

1. Introduction

The optimization of high-dimensional problems has been a focal issue of computer
science, artificial intelligence, management decision making, and engineering applications.
Previously, the confirmatory data analysis (CDA) method has been used, with some
assumptions of the data structure or distribution characteristics, and following specific
criteria [1]—such as how the reliability analysis method and multivariate analysis method
obey normal distribution. However, high-dimensional nonlinear problems are of multiple
uncertainties and non-normal distribution characteristics. Consequently, the nonlinear
problems of non-normal distribution or small-size samples under numerous uncertainties
cannot be solved by the CDA method because they cannot meet the assumed conditions.
In addition, evaluation methods based on classification criteria or empirical rules are widely
used in practical engineering problems. Still, they have limitations in assessing problems
under uncertain environments because the classification standard often varies with different
backgrounds, and its establishment is relatively complicated. Some corresponding robust or
non-parametric methods were proposed to handle these problems [2]; these conventional
approaches are impossible to use for finding out the inherent characteristics of high-
dimensional non-normal data and are far from meeting the needs of analysis. They may
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lead to the problem of the “curse of dimensionality” [3,4]. For this purpose, intelligent
algorithms, including the neural network method [5] and ant colony algorithm, were
proposed to improve accuracy. However, they still have limitations in revealing the
internal nonlinear relationship between evaluation indicators and results and have the
disadvantage of local convergence [6]. Therefore, to explore the structure or features of
high-dimensional data directly from the perspective of data, Friedman and Turkey [7]
proposed the projection pursuit method based on exploratory data analysis (EDA) without
artificial assumptions. The projection pursuit (PP) evaluation method overcomes the defect
of the “curse of dimensionality” in CDA by dimension reduction and can automatically find
out the internal laws of data in order to depict nonlinear characteristics of high-dimensional
problems [1,8,9]. Therefore, the PP evaluation method without the evaluation standard has
natural advantages in analyzing the issue of small-size samples.

On the other hand, it is hard to pursue a projection direction vector (PDV) for the
PP index function using traditional gradient or polynomial optimization methods. Some
evolutionary algorithms and intelligent swarm methods were introduced to handle this
problem and have achieved specific results, but they rarely consider the multiple uncer-
tainties of evaluation indicators. The main techniques include the differential evolution
method [10], particle swarm optimization method [11], shuffled frog leaping algorithm [12],
moth-flame optimization method [13], grey wolf optimization method [14], real coding
based accelerating genetic algorithm (RAGA) [15] and a whale optimization strategy based
on the Gaussian cloud model [16]. Nevertheless, the fruit fly optimization algorithm
(FOA) [17] raised recently provides a new way to find the best PDV for the PP evaluation
method, since it can conduct global information exchange and local deep search.

The FOA has the advantages of being easy to understand, simple implementation,
and fewer parameters. Still, the basic FOA algorithm also has defects, such as premature
convergence when the optimal solution is far from the origin, no ability to solve adverse
problems, and the unstable result of the optimization [18]. The flight strategy, the search
radius, and the candidate solution generation mechanism of basic FOA have been explored
to overcome these shortcomings. Pan et al. [19] proposed the improved FOA (IFFO)
algorithm with a better convergence rate to simulate the foraging randomness of fruit flies
to some extent. Yuan et al. [20] presented the multi-swarm fruit fly optimization algorithm
(MFOA) to avoid being trapped in local premature convergence and enhance the diversity
of the algorithm.

On the other hand, although these improved FOAs enhance the local searching capa-
bility, they do not consider the fuzziness and stability of individual osphresis and vision
behaviors in drosophila. However, the osphresis property in the foraging behavior of
the fruit fly tends to characterize randomness and fuzziness. Therefore, Wu et al. [21]
tried to describe randomness and fuzziness using a normal cloud model-based fruit fly
optimization algorithm (CMFOA). Still, the CMFOA ignores the interval and asymmetric
characteristics of the random and fuzzy uncertainties and the diversity of candidate solu-
tions, which may not be conducive to finding the global solution. Luckily, the connection
cloud model (CCM) can provide a new concept for describing randomness and fuzziness
in a finite interval [22,23]. Like other heuristic approaches, the initial parameter setting
also has pronounced effects on FOA performance [24], and the initial swarm location
contributes to faster convergence [25]. In addition, the outcome performance of selecting
key features is limited in conventional FOA [26]. Namely, the outcome of FOA based on
chaotic location is better than those of normal distribution or uniform distribution when
handling complex nonlinear problems. Consequently, to provide a reliable, optimal PDV
for the PP evaluation method, an improved FOA based on the CCM and set pair analysis is
addressed here to describe the randomness and fuzziness of PDV in the finite intervals.

The PP evaluation method generally projects high-dimensional data onto the one-
dimensional space to represent features based on a projection index function. The critical
problem is to pursue the PDV that best reflects the structural characteristics of high-
dimensional data. It is challenging to find the optimal PDV of nonlinear problems using the
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conventional analysis methods from the above analysis. For this reason, some intelligent
algorithms were introduced to handle such issues. Still, these algorithms, with many pa-
rameters and complex program code, generally have the defects of premature convergence
and ignore the interaction of multiple uncertainties. In addition, the assignment of PDV
inevitably involves the description of various uncertainties of the individual foraging pro-
cess. As such, for high-dimensional problems, it is necessary to introduce the FOA of group
collaboration and information sharing features into the PP evaluation method to optimize
the PDV. However, reports on the FOA rarely focus on the description of the fuzziness and
randomness of the PDV. Although Shao and Xin [27] introduced the PP method coupled
with the normal cloud model to evaluate the safety of the earth-rock dam, it does not
apply a normal cloud model to optimize the PDV. Nevertheless, the normal cloud model is
helpful for expressing fuzzy and random characteristics in the infinite interval [16]. It is
difficult to accurately describe the fuzziness of the index values on the bounds and the
interval-valued measured data. Hence, there is a great demand for developing an improved
FOA based on the CCM and SPA to enhance the performance of the PP evaluation method
for high-dimensional problems under multiple uncertain environments.

Given the nonlinear characteristics of the slope stability evaluation under multiple
uncertainties, a novel PP evaluation method using an enhanced fruit fly optimization
algorithm is introduced to assess slope stability. To better achieve the global and local
convergence rates and accuracy of the PP method, a new FOA based on the connection
cloud model and chaotic swarm location is first presented to pursue the optimal PDV.
Meanwhile, the generation mechanism of a new PDV based on the set pair analysis is
adopted to improve local searchability. Namely, the identity–discrepancy–contrary (IDC)
rule of set pair analysis is discussed to screen the candidate PDV, and the logistic map is
also adopted to improve the mutation of the candidate PDV for the global search. These
promote the algorithm to attain the goal of the candidate solution mechanism “picks the
best of the best”, and make the global optimization process more streamlined. The validity
and feasibility of the proposed PP evaluation model were further confirmed by case study
and comparative analysis with other methods. The improved FOA presented here is a
balanced algorithm of the global searching capability and local acceptable optimization
efficiency. It will be helpful to improve the generation mechanism and search rate of the
optimal PDV, and enhance the global and local searching performance of the PP evaluation
method. A quicker osphresis foraging process offers an opportunity to improve the local
optimization capability and effectively depict the random and fuzzy uncertainties of
individual search performance and decision.

2. Methodology
2.1. Projection Pursuit

The projection pursuit (PP) method proposed by Friedman and Turkey [7] is a power-
ful tool for dealing with non-normal and high-dimensional data. Its basic idea is to project
high-dimensional data into a low-dimensional space concerning the objective projection
function [28], then analyze the structural characteristics of original high-dimensional data
with obtained projection scores to scale the possibility of a specific structure [8]. The PP
evaluation method has apparent advantages in overcoming the defect “curse of dimension-
ality” and solving problems such as small samples and high-dimensional data, and finding
out the optimal PDV that determines the accuracy of the PP evaluation method. At present,
a linear projection index function is widely used in the PP method. Its corresponding
model is:

Q(α) = S(α)·D(α) (1)

S(α) =

[
1

n− 1

n

∑
i=1

(
Zi − Z

)2
] 0.5

(2)
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D(α) =
n

∑
i=1

n

∑
j=1

(
R− rij

)
· I (3)

R = δS(α) (4)

rij =
∣∣Zi − Zj

∣∣ (5)

I =
{

1 when R ≥ rij
0 when R < rij

(6)

Zi =
m

∑
p=1

αpx∗ip (7)

where Q(α) is the projection index function. S(α) denotes the data dispersion characteristics
of projection scores Z(i) obtained based on the PDV α. D(α) is the local density of low-
dimensional data points. Z is the mean value of projection scores. R represents the window
radius of the local density. I is the unit leap function. rij is the distance.

According to the above formula, the reasonable determination of the projection di-
rection is at the core of the PP method. However, it is difficult to determine the optimal
PDV using traditional optimization methods when dealing with problems with complex
topology. Consequently, the key to the successful application of the PP evaluation method
lies in determining the PDV. Therefore, the CCM and chaos theory were incorporated into
the FOA algorithm to depict the randomness and fuzziness of the individual PDV over
finite intervals.

2.2. FOA

The basic FOA proposed by Pan [17] is a novel swarm intelligence optimization
algorithm built on the foraging behavior of the fruit fly swarm. The detailed optimization
process of the original FOA can be found in reference [17]. Based on the search strategy
of population collaboration and information sharing, the basic FOA of strong robustness
and reasonable convergence rate can quickly discover the optimal solution of optimization
problems through the osphresis and vision foraging phases. It holds the characteristics of
easy implementation and understanding of the algorithm code and has now been widely
used in various fields [29–31].

The conventional FOA usually uses a fixed search step to find the optimal individual,
and the greedy iterative algorithm follows. The greedy iterative algorithm seeks the global
optimum near the present optimal individual in the vision foraging phase. These defects
may lead to the local optima problem and inhibit the global optimization capability of
the algorithm. Some scholars have presented the corresponding improved algorithms,
including MSFOA [20] and IFFO [19], to enhance the global optimization capability based
on the search step, candidate solution mechanism, and flight strategy of drosophila indi-
viduals. Still, most improved algorithms cannot reflect the randomness and fuzziness of
individual foraging behavior and smell concentration parameters. However, the actual
flying direction and distance of different drosophila individuals are random and fuzzy.
The foraging behavior of individuals is different from each other when flying compared
to the optimal individual. Such deviations can lead to fuzziness being inherent in the
real-world optimization problems, neglect of which can cause the solutions of the issues
to deviate significantly from their actual situation [32]. Thus, the MSFOA and IFFO may
inevitably affect the capability of showing the structure of high-dimensional problems.
The CMFOA [21] can reflect the fuzziness and randomness of the updated foraging location
of individual fruit fly by a normal cloud generator instead of the original uniform random
distribution in the smell search stage. Still, the normal cloud model cannot accurately
describe the fuzziness at the bounds and the finite interval characteristics of the search-
ing range. Herein, the CCM is therefore introduced here to improve the performance
of the FOA.
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2.3. Connection Cloud Model

As is clear from the above discussion, in the traditional FOA, flavor determination
calculation is based on the reciprocal of the distance, which may cause the fitness function
to be unable to analyze the case where the independent variable takes a negative value
or 0. In addition, the traditional FOA may be inclined to precocious convergence for the
optimal solution away from the original position because the concentration determination
value away from the initial post is minimal. It can be observed that the conventional
FOA easily falls into early maturity convergence. Some improved FOA methods [21]
have been proposed to address these defects and have been shown to overcome these
defects partly. These improved FOAs have enhanced the simulation of the foraging
randomness of fruit flies and have avoided being trapped in local premature convergence
to some extent. However, they cannot reflect the fuzzy characteristic of individual foraging
behavior and the evaluation indicator, which may decrease the search efficiency and the
ability to express data structures with uncertainties. In addition, they ignore the interval
characteristic of the random and fuzzy uncertainties, and cannot accurately describe
the fuzziness at the bounds [32]. The actual search direction and distance of individual
foraging processes are random and fuzzy in the finite interval when real fly individuals
fly to the next possible food source after learning from the optimal individual. Namely,
the determination of the optimal PDV using the FOA algorithm and previous improved
FOAs cannot simultaneously describe a particular projection direction’s ambiguous and
arbitrary characteristics. To overcome this defect, here a novel asymmetric connection cloud
model (CCM) is presented to represent the actual distribution characteristic of the indicator.
The CCM put forward by Wang and Jin [26] incorporated the connection numbers into the
cloud model. The CCM is a powerful tool for transforming a qualitative concept into a
quantitative value in a finite interval [21,27]. It can depict the changing tendency of the
bounds and the certainty–uncertainty relationship from identity, discrepancy, and contrary
elements. The CCM is presented as follows:

Denote C by a qualitative concept in quantitative domain X with a precise value in
a finite interval. If the numerical value x ∈ X is a random realization of concept C, then
the quantitative description for the certainty–uncertainty relationship between x and the
concept C is:

µ =

[
1−

(
x− Ex

y

)2
] k

(8)

where µ ∈ [0, 1] is the connection degree. y and x satisfy the normal distribution N (En, He2)
and N (Ex, y2), respectively. Ex, En, and He denote expectation, entropy, and hyper entropy,
respectively; y represents the left or right branch of cloud width; k is the order of the distri-
bution density function. These parameters of Ex, En, He, y, and k are collectively named as
the numerical characteristics of the CCM. The numerical characteristics are given as:

Ex =
Lmax + Lmin

2
(9)

En =
α√

2k + 3
(10)

k =
lg0.5

lg
[

1−
(

l−Ex
α

)2
] (11)

α′ = y
√

2k + 3 (12)

where α′ is the modified width of the left or right branch of cloud; l denotes the indicator
value responding to the connection degree of 0.5.
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3. Development of the PP Evaluation Method Using Improved FOA
3.1. Basic Principle

The basic principle of the PP evaluation method using the improved FOA based on
CCM and SPA is presented as follows: Firstly, initialize the parameters and normalize
measured data. Next, construct the PP index function and the optimization model. Then,
combining the measured data, find the optimal PDV most likely to represent the original
high-dimensional data structure or feature using the improved FOA. Namely, the digital
characteristic parameters of CCM, Ex, and En are adopted to express the randomness and
fuzziness of the optimal food source location and search range in the smell search stage,
and the correlation between random and fuzzy characteristics and smell concentration
parameters of the individual search. At the same time, based on the rule of identity–
discrepancy–contrary (IDC) of set pair analysis [16,28], the candidate mechanism of the
best projection direction is enhanced by the greedy strategy, and an adaptive entropy
accelerates the local convergence speed with the specific number of iterations. Then next,
the mutation search radius near the location of the primary optimal drosophila is produced
by the chaos theory to increase the diversity and ambiguity of individuals to prevent the
algorithm from falling into the local optimum and ensure the obtaining of the solution of
the optimal projection direction. Finally, high-dimensional measured data are projected into
a one-dimensional subspace to investigate the structure based on the optimal PDV found.

3.2. Evaluation Procedure

The detailed evaluation procedure using the PP evaluation method based on the
improved FOA consists of six steps, as illustrated in Figure 1.

Step 1: Standardize indicator values of samples. As we know, different evaluation
indexes have various dimensions and no uniform range, so the measured values of indexes
should be normalized to reduce their impacts. Responding to the benefit indicator that the
greater the attribute value the better the indicator is, the standardized model is:

x∗ip =
(

xip − xp
min

)
/
(

xp
max − xp

min

)
(13)

where x∗ip and xip are the normalized value and the measured amount of indicator p of

the ith sample, respectively. xp
max and xp

min denote the maximal and minimal amounts of
measured indicator p, respectively. While for the cost indicator that the smaller the attribute
value the better the index is, the corresponding model is given as:

x∗ip =
(

xp
max − xip

)
/
(

xp
max − xp

min

)
(14)

Step 2: Initialize the PDV and parameters of the improved FOA.

Xi j = LBj +
(
UBj − LBj

)
· rand()/2 (15)

Xij denotes the initial PDV; LBj and UBj are the lower and upper bounds of the jth
evaluation indicator; rand() is a function to produce a random number obeying the uniform
distribution on the interval [0, 1].

Step 3: Construct the projection index function. The core of the PP evaluation method
is to find an optimal PDV based on the projection index function to characterize the
structural features of high-dimensional data. Here, a linear projection index function Q(α)
is adopted. The corresponding pseudo-code for the swarm projection pursuit algorithm is
shown in Algorithm 1.

Step 4: Identify the optimization model of the PDV. For the given samples, the projec-
tion index function Q(α) only varies with the PDV of α, so different PDVs reflect various
structural features, among which, the optimal PDV can best reveal the structural char-
acteristics of high-dimensional data. Therefore, the optimal PDV can be found out by
maximizing the projection index function. The corresponding optimization model is:
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max[Q(α)]

s.t.
m
∑

p=1
α2

p = 1 (16)

Step 5: Find out the optimal PDV based on the improved FOA. According to the
analysis as mentioned above, the foraging process of the fruit fly population is to update
the search position dynamically based on the perceived smell concentration. Still, the lo-
cation of the fruit fly population is randomly distributed in the area. The judgment of
smell concentration is also fuzzy for each fruit fly, so the individual search range and
direction are randomness and fuzziness. Moreover, the high-dimensional data themselves
contain random and ambiguous indicators. However, the basic FOA and conventional
improved FOAs seldom consider multiple uncertainties in the finite interval. Therefore,
it is hard to apply them to find the optimal PDV of such problems. As such, the numerical
characteristics of the CCM were attempted here to outline the randomness, fuzziness,
and stability of the optimal PDV during the optimization process of the PDV using the
new, improved FOA.

Algorithm 1. Swarm projection pursuit algorithm.
Parameters: NP = 50; n = 12; p = 14; δ = 0.10

1: function [Q α Z] = projection_pursuit (α, x, δ);
2: α = sum(aˆ2);
3: b = sqrt(α);
4: α1 = α/b;
5: for k = 1: NP
6: for i = 1: n
7: for j = 1: p
8: Z1(k, i)= Z1(k, i) + x(i, j) × α1(p, j);
9: end for
10: end for
11: end for
12: Z = Z1′;
13 S = the standard deviation of Z
14: R = δ × S;
15: for k = 1: NP
16: for i = 1: n
17: for j = 1: n
18: r = abs(Z(i, k) − Z(j, k));

19: I =
{

1 For R ≥ r
0 For R < r

;

20: D(k) = D(k) + I × (R(k) − r);
21: end for
22: end for
23: end for
24: for k = 1: NP
25: Q(k) = S(k) × D(k);
26: end for

In the novel improved FOA proposed here, the PDV obtained from the latest optimiza-
tion is characterized by the expectation Ex of the CCM, and the random number y generated
is used to depict the individual search radius of random and fuzzy characteristics. The en-
tropy En is adjusted adaptively and dynamically with the iteration number to enhance the
local search convergence rate. At the same time, the theory of set pair analysis is intro-
duced here to screen the updating of individual PDV near the optimal PDV to improve the
candidate solution mechanism. Firstly, it substitutes the candidate PDV into Equation (8)
to calculate the connection degree. Then, depending upon the obtained connection de-
gree, the candidate PDV is further analyzed by the rule of identity–discrepancy–contrary
(IDC). Herein, the corresponding identity and contrary relationships are defined as follows:
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There is an identity relationship between the individual PDV produced randomly and
the optimal PDV of swarm obtained by the latest iteration when the connection degree
is more significant than 0.5. At the same time, there is a contrary relationship when the
gained connection degree is less than 0.5. The individual PDV with an identity relationship
meets the candidate requirements and can enter the optimization calculation of the PDV.
In contrast, the candidate PDV with a contrary relationship needs to be regenerated before
the measure. The corresponding model is written as:

k =

{
k + 1 For the connection degree µ ≥ 0.5

k otherwise
(17)

En = rand() ·
(
UBj − LBj

)
2

· exp
[

ln
(

Betalower
Betaupper

)
·
(

g
maxgen

)]
(18)

where k is the kth PDV. Obviously, in the smell searching phase of the improved FOA,
the candidate solution generation mechanism of the PDV based on the set pair analysis
is improved relative to the basic FOA and other improved FOAs. It can promote faster
aggregation to the optimal PDV obtained by the latest iteration and enhance the conver-
gence performance of the FOA algorithm. Meanwhile, the improved FOA proposed here
uses chaos theory to produce the new PDV near the optimal PDV. These advantages will
recover from the defect of the basic FOA fallof easily falling into local convergence and
improve the diversity of the candidate PDV. The corresponding algorithm is given as:

α(g + 1) = η · α(g)[1− α(g)] (19)

where g is the generation number; η denotes the coefficient of chaos. Thus, the improved
FOA expands the diversity of the PDV through the chaotic mechanism to increase the
variety of candidate solutions, which can prevent the optimization process from falling
into the problem of local optima.
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In general, the improved FOA can reflect the randomness and fuzziness of the indi-
vidual judgment and decision of smell concentration, reflect the randomness and fuzziness
of independent review and smell concentration and balance the global search capability
and local optimization capability. Solving PDV using the improved FOA includes four
phases: (1) Initialization of algorithm parameters and the PDV and projection parameters.
(2) Generation of the PDV near the latest optimal solution using the set pair analysis and
the CCM with an adaptive entropy En. (3) Expansion of the PDV diversity by chaotic
mutation. (4) Iterative solution of the optimal PDV. Their pseudo-codes are illustrated as
shown in Algorithm 2.

Algorithm 2 Connection cloud model based fruit fly optimization algorithm

1: Initialize NP, p, δ, maxgen, He, λ;
2: for i = 1: NP
3: for j = 1: p
4: α1 = rand;
5: end for
6: end for
7: [Q α Z] = projection_pursuit (α1, x, δ);
8: Smell = Q;
9: [bestSmell bestindex] = max(Smell);
10: Smellbest = bestSmell;
11: α(j, 1) = α;
12: for g = 1: maxgen
13: for j = 1: p
14: Ex(j, g)= α(j, k);
15: Adaptive adjustment of En
16: k = 1;
17: while k <= NP
18: Produce a random number, y, obeying the normal distribution N(En, He2);
19: Produce a random number, α2, obeying the normal distribution N[Ex(j, g), y2];

20: k =

{
k + 1 f or µ ≥ 0.5

k otherwise
;

21: end while
22: end for
23: [Q2 α2 Z2] = projection_pursuit (α2, x, δ);
24: Smell2 = Q2;
25: [bestSmell2 bestindex2] = max(Smell2);
26: for j = 1: p
27: for k = 1: NP
28: d = randperm(p,1);
29: if d = j
30: Generate a new PDV based on a logistic map;
31: else
32: α3(j, k + 1) = α3(j, k + 1);
33: end if
34: end for
35: [Q3 α3 Z3] = projection_pursuit (α3, x, δ);
36: Smell3 = Q3;
37: [bestSmell3 bestindex3] = max(Smell3);
38: for j = 1: p
39: if bestSmell3 > bestSmell2
40: α(j, p) = α3(j, bestindex2);
41: else
42: α(j, p) = α2(j, bestindex2);
43: end for
44: end for
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Step 6: Calculate the projection score of samples based on the obtained optimal PDV
to conduct a comprehensive analysis.

4. Case Study
4.1. Data

An illustrative example of slope stability in Ref. [5] was demonstrated here to confirm
the applicability and reliability of the PP evaluation method based on the novel FOA pro-
posed here. As we know, slope stability depends upon uncertain geological information,
so slope stability evaluation is complex. Evaluation methods of slope stability mainly
exist through quantitative and qualitative evaluation methods. The classical quantitative
evaluation method—the engineering geology analogy method of simple and easy opera-
tion advantages—is commonly used in engineering practice. Nevertheless, it is hard to
account for the uncertainty of the evaluation indicators due to the lack of unified standards.
Limit equilibrium methods such as the Fellenius, Bishop and Janbu methods need certain
hypothetical conditions to be met, so their applications have specified limitations. To over-
come these shortcomings, various quantitative analysis methods, including the fuzzy
sets method, the probabilistic theory, artificial neural network (ANN) method, and the
SVM, have been developed for slope stability analysis and have demonstrated successful
performances. However, they cannot describe multiple uncertainties of slope stability
problems [15]. Predicting unstable slopes is theoretically a process of functional approxi-
mations [33], so backpropagation neural networks are an effective evaluation method for
slope stability [34]. The real coding-based accelerating genetic algorithm (RAGA), based on
real number coding, improves the standard genetic algorithm [35], and an adaptive global
optimization probabilistic search algorithm. It has the advantages of needing no decod-
ing process, simple genetic operation, and easy high-precision numerical optimization.
Thus, the RAGA provides a new effective way to solve the optimal projection direction for
optimization problems. Artificial intelligence-based methods often cannot explicitly link
evaluation parameters and rank potential and have certain inherent drawbacks.

In general, previous studies have concentrated on a single type of uncertainty and are
always set up based on the existing classification standards or empirical rules. However,
establishing a classification standard for slope stability is relatively complicated, so those
methods may have limitations in assessing slope stability. The PP evaluation method
without the evaluation standard still has disadvantages in its difficulty in determining
the projection direction, despite its natural advantages in assessing the slope stability.
To this end, various intelligent approaches have been undertaken to find rational PDV
and beneficial progress has been made. Although these robust methods may achieve a
better PDV to some extent, they rarely examine the multiple uncertainties of PDV. Recently,
to express fuzzy and random characteristics, the CMFOA has been taken to find PDV,
but it is difficult to accurately describe the fuzziness of the index values on the bounds.
Hence, simultaneously considering the randomness and fuzziness of evaluation indicators
and the PDV in the finite intervals, a compelling slope stability assessment is required,
by employing efficient methods for considering multiple uncertainties.

Comparisons of results with the neural network method and PP evaluation methods
based on the primary and improved FOAs and RAGA were also carried out. Slope hazard,
one of the most important geological disasters, produces significant losses of social economy
and human life [36]. Therefore, the evaluation of slope stability has considerable social
and economic significance. However, slope instability caused by long geological action
involves various uncertain factors [37], so its evaluation is a complex uncertainty problem
with multi-dimensional and nonlinear data. In the case study, there were 14 evaluation
indexes including the height difference C1, slope angle C2, the relationship between the
flood level and landslide shear outlet elevation C3, sliding body area C4, water permeability
of sliding body C5, rainstorm intensity C6, deformation failure sign C7, material structure
C8, occurrence change of active surface C9, the strength of slip zone C10, the occurrence
of shear outlet C11, the human activity condition C12, the composition of rock mass C13,
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and the dip angle of rock stratum C14. The grade of the slope stability was divided into
five levels: unstable (I), relatively unstable (II), basically stable (III), relatively stable (IV),
and stable (V). Normalized values of indicators for samples are shown in Table 1.

Table 1. Indicator values of the samples.

Samples Slope Name
Evaluation Indicators

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

1 Huanglashi 1 0.32 0.79 0.83 0.82 1.00 0.76 0.90 0.90 1.00 1.00 0.50 1.00 0.88 0.10
2 Xintan 1.00 0.90 0.13 0.47 0.87 1.00 1.00 0.80 0.77 0.80 1.00 0.70 0.80 0.10
3 Tianbao 0.17 0.86 1.00 0.74 0.80 1.00 0.77 0.70 0.83 0.80 1.00 1.00 0.30 0.80
4 Baota 0.52 0.75 0.63 0.14 0.86 1.00 0.83 0.60 0.47 0.65 1.00 0.70 0.35 0.55
5 Yunyangxicheng 0.33 0.87 0.69 0.44 1.00 0.80 1.00 0.90 0.53 0.85 0.63 0.70 0.36 0.49
6 Huanglashi 2 0.24 0.86 0.20 0.92 0.77 0.70 0.63 0.10 0.93 1.00 0.50 0.70 0.88 0.10
7 Liulaiguan 0.48 0.90 0.72 0.59 0.67 0.20 0.70 0.50 0.57 1.00 0.85 0.60 0.88 0.10
8 Baiyian 0.38 0.80 0.66 0.45 0.60 0.30 0.90 0.70 0.45 0.25 0.65 0.30 0.70 0.90
9 Xiangjiawan 1.00 0.80 0.96 0.41 0.47 0.30 0.43 0.30 0.87 0.50 0.80 0.30 0.50 0.20

10 Baihuanping 0.44 0.45 0.69 0.10 0.40 0.30 0.57 0.20 0.50 0.80 0.40 0.30 0.87 0.50
11 Fanjiaping 0.48 0.56 0.66 0.14 0.47 0.20 0.57 0.20 0.57 0.70 0.28 0.30 0.30 0.70
12 Jiuxianping 0.33 0.49 0.67 0.27 0.57 0.80 0.43 0.10 0.47 0.40 0.20 0.20 0.27 0.30

4.2. Model Implementation

The corresponding Matlab program was coded based on the above-discussed evalua-
tion procedures in Section 3. Based on the measured values of sample, the optimal PDV is
obtained as α = (0.094, 0.443, 0.122, 0.307, 0.276, 0.232, 0.278, 0.261, 0.248, 0.261, 0.466, 0.244,
0.063, 0.023), using the improved FOA with the population size of 50, the iteration number
of 100, the adaptive control coefficient ζ of 7, and the corresponding maximal value of the
projection index function Q(α) is 1.743. The minimal and maximal values of the Beta are
10−5 and 0.5, respectively. Projection scores for samples obtained by real-coding-based
accelerating genetic algorithm (RAGA), IFOA, CFOA, and improved FOA proposed here
are illustrated in Figure 2 and Table 2. Their classification results are given in Table 3.
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Table 2. Projection scores of samples based on the optimal PDVs from different algorithms.

Samples 1 2 3 4 5 6 7 8 9 10 11 12

RAGA [38] 2.570 2.583 2.562 1.949 2.179 1.934 1.970 1.443 1.451 0.878 0.836 0.445
IFOA 2.440 2.440 2.668 2.138 2.302 1.574 1.574 1.574 1.138 0.848 0.848 0.602
CFOA 2.656 2.637 2.640 1.964 2.248 1.942 1.930 1.646 1.641 0.896 0.908 0.601

CCMFOA 2.639 2.638 2.639 2.009 2.294 2.009 2.009 1.480 1.480 0.674 0.674 0.516

Table 3. Comparison of results from different methods.

Samples 1 2 3 4 5 6 7 8 9 10 11 12

ANN [5] I I I II II III III IV IV V V V
RAGA [38] I I I III II III III IV IV V V V

IFOA I I I II II III III III IV V V V
CFOA I I I III II III III IV IV V V V

CCMFOA I I I III II III III IV IV V V V

4.3. Results Analysis

The projection score indicates the varying level of the slope. Their orders from large
to small for the projection scores obtained by the improved FOA were samples 3, 1, 2, 5,
4, 6, 7, 9, 8, 10, 11, and 12. The grade of samples 1, 2, and 3 was unstable I; that of sample
5 was relatively unstable II; those of samples 4, 6, and 7 were stable III; those of samples
8 and 9 can be rated as relatively stable IV; and samples 10, 11, and 12 can be ordered as
stable V, respectively. The evaluation results were broadly consistent with the results of the
neural network method, except sample 4. The result indicates that the proposed method is
practical and feasible. At the same time, it is seen that the evaluation results from the PP
evaluation method can directly depict the data from multiple variables and the degree of
slope stability with one-dimensional variables.

In contrast, the neural network method has a black box effect and cannot reflect the
direct relationship between the evaluation indicators and the evaluation results. Moreover,
the optimal PDV changed with different optimization methods despite giving the same
classification to a specific sample. This may suggest that the optimization of the projection
direction is too complicated to solve based only on the projection index function for the
problem under multiple uncertain environments.

4.4. Comparison and Discussions

The values of the projection index function Q(α) versus iteration numbers obtained
from different algorithms are presented in Figure 3, and the corresponding optimal PDVs
are listed in Table 4 and Figure 4. It was observed in Figure 3 that the absolute value of
the projection index function obtained from the improved FOA was the largest, and about
25% and 13% higher than those of CFOA and IFOA under the same initial PDV. These
results may indicate that the generation mechanism of the candidate PDV in the basic
FOA may lead to a local optimum, while the improved FOA using chaos theory can
enhance the global searching performance of the PP evaluation method. The generation
mechanism of candidate PDV based on the connection cloud model and IDC analysis is
beneficial for improving the search rate of the optimal PDV. Meanwhile, the evaluation
results from the improved FOA were easier for determining the state of the slope stability
and more convenient for application relative to other methods. It was also observed that the
number of computational iterations for obtaining the optimal PDV depending on improved
FOA, the IFOA, and the CFOA were 39, 19, and 61, respectively. The IFOA reached the
optimal solution fastest. The search rate was about 2.2 and 1.1 times faster than those of
the CFOA and improved FOA, respectively, but the projection index function value was
approximately 30% lower than that of the improved FOA, while the search rate and the
projection index function value of the enhanced FOA were about 0.7 times and 42% higher
than those of the CFOA.
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Overall, although the IFOA has good global search efficiency, since it pursues the opti-
mal solution faster than the improved FOA and the CFOA, the capability of the local search
was worse. The enhanced FOA is a swarm intelligence algorithm with global and local
abilities in harmony. It can conduct deep mining and local refinement of the convergence
region and concurrently comprehensively optimizes the space outside the convergence
region using the chaotic mutation operator. Hence, the improved FOA proposed here can
ensure the search efficiency and precision of the optimal PDV and effectively describe the
randomness and fuzziness of the candidate optimal PDV in a finite interval.
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Table 4. Comparison of the optimal PDV.

Optimization
Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RAGA [38] 0.336 0.535 0.193 0.389 0.153 0.291 0.716 0.338 0.502 0.667 0.733 0.666 0.144 0.215
IFOA 0.106 0.141 0.134 0.106 0.164 0.374 0.442 0.327 0.217 0.236 0.346 0.371 0.042 0.328
CFOA 0.297 0.317 0.146 0.333 0.209 0.224 0.240 0.343 0.340 0.271 0.325 0.197 0.117 0.251

CCMFOA 0.094 0.443 0.122 0.307 0.276 0.232 0.278 0.261 0.248 0.261 0.466 0.244 0.063 0.023
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The evaluation of slope stability is a complicated problem with various uncertainty
factors. The case study shows that the improved FOA can overcome the shortcomings of the
basic FOA in the solution of PDV and has the advantages of better efficiency and accuracy.
The proposed algorithm can significantly enhance global and local search capabilities. After
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all, it takes advantage of randomness, fuzziness, and traversal characteristics. It has the
following benefits over other methods:

(1) Compared with the neural network evaluation method, the proposed method
overcomes the burden of knowledge acquisition based on many samples. And it also can
directly obtain the relationship between the evaluation indicators and the classification
results, while the classification results obtained from the neural network method are from
the black box effect.

(2) The improved FOA can apply expectation Ex to memorize a possible optimal
PDV. The search range and learning degree of the candidate PDV are also characterized
intelligently by the entropy En. The larger the En, the larger the individual fluctuation
range is. The hyper entropy can further depict the stability of individual learning and
demonstrate the power of personal understanding. These characteristics can promote the
optimal PDV obtained from elite individuals. It also avoids the limitation of the normal
cloud model that requires the normal distribution of optional solution parameters.

(3) The generation mechanism of the new PDV is strengthened by the set pair analysis.
Namely, the identity and contrary relationships between the candidate PDV and the optimal
PDV obtained from the latest optimization are analyzed according to the connection degree.
The candidate PDV generated randomly is screened before the complex calculation of PP.
It enables the algorithm to achieve the goal of the candidate solution mechanism “picks the
best of the best” and makes the global optimization process more streamlined.

(4) The candidate PDV generated near the optimal solution based on logistic mapping
ensures the optimal global solution is obtained with ergodicity, randomness, and diver-
sity. Thus, the algorithm can jump out of the local optimum while quickly reaching the
global solution.

4.5. Sensitivity Analysis

To analyze the influence of the parameters on the present algorithm, the sensitivity
analysis of the primary parameters population size and iteration number is performed
here. The corresponding calculation results are shown in Figures 5 and 6.
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Figure 5. Sensitivity analysis of population size for the algorithm.

Figure 5 shows the results of the sensitivity analysis of the population size parameter.
The results were obtained with the same initial projection direction of α = (0.111, 0.146, 0.140,
0.096, 0.171, 0.375, 0.383, 0.340, 0.228, 0.248, 0.363, 0.389, 0.038, 0.038, 0.329). As shown
in Figure 5, the maximum projection index values of the population size parameters
NP = 50, 75, 100, and 200 were very close. The number of computational iterations reaching
the maximum value was similar, indicating that the model is relatively insensitive to
the population size parameters in the same initial projection direction and verifies the
model’s stability.
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Figure 6 illustrates the results of the sensitivity analysis of the iteration number param-
eters. The result was likewise obtained based on calculations under the same initial projec-
tion direction. It was seen from Figure 6 that the maximum projection index values were
affected by the iteration number parameters. With iteration numbers maxgen = 50, 75, 100,
the maximum projection index value increased with increasing iteration numbers. How-
ever, the projection index value of iteration numbers maxgen = 200 was lower than iteration
numbers maxgen = 100, indicating that the increase of iteration numbers could improve
the analysis effect to some extent. Therefore, the present model can achieve the target with
fewer iterations, showing that the current algorithm has high computational efficiency.

5. Conclusions

Conventional optimization algorithms are not robust enough to deal with the uncer-
tainties of fuzziness and randomness in the finite interval. Although the PP evaluation
method is a common tool to analyze and cluster the actual engineering problems of
high-dimensional data, it raises the issue of detecting the PDV to reflect the structure
or characteristics of the original non-normal data. Here, a novel fruit fly optimization
algorithm based on the CCM and set pair analysis to optimize the PDV and the PP method
based on the improved FOA are investigated to analyze the structural characteristics of
data with randomness and fuzziness. An illustrative example of slope stability further
verifies the reliability and applicability of the proposed method, and principal conclusions
are concluded as follows:

(1) The slope stability evaluation involves various uncertain indicators, and there is
no unified evaluation standard and evaluation index system. These uncertainties restrict
the application of evaluation methods relying on classification criteria for slope stability.
The CCMFOA-based PP approach without the rating standard provides a refreshing
concept for examining slope stability directly through small-size measured data.

(2) Case study indicates that the CCMFOA overcomes the defects of the original FOA
or other improved FOAs, and can fully depict the symmetric structure and the randomness
and fuzziness characteristics of the PDV. Meanwhile, the projection rate of the model
presented here is faster than other algorithms. It has a high convergence accuracy relative
to other improved FOAs based on the normal distribution for the problem with small-size
samples under uncertain environments. Thus, the proposed PP evaluation method based
on the enhanced FOA does not require the existing evaluation classification criteria and
can fully explore and depict the structure and information of high-dimensional data of
samples in one-dimensional space. It provides an alternative way to assess slope stability
under multiple uncertainties.
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(3) Compared with the evaluation correctness and computational convergence rate
of the basic FOA and conventional improved FOAs, the generation mechanism of the
candidate PDV incorporated with the CCM and IDC principle of SPA can accelerate the
osphresis foraging process and enables the improvement of the local fine optimization
capability and to the effective depiction of the random and fuzzy uncertainties of individual
search performance and decision. At the same time, adaptive control of search range and
chaotic mutation increases the diversity and ergodicity of the improved FOA. The enhanced
FOA proposed here is a balanced algorithm of the global searching capability and local
acceptable optimization efficiency.

(4) Algorithmic sensitivity analyses of population size and the iteration number in the
same initial projection direction show that population size has less impact on the present
model. In contrast, iteration number has some role in the simulation results, while also
verifying that the current model has good stability and computational efficiency.

(5) Although the improved FOA can provide more accurate PDV for the PP method
than other FOAs, producing the excellent initial conditions for this improvement still needs
further investigation. In addition, the adaptability of the proposed model still needs to be
further explored through more examples and practical applications in the future.
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