
symmetryS S

Article

Trusting Testcases Using Blockchain-Based Repository Approach

Abdulla Al Zaabi *,†, Chan Yeob Yeun † and Ernesto Damiani

����������
�������

Citation: Al Zaabi, A.; Yeun C.Y.;

Damiani E. Trusting Testcases Using

Blockchain-Based Repository

Approach. Symmetry 2021, 13, 2024.

https://doi.org/10.3390/sym13112024

Academic Editors: Kuo-Hui Yeh,

Chunhua Su and Shi-Cho Cha

Received: 31 August 2021

Accepted: 12 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology,
Abu Dhabi 127788, United Arab Emirates; chan.yeun@ku.ac.ae (C.Y.Y.); ernesto.damiani@ku.ac.ae (E.D.)
* Correspondence: abdulla.alzaabi@ku.ac.ae
† These authors contributed equally to this work.

Abstract: Modern vehicles have evolved to support connected and self-driving capabilities. The
concepts such as connected driving, cooperative driving, and intelligent transportation systems have
resulted in an increase in the connectivity of vehicles and subsequently created new information
security risks. The original vehicular ad-hoc network term is now emerged to a new term, Internet
of Vehicles (IoV), which is a typical application of symmetry of Internet of Things (IoT). Vehicle
manufacturers address some critical issues such as software bugs or security issues through remote
updates, and this gives rise to concerns regarding the security of updated components. Moreover,
aftermarket units such as those imposed by transportation authorities or insurance companies expose
vehicles to high risk. Software testing aims to ensure that software products are reliable and behave
as expected. Many commercial and open-source software products undergo formal certifications to
increase users’ confidence in their accuracy, reliability, and security. There are different techniques for
software certification, including test-based certification. Testcase repositories are available to support
software testing and certification, such as the Linux Test Project for Linux kernel testing. Previous
studies performed various testing and experimental evaluation of different parts of modern vehicles
to assess the security risks. Due to the lack of trusted testcase repositories and a common approach
for testing, testing efforts are performed individually. In this paper, we propose a blockchain-based
approach for a testcase repository to support test-based software and security testing and overcome
the lack of trusted testcase repositories. The novel concept Proof-of-Validation to manage global state
is proposed to manage updates to the repository. The initial work in this study considers the LTP
test suite as a use case for the testcase repository. This research work is expected to contribute to the
further development in including evidence generation for testing verification.

Keywords: autonomous; vehicles; software; testing; certifications; blockchain; oracles; hyperledger

1. Introduction

Software systems play an important role in many domains of our life, such as health-
care, transportation, telecommunication, government, and business. Thus, ensuring the
correctness and reliability of applications and software systems that support these domains
is very crucial, irrespective of whether they are open-source or commercial. Government
agencies and standard bodies are continuously developing regulations and guidelines for
the development and deployment of software systems. Certification of software products
aims to increase users’ confidence in their correctness and reliability. Different certification
techniques exist for software systems. The common ones are model-based certification and
test-based certification. Model-based certification relies on model-based testing, where an
abstract model representing a software system to be certified has properties as claimed
by the developer or vendor. Test-based certification relies on executing testcases and gen-
erating evidence to support the claims or properties of the software system [1]. Software
certification is not limited to commercial software systems; open-source software systems
undergo software certifications as well.

Symmetry 2021, 13, 2024. https://doi.org/10.3390/sym13112024 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1398-952X
https://doi.org/10.3390/sym13112024
https://doi.org/10.3390/sym13112024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112024
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112024?type=check_update&version=1

Symmetry 2021, 13, 2024 2 of 20

Blockchain is a digital, secure, decentralized collection of records/transactions. It can
be likened to a distributed database in the form of blocks, which maintains records while
preserving the integrity of the chain or database. Blockchain eliminates the need for a
trusted and centralized authority to govern or verify the integrity of data. The introduction
of oracles in blockchain widens the scope of blockchain to data not stored on the chain
(off-chain). Blockchain is now being adopted in various applications in different domains,
such as cryptocurrency, healthcare, and energy [2,3].

Existing software testing and certification techniques require the testcases to provide
proofs that given properties hold. Moreover, the test process is usually carried out by a
trusted evaluation body in a controlled environment. There are existing testcase reposi-
tories to support test-based software testing. Due to the absence of centralized or trusted
testcases for software and security testing of autonomous vehicles, the testing procedures
are implemented individually.

In this paper, we present an approach to support testing activities for software products
and systems. The proposed approach aims to contribute to the area of testcase development
and provide a trustworthy repository, using blockchain-based technology. While testcase
repositories exist for some domains, such as the Linux Test Project (LTP), there is no open
repository based on distributed technology. In our future works, we aim to support not only
testcase generation but also the certification of software systems in a trusted decentralized
manner. The contribution of this article is therefore threefold: We (i) define blockchain-
based repository for test-based software testing, (ii) describe a validation mechanism
named Proof-of-Validation (PoV) to manage the global state of the blockchain for updates
to the testcase repository, and (iii) introduce the autonomous vehicle conceptual model to
support the development of testcases and define test categories.

The remainder of this article is organized as follows: Section 2 provides a greater
emphasis on blockchain technology, including the types of blockchain oracles and different
implementations of blockchain. Section 3 describes a conceptual model for autonomous
vehicles. Section 4 describes our approach to the distributed repository of testcases based
on blockchain. Finally, Section 5 presents our concluding remarks and the scope for
future work.

2. Related Work

This section presents an overview of blockchain technology, blockchain oracles, soft-
ware testing, and a conceptual model for autonomous vehicles.

2.1. Overview of Blockchain Technology

The term “blockchain” was introduced in the paper that first explained the concept of
Bitcoin by Satoshi in 2008 [4]. Blockchains relies on consensus mechanisms to ensure the
reliability and consistency of the data and transactions. Different blockchain technologies
employ different consensus mechanisms. Some of the widely adopted consensus mecha-
nisms include: Proof-of-Work (PoW), Proof-of-Stake (PoS), and Practical Byzantine Fault
Tolerance (PBFT) [5].

Hyperledger has been created to advance cross-industry blockchain technologies.
It is a multi open-source project, founded by the Linux Foundation. There are different
projects under the umbrella of Hyperledger: Hyperledger Fabric, Hyperledger Sawtooth,
and Hyperledger Indy, in addition to other tools and libraries such as Hyperledger Caliper
and Hyperledger Ursa.

Hyperledger Fabric is a modular blockchain framework for developing a wide range of
blockchain-based applications. It was designed considering a high level of privacy to allow
for business organizations and government entities to utilize blockchain technologies in
different applications. Notably, it supports the development of non-incentivized consensus
algorithms. One of the key advantages of the Hyperledger Fabric framework is the support
offered for different formats of ledger data. Moreover, the fully pluggable consensus
mechanism is supported.

Symmetry 2021, 13, 2024 3 of 20

The Hyperledger Fabric architecture consists of different node types, which are com-
munication entities of the blockchain. There are three types of nodes: client, peer, and or-
derer. A peer in the Fabric is responsible for validating transactions and maintaining the
state of the ledger, and it can also have a special role called the endorser. The orderers are
responsible for creating new blocks and updating the ledger by adding orders. All nodes
are registered and authenticated via a Fabric special entity called the membership service
provider (MSP). The Fabric utilizes special applications called chaincode, which are smart
contracts written in either Go, Java, or other supported languages. The process given below
is followed.

1. All nodes are registered in the MSP.
2. A channel is created with a ledger. The ledger is initialized during channel creation.
3. A policy is created with defined endorsement criteria.
4. A chaincode is deployed in the ledger.
5. Entity submits a transaction proposal to all required endorsers as specified in the

endorsement policy. A transaction is created when an entity invokes a function in
chaincode, which could be a read function or update function.

6. The proposal is validated by endorsers, and the chaincode is executed and ledger
data are returned as a proposal response.

7. The transaction proposal, response, and ledger data are sent to the orderer as a transaction.
8. A block is created by the orderer using the transaction and the block is returned to

the endorsers.
9. Endorsers update the state of the ledger and add the block after validation.

The ordering service in the Fabric can support only one order or multiple orderers
(SOLO and Kafka). The Fabric does not employ the concept of incentive-based consen-
sus protocols.

2.2. Overview of Oracles

Oracles are decentralized data feeds that provide external data to the blockchain [6,7].
Traditional blockchain implementations and smart contracts cannot communicate with
data outside the blockchain network or off-chain data. Oracle blockchain comes into play
to bridge the gap between off-chain and on-chain data, widening the scope of blockchain
and smart contracts to operate beyond the on-chain data. Blockchain oracles are not the
network itself or the data store for off-chain data; they are rather a layer that allows for the
blockchain to query and authenticate external data sources as shown in Figure 1. In the
absence of blockchain oracles, smart contracts are limited to on-chain data. The data enters
the blockchain by oracles in different formats, such as votes from voting terminals or
transactions from payment systems.

BlockchainOraclesExternal Data

Web Sources

IoT

APIs

Execution

BlockchainOraclesExternal Data

Web Sources

IoT

APIs

Execution

Figure 1. Interaction of oracles with blockchain and external sources.

Oraclize (or Provable Things) is the most widely used oracle in blockchain. It is a
leading service for blockchain applications serving thousands of requests daily on platforms

Symmetry 2021, 13, 2024 4 of 20

such as Hyperledger Fabric and Ethereum. It providers a layer to allow for smart contracts
to access and query data off-chain.

Moreover, it overcomes the limitations of decentralized oracles via the concept of
authenticity proof. The authenticity proof verifies that the data fetched from external
sources are genuine and not tampered with. The authenticity proofs can be built on trusted
execution environments or auditable virtual machines. The authenticity proofs of Oraclize
maintain the security model of blockchains. The data do not need to be standardized as
smart contracts can access data from external sources.

Provable uses authenticity proofs to overcome the limitation of the trust model in
oracles. It establishes a secure connection between smart contracts and external data
sources. Therefore, data received or computations performed externally are transmitted
securely between the smart contracts and external data sources.

ChainLink is a decentralized blockchain oracle service built with modularity in
mind [8]. The fundamental functional objective thereof is to bridge off-chain and on-chain
networks. ChainLink enables the interaction of smart contracts with external data sources
in a trusted manner. The trust model in ChainLink is distributed between ChainLink nodes
(off-chain) and blockchain (on-chain).

In ChainLink, the user smart contract (USER-SC) requests data or queries ChainLink
nodes. The USER-SC interacts with ChainLink nodes through the ChainLink smart con-
tract (CHAINLINK-SC). The CHAINLINK-SC is an on-chain smart contract consisting of
three main contracts, namely, a reputation contract, an order-matching contract, and an
aggregating contract. The reputation contract keeps track of the reputation of the oracle
service provider. The order-matching contract is responsible for the service level agreement
(SLA) aspects of the oracle service. It receives proposals of the SLA and keeps track of
the SLA parameters. It also collects bids from oracle providers. The aggregating contract
is responsible for aggregating responses from oracle provides, and it calculates the final
result of the query.

2.3. Overview of Ipfs

The InterPlanetary File System (IPFS) is a peer-to-peer distributed file system used
to store and version large data [9,10]. Files added to IPFS receive a unique hash that
corresponds to the content of the file. The IPFS stack is divided into a stack of sub-
protocols that are responsible for different functionalities such as identities, network,
routing, exchange and naming. Similar to other peer-to-peer networks, the IPFS uses
Distributed Hash Tables (DHTs) to coordinate and maintain metadata, which supports
content discovery.

The block exchange in IPFS uses a novel protocol named BitSwap, which is a Bit-
Torrent inspired protocol to exchange blocks between peers. In IPFS, “want_list” and
“have_list” correspond to the blocks requested by clients and blocks that are being offered
by other clients. The BitSwap protocol employs BitSwap Credit to incentivize nodes and
to overcome the issue of free-loading. BitSwap ledger keeps track of transfer history and
helps avoid tampering. During connection initialization, peers share their BitSwap ledger,
and if the state of the ledger is incorrect, the peer loses its credit or debit and the ledger
gets reinitialized.

2.4. Overview of Trust

Trust is an essential element in building confidence in software products. The general
definition of trust refers to the firm belief in the truth and reliability made by individuals
to the actions and consequences of other parties [11,12]. In software testing, trust is
viewed in the system’s ability to behave as expected and to be resilient. Due to the
existence of multiple dimensions in software development such as software, hardware,
environment, threat space, and others, establishing trust is difficult [13]. The International
Standard Organization (ISO) document “Glossary of IT Security Terminology” provides
the following definitions.

Symmetry 2021, 13, 2024 5 of 20

• Certification Authority: an entity trusted by one or more users to create and assign
certificates.

• Certification: Procedure by which a third party gives written assurance that a product,
process, or service conforms to a specified requirement.

In security certification, the trust in certificates issued by the certification authorities
increases customer confidence in the claims made by the service provider on the security
properties of the system. The cost of international certification of software systems remains
very high [13]. Security evaluation activities based on test-based testing achieve a lower
trust level than the one achieved by the full certification process. The assumption made in
this research is that the evidence generated by the security testing is mainly based on the
trust that a customer has in the testcases.

2.5. Overview of Software Testing and Certifications

There are different techniques for software verification and validation including model-
based and test-based. The model-based verification is based on an abstract model that
describes the target software or system undergoing testing whereas, in test-based testing,
requirements are verified by the execution of testcases. In test-based testing, the outcome of
testcase execution determines if the software meets the claimed or desired property. Given
below are a few examples of There arethe different types of test-based software testing [13].

• Unit Testing: tests specific components or code blocks.
• Integration Testing: tests integration of different subsystems or software components.
• Acceptance Testing: tests the entire software product to ensure conformance with

end-user requirements.

Each type of testing described above may involve different techniques based on
the purpose of testing, which may require the design and execution of specific testcases.
Below are some examples of some of the testing techniques.

• Functionality Testing: to ensure that the functions meet the intended software requirements.
• Performance Testing: to ensure the system stability and robustness under a specific

workload.
• Regression Testing: to ensure that update in specific component did not introduce

new issues in unchanged software components.
• Security Testing: to ensure that security mechanisms are implemented to protect

sensitive data and aims to uncover vulnerabilities that may be exploited.

Because the article is focused on test-based testing, the remainder of this section briefly
reviews some security certification schemes.

2.5.1. Common Criteria

Common Criteria (CC) is a general model for test-based certification. It is an inter-
nationally recognized set of guidelines for the security of information technology prod-
ucts [14]. It ensures that the processes of specification, implementation, and evaluation of
any certified product are conducted in a thorough and standard manner. In other words, it
ensures that a product has been independently verified to behave securely as measured
against internationally agreed specifications.

In CC, the target system of software undergoing evaluation is called the target of
evaluation (TOE). CC can be applied to a variety of computer systems including operating
systems, databases, network devices, and smart cards. CC terms from [13] are explained in
Table 1.

Symmetry 2021, 13, 2024 6 of 20

Table 1. Common criteria terms.

Term Name Description

CC Common Criteria Common Criteria Methodology for Information Technology
Security Evaluation.

CEM Common Evaluation Methodology Common Evaluation Methodology for Information Technology
Security Evaluation.

PP Protection Profile An implementation-independent set of security requirements for a
category of products.

ST Security Target A set of implementation-dependent security requirements for a
specific product.

TOE Target of Evaluation The product under evaluation.
TFS TOE Security Functionality The security functionality of the product under evaluation.

TSS TOE Summary Specification A description of how a TOE satisfies security functional requirements in
the product under evaluation.

SFR Security Functional Requirement A requirement for security enforcement by the TOE.
SAR Security Assurance Requirement A requirement to assure the security of the TOE

Protection profile (PP) is an important component of CC. PP specifies the type of
security requirements for a class of equipment. However, it does not provide details on how
the specified security requirements are implemented. Instead, it provides generic security
evaluation criteria to confirm the product’s conformance with the security requirements to
that family of information system products. Some examples of PPs are listed below.

• Biometric Verification Mechanisms
• Base Protection Profile for Database Management Systems
• PP for the Gateway of a Smart Metering System
• Application VPN client/Client VPN Application, Version 1.0

2.5.2. The Trusted Computer System Evaluation Criteria

The Trusted Computer System Evaluation Criteria (TCSEC) is a standard developed by
the Department of Defense of the United States (DoD) to address the issues of standardizing
computer security controls. The TCSEC (also known as the Orange Book) was used to
evaluate, classify, and select computer systems that deal with classified information for
processing, storing, or retrieval. It was not only used for military systems but also by the
government and industries. It was later replaced by CC [15].

The Orange Book defines the following divisions and classes for security: D, C, B,
and A. Each division represents a set of security features that must be satisfied by a software
system to be classified for the category as shown in Table 2.

Table 2. The Orange Book categories.

D Minimal Protection C Discretionary Protection

Software systems that have been evaluated and
failed to meet the requirements of other

categories

C1 Discretionary Security Protection
C2 Controlled Access Protection

B Mandatory Protection A Verified Protection

B1 Labeled Security Protection
B2 Structured Protection

B3 Security Domains
A1 Verified Design-Beyond A1

2.5.3. Society of American Engineers Cyber Security Guidebook for Cyber-Physical
Vehicle Systems

The Society of American Engineers (SAE) published an international guidebook for
cyber-physical vehicle systems: SAE J3061 [16]. This guidebook defines a process frame-
work for cyber-physical vehicle systems security lifecycle. It provides high-level guides

Symmetry 2021, 13, 2024 7 of 20

and information on the best practices for cyber-physical systems lifecycle. The framework
aims to aid the identification and assessment of cyber security threats and the design of
cyber security into cyber-physical vehicle systems. It defines a security lifecycle strongly
influenced by the safety lifecycle defined in ISO 26262 [17]. SAE J3061 defines different
phases of the system lifecycle: the concept phase, development, production operation,
and service. In addition, it suggests supporting processes such as requirements, change,
and quality management.

As a joint development effort between SAE and ISO, J3061 is not merged into ISO-
SAE 21434 [18]. ISO-SAE 21434 considers all phases of the vehicle lifecycle; ranging from
design and development, production, operation, and maintenance to decommissioning.
The purpose of the standard currently being developed is to define a structured process
to ensure cybersecurity engineering for in-vehicle systems and reducing the potential for
a successful cyber attack. The SAE vehicle electrical system security committee started
working on more in-depth guidance documents for the cybersecurity of automotive systems
as illustrated in Table 3.

Table 3. SAE guides.

Guide Description

SAE J3061-1 Automotive Cybersecurity Integrity Level

SAE J3061-2 Security Testing Methods

SAE J3061-3 Security Testing Tools

SAE J3101 Requirements for Hardware-Protected Security for Ground Vehicle Applications

SAE J3138 Guidance for Securing the Data Link Connector (DLC)

2.5.4. Linux Test Project

Before the introduction of LTP, Linux kernel testing was carried out informally. The lat-
est kernel versions are tested by executing real applications on workstations or servers,
and the identified bugs or performance issues would be reported by individuals or orga-
nizations [19]. Despite the efforts of many Linux developers in performing unit testing,
there was no community-wide testing framework for Linux kernel. LTP was therefore
introduced to provide the complete test suite for Linux kernels. LTP aims to improve the
Linux kernel by facilitating automated testing of kernel functionalities.

LTP aims to allow users and developers to validate Linux kernels, specifically the
stability and robustness of the kernel. Before the introduction of the LTP, there was
no formal testing environment available, the LTP significantly advanced Linux testing
and assurance. It facilitates both automated testing of kernel functionalities and testing
of individual components via running of individual testcases. Furthermore, it allows
developers to define new tests and integrate existing benchmarks and test results analysis.

LTP plays an important role as a part of daily testing activities for Linux kernel testing.
At the beginning, LTP supported the writing of testcases in C. Currently, it supports the
writing of testcases in Portable Shell. It was introduced by Silicon Graphics, but it is
currently being maintained by many organizations and developers, including IBM, Cisco,
Fujitsu, SUSE, and Red Hat. Moreover, it undergoes regular maintenance and cleanup.
The latest version of the LTP test suite (September 2020) has over four thousand testcases.

LTP defines Pan as the test driver for the test suite. Users can define the list of testcases
to run pass it to Pan for execution. Pan reports the output of the test program, that is,
whether it passed or failed and where it failed.

In addition to automated testing, users can run individual test programs as mentioned
earlier. The test programs in LTP are organized into multiple categories as follows:

Symmetry 2021, 13, 2024 8 of 20

• Kernel: contains test programs related to kernel, such as filesystems, io, ipc, and sys-
tem calls.

• Network: contains test programs related to network, such as ipv6, multicast, rpc,
and sctp.

• Commands: contains user-level commands, such as ar, ld, ldd, and nm used in
application development.

• Misc: Miscellaneous tests that do not fall under the categories mentioned above, such
as crash and floating-point math set of tests.

LTP was designed to allow developers to develop new testcases and contribute to
the project. It provides basic templates for developers to write new testcases to guide
developers in writing new testcases, and these templates follow LTP test program criteria.

LTP provides a set of guidelines and an LTP test interface to allow developers to
write new testcases or modify existing ones. One of the main features of LTP is the ease
of use, because of which the use of the test suite regularly in the development process is
encouraged. Testcase templates are provided for developing new testcases, both in Portable
Shell and C. Through the introduction of test writing guidelines and general rules, the aim
of LTP is to keep uniform coding standard across the test suite.

Three main functions are defined in a testcase: main, setup, and cleanup. The entry
point of the testcase is defined in the main function. The functions undergoing testing
in the testcase are performed in the main function, and the outcome of the execution is
reported. The initialization of resources for the testcase is defined in the setup function,
including signals, signal handlers, and temporary files. The cleanup function frees the
resources being initialized in the setup function in a reserved order. The cleanup is optional
and may be called for at any point—for example, when a testcase fails in the main function.
The test results are reported with variable int types. The Table 4 below illustrates some of
the result types and descriptions thereof.

Table 4. LTP keywords for testcase results.

TTYPE Description

TPASS Test has passed

TFAIL Test has failed

TINFO General information message

TWARN Warning message, which does not stop test execution

TBROK Test broken message, which indicates failure in test preparation phase.

TCONF Incompatible current configuration, such as syscall not implemented or
unsupported architecture type

Each testcase is either written in C or Portable Shell and converted to binary. The test-
cases can have configuration stored in environment variables or passed through command
line arguments. The output of the testcase execution is printed onto the stdout and reports.
A basic template for C language testcase is shown below.

1. Self-contained: a testcase can be executed independently.
2. Testcase outcome: a pass or fail outcome of testcase execution must be detected within

the testcase itself.
3. Return value: the return value should indicate the result of testcase execution.

The value 0 is returned when testcase execution is successful.

2.6. Repository-Based Blockchain Approaches

Different blockchain approaches have been explored within the healthcare industry
to manage the Electronic Health Records (EHR) of patients driven by the unified goals of
improving privacy, reducing cost and improving healthcare services. One of the examples

Symmetry 2021, 13, 2024 9 of 20

is MedRec, which is a management system for EHRs developed by MIT [20]. Although
MedRec is proposed in the context of medical records, it is a distributed system for personal
information and identity control. The architecture of MedRec is based on Ethereum
network, and it uses Proof-of-Authority as a consensus mechanism. Medical providers
are enrolled as an authority when voted in by all nodes of the network. The architecture
is extended to provide a network of trusted data repositories. Other studies proposed
blockchain-based repositories for other domains, such as Virtual Network Functions (VNF)
packages. VNF packages are usually shared and deployed in the form of packages. For easy
deployment, VNF packages are available in marketplaces. The work in [21] is focused
on addressing a common challenge of traditional VNF solutions, which is establishing
a trusted computing environment. The author proposed a trusted repository for VNF
packages to provide a decentralized approach for verifying the package integrity, without
relying on third part remote attestation. The package repository is protected by a repository
manager, which acts as an intermediate layer between the users and the repository. The
Proof-of-Concept verifies the metadata of VNF packages, whereas the actual packages are
stored in untrusted external data storage. BUNKER [22] extended the work in [21] and
stored the hash of VNF package stored in traditional untrusted database system in the
blockchain, along with the VNF package metadata.

Blockchain technology-based repositories gained significant attention in the field
of academic diploma issuance and verification to overcome the issues of the increasing
number of forged academic certificates. Blockcerts is a blockchain-based application for
academic diplomas management developed by MIT [23]. The application is blockchain
agnostic, which allows Blockcerts to work in tandem with different blockchain technolo-
gies such as Bitcoin, Ethereum, and Hyperledger. The primary limitations of Blockcerts
included bulk certificates upload and revocation system [24]. Docschain was proposed to
overcome some of the known limitations of Blockcerts, and it introduced several features
for document verification including bulk documents upload and hard copies of previously
awarded certificates.

2.7. Analysis of Security Testing

The testing-related literature discussed earlier, ensures that the system undergoing
testing behaves correctly to increase the confidence and trust of users. The rationale
behind such testing frameworks and schemes is to provide a common language and
unify the understanding of requirements testing and evaluation. The common criteria
provide a catalog of reusable security functional and assurance requirements and require
an evaluation body to inspect and analyze all evidence provided by developers. Other
types of testcases were originally created by open source communities such as LTP. The LTP
evolved to include thousands of testcases and is now managed by closed communities.
As of the time of writing of the article, there are no trusted open testcase repositories for
security testing, especially in the area of autonomous vehicles.

In this article, we address the preceding problem by proposing a blockchain-based
approach for trusted testcases repository. The scheme relies on test-based security testing
with a trusted testcase repository based on the blockchain technology. With the absence
of defined threats, it is extremely difficult to provide assurance on the security measures
taken. For a clear understanding of the scope of autonomous vehicles, and to support the
development of testcases, a conceptual model was developed for autonomous vehicles.
The proposed conceptual model aims to group related autonomous vehicle components to
support the identification of security threats and the development of testcases. A future
direction of this research is to evaluate security testing and certification in the area of
autonomous vehicles.

3. Enhanced Autonomous Vehicle Conceptual Model

This section describes the enhanced conceptual model of autonomous vehicles that
was introduced in our previous work [25] with an enhanced edge cloud section of the

Symmetry 2021, 13, 2024 10 of 20

model. The model focuses on grouping related autonomous vehicles components into
a category. The model defines three categories consisting of three main areas: vehicle,
communications, and edge cloud as shown in Figure 2. One of the main aims of the
conceptual model is to define categories for autonomous vehicle testing.

SENSORS

ECUsGATEWAY

OBD II
IN-VEHICLE

COMMS

COMMS
MODULES

VANET STACK

INTERNET
STACK

ITS

THIRD PARTY
SERVICES

OEM

VEHICLECOMMUNICATIONEDGE CLOUD

- GPS
- LiDAR
- Camera
- Blind Spot

- Electronic Shit
- Engine ECU
- ABS Module
- BCM
- Radio Module

-- LIN
- CAN
- FlexRay
- GigStar
- TTCAN

- TCU
- Cellular
- V2X Modules

- Maps Update Server
- Traffic Information

- VAS
- Insurance
- Tracking
- Firmware Update

- Software Update
- Service Notifications
- Remote Support

- V2V
- V2I
- V2X

- 3G
- 4G
- 5G

Figure 2. Autonomous vehicle conceptual model.

3.1. Vehicle

The vehicle section of the conceptual model covers the physical boundary of the
vehicle including related components. The components that are relevant to this research
and that support the security modeling and analysis of autonomous vehicles are considered.
The components of the vehicle section are categorized into three main groups—electronic
control units (ECUs), sensing, and inter-vehicle communication. The ECUs behave as
the brain behind the vehicle operation, sensors are responsible to feed ECUs with the
required information to operate accordingly. Inter-vehicle communication is focused on the
internal communication between different components of the vehicle, including internal
networks. Several types of networks exist in modern vehicles autonomous vehicles with
different speeds, autonomous vehicles may incorporate additional networks. Based on
the functionality and speed required for ECUs, each ECU is connected to at least one
of the internal networks of the vehicle. To facilitate communication between different
communication buses, a gateway ECU is used. Modern vehicles are now equipped with an
On-board diagnostic port (OBD-II), which provides access to the vehicles’ internal network
and can be used to request information from various sensors or ECUs.

ECUs are responsible for performing essential operations such as power steering,
fuel injection, controlling engine, and door locks. ECUs are categorized based on their
functionality [26]. Examples of ECUs categories are Powertrain, Safety, and Body.

Sensors are the main source of data for ECUs to operate correctly and efficiently.
Autonomous vehicles are equipped with various sensors to collect information about their
surroundings. Examples of sensors equipped are those for GPS, cameras, and LiDAR.
ECUs read data from sensors to aid navigation capability, display diving information,
displace distance calculation, and many other types of data.

The inter-vehicle communication component of the conceptual model focuses on the
communication networks in the physical boundary of the vehicle. The internal networks of
vehicles are designed to allow different electronic components in the vehicle to communi-
cate and share information. Vehicles are equipped with multiple internal networks. There
are different types of networks in vehicles such as Controller area network (CAN), TTCAN,
FlexRay, and local interconnect network (LIN) [27]. CAN is widely used in the automotive
industry to support critical applications with a bandwidth of 125 kbit/s. The LIN bus runs
at a lower bandwidth (10 kbit/s) to support less critical applications, such as the operation

Symmetry 2021, 13, 2024 11 of 20

of power windows and doors lock. FlexRay is a more expensive implementation of CAN,
used commonly by BMW. It involves two channels at speeds of 5 and 10 Mbit/s [28,29].

3.2. Communication

In the proposed conceptual model, all external communication components are
grouped in the communication later. Future intelligent transportation systems support
the sharing of a large volume of information between vehicles and the transportation
infrastructure. Moreover, vehicles may interact with each other to share different kinds of
information messages such as collision avoidance, traffic information, or to support coop-
erative driving. In this model, the communication layer consists of two main components:
VANET stack and Internet Stack.

The first component is VANET, which is the vehicular ad-hoc network (VANET).
VANETs use the control channel of the dedicated short range communication (DSRC) to
share information between vehicles. Different types of communication are employed in
VANETs, namely, vehicle-to-vehicle (V2V), vehicle-to-station (V2I), vehicle-to-roadside
unit (V2R), and vehicle-to-everything (V2X).

Autonomous vehicles share two types of messages among themselves or with intelli-
gent transportation systems. These messages are either beacon messages or special purpose
messages [30,31]. Vehicles broadcast heartbeat messages known as beacon messages.
Special-purpose messages carry information regarding collisions and warning messages to
nearby vehicles [32]. With recent advances in cellular networks, VANETs can either use
DSRC or cellular networks as part of future intelligent transportation systems [33]. The In-
ternet Stack component of the model considers the cellular network as the communication
means. It includes 4G and 5G data links and physical links [34]. The original concept of
VANETs has emerged to a new concept named Internet of Vehicles (IoV). The concept of
IoV covers different kinds of technologies including vehicular communication, cellular
network, and short-range communication [35–37].

3.3. Edge Cloud

The Edge Cloud layer of the model focuses on vehicle communication with external
entities. Autonomous vehicles are expected to generate a large volume of data, which
will be shared with various external entities such as intelligent transportation systems,
government authorities, and original equipment manufacturers (OEMs). The expansion
of wireless and cellular technologies help companies extend their network coverage and
capacity to support edge cloud connectivity.

Modern vehicles have already started delivering remote support to vehicles. OEMs
execute remote updates to vehicles, for applying patches, fixing issues, or enhancing
features. Many services, such as media services, fleet management, and vehicle tracking,
and other symmetry applications are currently offered by third-party providers. Given
below are some examples of sub-components of edge cloud:

• Traffic information
• Smart city integration
• Maps update service.
• OEM firmware update.
• Third-party dongles firmware update.
• Value Added Services.

The edge cloud services are utilized using the communication layer of the autonomous
vehicle conceptual model, which consists of VANET communication stack and cellular
communication technologies. The VANETs communication stack is based on the IEEE
802.11p standard for wireless access. Another standard that is focused on secure V2V
and V2I communications is the IEEE 1609, which defines the standards, architecture,
and interfaces.

Nowadays, insurance companies price insurance tariffs based on driving behavior
and history. As a result, various companies install OBD-II compatible dongles to monitor

Symmetry 2021, 13, 2024 12 of 20

driving behavior and ensure compliance with the insurance policy. Vehicles are expected
to be connected to edge cloud services to accelerate smart and green transportation [38].
As part of smart city integration and intelligent transportation system management [39–41],
vehicles are expected to be connected to transportation authorities and share various types
of information.

Moreover, the first and last mile is attracting the interest of public transportation.
Intelligent transportation systems are envisioned to deliver various services using edge
cloud such as high-definition maps, real-time traffic information, dynamic path planning,
and other automated driving services.

4. Blockchain-Based Trusted Testcase Repository

This section describes the design of a trusted repository for testcases using blockchain
technology. An initial proof of concept (PoC) was implemented herein to assess the
challenges in implementing the proposed solution. We focused on the blockchain-based
repository for the LTP using Hyperledger Fabric. The LTP suite represents a realistic
repository of testcases that are currently being used by many developers in their daily Linux
kernel development and testing activities. The PoC was implemented using Hyperledger
Fabric and the InterPlanetary File System (IPFS) as a method of distributed data storage.

4.1. Overview of Proposed Approach

The application SDK takes the transaction from the UI, builds a proper proposal,
and then signs it with the information of the user who placed the request. SDK sends
the proposal to each peer of the organization for proposal validation, who validates the
proposal and forwards it to the chaincode. The chaincode reads the required values out
of the world state to perform the transaction and produces new results that should be
written into the world state. It does not make any changes to the world state at this point.
Instead, it stores the testcase file into a private data collection. If the transaction does not
go through, the private data collection gets cleaned up after some transactions.

The results are sent to peers from the validating organization for endorsement.
The peers endorse the transaction by validating the response and signing the results from
the chaincode. The endorsements are sent back to the application SDK. The application
takes the endorsements and creates a real transaction based on the transaction proposal,
results from the chaincode, and digital signatures from each of the peers. The transaction
is then sent to the orderer, who puts it into a block. The orderer does not perform any
additional validation. It distributes the block to each of the peers to enter a validation
phase to ensure conformance with the endorsement and that the endorsement policy is
met if the world state changes since the proposal is received. In this scenario, the testcase
is only added if at least two endorsements are received from the validating organization.
At this point, the details of the testcase are only accessible to organization 1, which is the
validating peer organization. Any new testcase added to the private collection store of
organization 1 is sent to a pending validation data store.

Once the transaction is completed and a block is added, the testcase is added to the
private data store of organization 1. Peers from organization 2, the client peers, have no
access to this data store, which is the pending validation store for testcases. The application
SDK notifies validators of a new testcase addition in the private datastore. Peers from
validating nodes will have the ability to review the testcase and either approve or reject
the testcase. If a sufficient number of members of organization 1 approve the testcase,
it gets added to a public data store shared between organizations 1 and 2, as shown in
Figure 3. At this point, the testcase is accessible to all peers of the network and can be
queried. The accessible data storage is managed by a data service that acts as a wrapper
for IPFS layer. The actual testcase is stored in IPFS and referenced by a hash value in the
block. Upon retrieving testcase from blockchain, the testcase is read from the IPFS via the
IPFS wrapper.

Symmetry 2021, 13, 2024 13 of 20

O

IPFS

Ordering
Service

P3
CC

Ledger

P2
CC

Ledger

P1
CC

Ledger

P3
CC

Ledger

P2
CC

Ledger

P1
CC

Ledger

P4
CC

Ledger

ORG1 ORG2APP SDK APP SDK

CA CA

ORG1
Private Testcase Collection

ORG2
Shared Testcase CollectionORG1

Shared Testcase Collection

Figure 3. Blockchain using Hyperledger Fabric.

4.2. Technology and Architecture
4.2.1. Blockchain Technology

Hyperledger was created to advance cross-industry blockchain technologies. Hyper-
ledger Fabric supports the development of non-incentivized consensus algorithms, and one
of its key advantages is the support offered for different formats of ledger data. Moreover,
it supports a fully pluggable consensus mechanism.

4.2.2. Validation Mechanism

The PoV is a newly proposed concept for managing the testcase repository. The PoV
algorithm relies on several special nodes known as validating nodes. There are two different
types of nodes in this algorithm: validators and client peers.

The validator nodes act as the administrators of the system, similar to those in the case
of Proof-of-Authority. To become a validating node, the node must either be confirmed by
at least two active members of the validator nodes or must have shown successful block
addition to the network. This means that the client peer must have submitted a number of
testcases that have been added to the blockchain network. The number of active validation
node confirmations or a number of blocks added by a specific peer’s transactions can be
predefined in the endorsement policy.

In the proposal, a participant node can submit a proposal for a new testcase to be
added to the blockchain repository. The testcases will not be added to the public ledger
of the confirmed testcases blockchain network but to a ledger of pending verification
testcases. At this time, nodes that have a validating role can confirm the testcase based on
the predefined policy. Once the testcase is verified by validation nodes, the block is added
to the public ledger with a verified status and can be queried by client peers. A high-level
process is shown in Figure 4. Initially, the details of the testcase are only visible to nodes in
the network that have a validation role. The testcase becomes accessible to other peers in
the network once validated by authorized peers.

Symmetry 2021, 13, 2024 14 of 20

Test case
submission

Block is added to Private
Data Store

Validator Peers
validated the testcase
and verified the block

Validator Peers are
notified with new
testcase addition

request

The block is broadcasted
to other nodes

Block is added to
public ledger

Validated test case
accessible by both

ORG1 and ORG2 nodes

IPFS

Test case file added
to IPFS

ORG1 ORG1 ORG2

ORG2 ORG2 ORG2

Figure 4. Proposed validation process for testcases blocks.

4.3. Solution Design

The proposed approach consists of different components—some components act as
front-end for testers and verifiers interaction and others to manage testcases and interaction
with IPFS. Below are some of the components of the front-end part of the proposed solution.

• Testcase Registration: Using the system, developers can submit new testcases or make
bug fixes in existing testcases.

• Testcase Verification: Verifies acceptance or rejection of new testcase submission or
updates existing testcase.

• Testcase Query: Developers and testers can query the system for testcases, using
defined parameters or categories of testing.

The other part of the system is the blockchain-based repository back-end, and it
comprises the following components:

• Repository Manager: responsible for registration and categorization of new testcases.
• Test Manager: responsible for searching and filtering based on defined parameters

to allow users to select a set of testcases applicable for the target system undergoing
testing.

• Data Storage: testcases are stored using distributed data storage, named IPFS [9].

4.3.1. Testcase Registration

The testcase registration is used by developers to submit new testcases to the repository
or to update an existing testcase. As part of new testcase registration, developers must
provide a short description of the testcase, testcase category, and testcase file. This is
represented by a client peer in Hyperledger. The transaction for adding a new testcase will
be added to a ledger for pending validation testcases. The role of validation is given to a
specific set of nodes as per the proposed validation mechanism.

4.3.2. Testcase Validation

The testcases added to the repository have a validation status. The validation of a
testcase checks if the testcase follows the rules and guidelines of testcases and whether or
not it is a valid testcase. The verification process of testcases is delegated to a certain set
of authorized nodes that act as the administrators or verifiers. The number of validating
nodes required can be specified by the endorsing policy of Hyperledger. When a testcase is
verified by the required number of validating nodes, a new block is created for the testcase,
and it is added to the public ledger.

Symmetry 2021, 13, 2024 15 of 20

4.3.3. Query and Filter

The blockchain-based repository can be queried to identify suitable testcases for a
specific testing activity. This should allow users to query a class of testcases for a specific
component. For example, developers can query the repository for testcases related to
security vulnerabilities of the Linux kernel by filtering the common vulnerabilities and
exposures (CVE) category of testcases. The chaincode responsible for query and filtering
performs the query operation on the public ledger of validated testcases, and it can be
invoked by any node in the network, regardless of its role.

4.3.4. Testcase Manager

The testcase manager is responsible for handling all creation and query requests for
testcases. For testcase creation, the testcase manager collects all required information
and generates additional parameters for the creation of testcases. For querying testcases,
the testcase manager collects the required information to perform testcases lookup from
the repository manager. The Table 5 shows the details stored for a testcase.

Table 5. Testcase registration parameters.

Attribute Description Example

Testcase ID Identified of testcase 35md..9sdj
Testcase Version Testcase version 1.0.3

Summary Testcase summary [. . .]
Testcase Category Testcase category Kernel
Verification Status Testcase verification status Unverified, Verified

Verifiers Verifiers public keys key1, key2, key3
File Hash Testcase file hash Fgsg„„,asdert3
File type Testcase file type Portable Shell or C

4.3.5. Repository Manager

The repository manager is based on a smart contract. The repository manager stores
all relevant testcase information in the blockchain network. The repository manager does
not store testcase files in the blockchain network to avoid incurring costs of storing large
amounts of data in the blockchain network. Instead, it utilizes the data storage to store the
testcase file and keeps a copy of the hash of the file only. The data storage is based on IPFS,
which is explained in the next section. The integrity of the testcases is preserved by storing
the hash of the file in the blockchain. If the testcase file is tampered with, the hash of the
file will change, and the file will not be accessible to the system.

4.3.6. Distributed Data Storage

There are different approaches for data storage, such as traditional database and
distributed file storage. In this article, the choice of storage is distributed file storage.
In distributed file storage, the data are stored in a peer-to-peer network. An example of
distributed file storage is IPFS [9]. In IPFS, the file registered in the network can be accessed
using network protocol by using the hash of the data. The hash is named the file key,
and it can be stored in multiple nodes, preserving the hash of the file. This guarantees the
integrity of the file. If the data are altered, the hash value will be different, and the file
could not be queried as shown in Figure 5.

Symmetry 2021, 13, 2024 16 of 20

IPFS
P2P Network

IPFS Hash
Register/Publish Testcase

IPFS
P2P Network

Testcase File

Testcase IPFS Hash

iUygMkn1….qmTfCejo2

Figure 5. Blockchain usage of IPFS.

4.4. Implementation Analysis

The proposed approach delegates the role of central authority and trusted evaluation
of testcases to the validating nodes. For simplicity, we assumed that a set of validating
nodes are predefined in the initial phase of the network deployment. The proposed ap-
proach lacked the integration of authentication and authorization middleware for the front
end of the proposed approach. The validating nodes access should be protected by using
authentication and authorization.

The implementation is based on Hyperledger Fabric and IPFS docker images with
correct network mapping to allow docker containers of blockchain to communicate with the
IPFS service. The first step is to start a fabric network and deploy chaincode implementation
in golang. The interaction with the network is carried out using command line, and the
user interface will be developed at a later stage. The interaction with the network requires
specifying the role of peer; in our case, the peer either has a validator role or a client role.
As a validator or a client peer, registering a testcase can be performed by invoking the
required function in the test registration chaincode as shown in Figure 6. In the case of
missing testcase information, an error message is returned.

Setting up verifier environment variables
echo "REGISTRING A NEW TESTCASE"
export TESTCASE_PROPERTIES=$(cat /opt/test -data/test5.txt)
peer chaincode invoke -o localhost :7050 --ordererTLSHostnameOverride

orderer.example.com --tls --cafile ${PWD}/ organizations/
ordererOrganizations/example.com/orderers/orderer.example.com/msp
/tlscacerts/tlsca.example.com -cert.pem -C mychannel -n secured -c
’{"Args ":[" RegisterTestcase "]}’ --transient "{\" Testcase \":\"

$TESTCASE_PROPERTIES1 \"}"

In case of successful registration
2021 -08 -22 06:44:58.423 PDT [chaincodeCmd] chaincodeInvokeOrQuery ->

INFO 001 Chaincode invoke successful. result: status :200

Figure 6. Successful addition of testcase.

A policy is defined for the data collection to segregate data access between client peers
and validator peers. In our implementation, we use two different data collections named
TestcaseCollection and TestcaseCollectionReceipts. The first collection is non-persistent data
collection, which is accessible by validator peers and contains all data related to a testcase,
including the test script. The second data collection is persistent data collection, which contains
high level information about the testcase, along with verification status. Figures 7 and 8 show
examples of data stored in each collection. Once the testcase is verified, the testcase content
gets written in IPFS and the hash of the file is stored in the block of the TestcaseReceipts

Symmetry 2021, 13, 2024 17 of 20

data collection. The source code for the implementation described in the study will be made
available upon request.

Figure 7. Table of some of the fields of the data stored in Testcase Collection.

Figure 8. Table of some of the fields of the data stored in Testcase Receipts Collection.

Once a testcase is verified by the validating peers, the testcase file is added to IPFS
and hash to access file is added to the block. The queries performed by peers from either
validating or client organizations return testcase information including the hash to access
the testcase file. The obtained hash can be used to query the testcase file directly from IPFS.

The Hyperlegder Fabric provides the ability to separate data across multiple channels.
This was utilized in the proposed approach to provide data segregation between testcases
that are being validated by the validating nodes and the trusted testcases that are available
in the shared data collection. The IPFS storage for testcases removes the overhead of storing
testcases in the blockchain network. Instead, metadata of the testcases are stored in the
ledger. The testcases’ integrity is preserved by storing the hash of the testcase in the public
ledger. Any modification of the testcase file without updating the corresponding block will
result in a mismatch between the hash of the file stored in the ledger and the IPFS.

5. Conclusions and Future Work

Test-based security testing ensures that a software product satisfies its properties
of data confidentiality, integrity, and availability. Modern and autonomous vehicles are
expected to be highly connected and involve a large volume of messages exchanged and
various applications of symmetry. In such critical systems, different parts of the vehicles
are expected to perform their functions correctly and safely. As vehicles become more
autonomous and connected driven by the envisioned intelligent transportation systems,
the attack surface for malicious attempts on the communications among them multiplies.

The Common Criteria defines a numerical rating named Evaluation Assurance Levels
from 1 (low) through 7, which is the highest. The EAL was used to describe the depth and
rigor of an evaluation. A higher EAL means that the target system has been extensively
verified. Protection profile in Common Criteria specifies the type of security requirements
for a class of equipment. The TCSEC standard addresses the issues for standardizing
computer security controls and is used to evaluate and classify computer systems in regards
to the processing and storage of classified information. The TCSEC defines several classes
of security ranging from D (Minimal Protection) through A (Verified Protection). Due to the
lack of flexibility in mapping security features to security requirements, the TCSEC was not
adopted by many organizations. The Linux Test Project provides a complete test suite for
Linux Kernel testing, specifically the stability and robustness of the kernel. Furthermore,
the LTP allows developers to define new tests and integrate existing benchmarks and
test results analysis. The LTP defines templates and guidelines to allow developers and
researchers to build their own testcases and contribute to the LTP project. The LTP is
maintained by a closed community and submitted testcases are not guaranteed to be added
to the LTP repository of testcases. The proposed approach aims to provide a trusted testcase
repository for multiple domains based on blockchain technology.

Symmetry 2021, 13, 2024 18 of 20

Several blockchain-based repositories were discussed in the article. BlockCerts appli-
cation is a blockchain agnostic system that can run in tandem with different blockchain
technologies. BlockCerts is a digital repository that is used to store and share academic
diplomas. Docschain was proposed to overcome some of the limitations of BlockCerts,
such as bulk document upload and the support of the verification of hard copies. These
repository-based approaches use blockchain technology for specific domains and purposes
such as academic credentials, electronic health records, or deployment package verification.

This paper therefore presents a blockchain-based repository for software testing using
Hyperledger Fabric and IPFS. The consensuses mechanism proposed is a non-incentivized
mechanism named Proof-of-Validation. Network nodes can play a role in validating
testcases if they are either selected by other peers or have shown successful block addition
to the public ledger of the blockchain network. Writing testcases for autonomous vehicle
testing will require a set of guidelines and basic templates, and we plan to develop the
same during this research. The proof-of-concept considered the LTP suite as a use case
for the repository. In order to use portable shell testcases provided as part of the LTP,
testcase files are added to the repository based on their category. Two channels are created
in Hyperledger Fabric to separate ORG1 and ORG2 peers, which are validating peers and
client peers. Each channel contains its own world state and ledger.

A future direction of this research is to support evidence generation for testcase
executions. The adoption of blockchain oracles will support both off-chain and on-chain
generation of evidence and execution of test scripts. The off-chain execution will extend
the coverage of security testing and support various testing environments. This research
aims to extend the approach of testcase repository to trusted testcase execution using the
off-chain techniques described in this article.

Author Contributions: Conceptualization, A.A.Z., C.Y.Y. and E.D.; methodology, A.A.Z.; software,
A.A.Z.; validation, A.A.Z. and C.Y.Y.; formal analysis, A.A.Z. and C.Y.Y.; investigation, A.A.Z.;
writing—original draft preparation, A.A.Z.; writing—review and editing, A.A.Z. and C.Y.Y.; visual-
ization, A.A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAN Controller area network
CC Common criteria
CVE Common vulnerabilities and exposures
DSRC Dedicated short range communication
ECU Electronic control unit
IPFS InterPlanetary File System
LIN Local interconnect network
LTP Linux Test Project
MSP Membership service provider
OBD On-board diagnostic port
OEMs Original equipment manufacturers
POV Proof-of-Validation
PP Protection profile
SAE Society of American Engineers
SLA Service level agreement
TCSEC Trusted Computer System Evaluation Criteria
TOE Target of evaluation
VANET Vehicular ad-hoc network

Symmetry 2021, 13, 2024 19 of 20

References
1. Anisetti, M.; Ardagna, C.; Damiani, E.; Polegri, G. Test-based security certification of composite services. ACM Trans. Web (TWEB)

2018, 13, 1–43.
2. Chen, W.; Xu, Z.; Shi, S.; Zhao, Y.; Zhao, J. A survey of blockchain applications in different domains. In Proceedings of the 2018

International Conference on Blockchain Technology and Application, Xi’an, China, 10–12 December 2018; pp. 17–21.
3. Choi, M.K.; Yeun, C.Y.; Seong, P.H. A Novel Monitoring System for the Data Integrity of Reactor Protection System Using

Blockchain Technology. IEEE Access 2020, 8, 118732–118740. [CrossRef]
4. Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. 2008; Volume 4. Available online: https://www.debr.io/article/

21260.pdf (accessed on 27 September 2021).
5. Bellini, E.; Iraqi, Y.; Damiani, E. Blockchain-based distributed trust and reputation management systems: A survey. IEEE Access

2020, 8, 21127–21151. [CrossRef]
6. Beniiche, A. A study of blockchain oracles. arXiv 2020, arXiv:2004.07140.
7. Al-Breiki, H.; Rehman, M.H.U.; Salah, K.; Svetinovic, D. Trustworthy blockchain oracles: Review, comparison, and open research

challenges. IEEE Access 2020, 8, 85675–85685. [CrossRef]
8. Ellis, S.; Juels, A.; Nazarov, S. Chainlink a decentralized oracle network. Retrieved March 2017, 11, 2018.
9. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
10. Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017

IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2652–2657.
11. Bulinska-Stangrecka, H.; Bagienska, A. Investigating the links of interpersonal trust in telecommunications companies. Sustain-

ability 2018, 10, 2555. [CrossRef]
12. Shehada, D.; Yeun, C.Y.; Zemerly, M.J.; Al-Qutayri, M.; Al-Hammadi, Y.; Hu, J. A new adaptive trust and reputation model for

mobile agent systems. J. Netw. Comput. Appl. 2018, 124, 33–43. [CrossRef]
13. Damiani, E.; Ardagna, C.A.; El Ioini, N. Open Source Systems Security Certification; Springer Science & Business Media: Berlin/Hei-

delberg, Germany, 2008.
14. Kruger, R.; Eloff, J.H. A common criteria framework for the evaluation of information technology systems security. In Information

Security in Research and Business; Springer: Berlin/Heidelberg, Germany, 1997; pp. 197–209.
15. Qiu, L.; Zhang, Y.; Wang, F.; Kyung, M.; Mahajan, H.R. Trusted Computer System Evaluation Criteria; National Computer Security

Center, Citeseer: Dublin, Ireland, 1985.
16. Schmittner, C.; Ma, Z.; Reyes, C.; Dillinger, O.; Puschner, P. Using SAE J3061 for automotive security requirement engineering. In

Proceedings of the International Conference on Computer Safety, Reliability, and Security, Trondheim, Norway, 20–23 September
2016; Springer: Cham, Switzerland, 2016; pp. 157–170.

17. Road Vehicles—Functional Safety; Standard, International Organization for Standardization: Geneva, Switzerland, 2011.
18. Road Vehicles—Cybersecurity Engineering; Standard, International Organization for Standardization: Geneva, Switzerland, 2021.
19. Larson, P. Testing Linux with the Linux Test Project. Ottawa Linux Symposium. 2002; p. 265. Available online: https:

//courses.cs.vt.edu/cs5204/fall05-gback/papers/ols2002_proceedings.pdf#page=265 (accessed on 8 March 2021).
20. Nchinda, N.; Cameron, A.; Retzepi, K.; Lippman, A. MedRec: A network for personal information distribution. In Proceedings of

the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February
2019; pp. 637–641.

21. Keller, M. Design and Implementation of a Blockchain-Based Trusted VNF Package Repository. Ph.D. Thesis, University of
Zürich, Zürich, Switzerland, 2019.

22. Scheid, E.J.; Keller, M.; Franco, M.F.; Stiller, B. BUNKER: A Blockchain-based trUsted VNF pacKagE Repository. In Proceedings
of the International Conference on the Economics of Grids, Clouds, Systems, and Services, Leeds, UK, 17–19 September 2019;
Springer: Cham, Switzerland, 2019; pp. 188–196.

23. Caldarelli, G.; Ellul, J. Trusted academic transcripts on the blockchain: A systematic literature review. Appl. Sci. 2021, 11, 1842.
[CrossRef]

24. Rasool, S.; Saleem, A.; Iqbal, M.; Dagiuklas, T.; Mumtaz, S.; Qayyum, Z.U. Docschain: Blockchain-Based IoT Solution for
Verification of Degree Documents. IEEE Trans. Comput. Soc. Syst. 2020, 7, 827–837. [CrossRef]

25. Zaabi, A.O.A.; Yeun, C.Y.; Ernesto Damiani, G. An Enhanced Conceptual Security Model for Autonomous Vehicles. Adv. Sci.
Technol. Eng. Syst. J. 2020, 5, 853–864. [CrossRef]

26. Wyglinski, A.M.; Huang, X.; Padir, T.; Lai, L.; Eisenbarth, T.R.; Venkatasubramanian, K. Security of autonomous systems
employing embedded computing and sensors. IEEE Micro 2013, 33, 80–86. [CrossRef]

27. Szydlowski, C.P. Can Specification 2.0: Protocol and Implementations; Technical Report, SAE Technical Paper; SAE: Warrendale, PA,
USA, 1992.

28. Talbot, S.C.; Ren, S. Comparision of fieldbus systems can, ttcan, flexray and lin in passenger vehicles. In Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, QC, Canada, 22–26 June 2009;
pp. 26–31.

29. Wolf, M.; Weimerskirch, A.; Paar, C. Secure in-vehicle communication. In Embedded Security in Cars; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 95–109.

http://doi.org/10.1109/ACCESS.2020.3005134
https://www.debr.io/article/21260.pdf
https://www.debr.io/article/21260.pdf
http://dx.doi.org/10.1109/ACCESS.2020.2969820
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.3390/su10072555
http://dx.doi.org/10.1016/j.jnca.2018.09.011
https://courses.cs.vt.edu/cs5204/fall05-gback/papers/ols2002_proceedings.pdf#page=265
https://courses.cs.vt.edu/cs5204/fall05-gback/papers/ols2002_proceedings.pdf#page=265
http://dx.doi.org/10.3390/app11041842
http://dx.doi.org/10.1109/TCSS.2020.2973710
http://dx.doi.org/10.25046/aj0506102
http://dx.doi.org/10.1109/MM.2013.18

Symmetry 2021, 13, 2024 20 of 20

30. Buttyán, L.; Holczer, T.; Vajda, I. On the effectiveness of changing pseudonyms to provide location privacy in VANETs. In
European Workshop on Security in Ad-Hoc and Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2007; pp. 129–141.

31. Raya, M.; Hubaux, J.P. The security of vehicular ad hoc networks. In Proceedings of the 3rd ACM Workshop on Security of
Ad Hoc and Sensor Networks, Alexandria, VA, USA, 7 November 2005; pp. 11–21.

32. Papadimitratos, P.; Buttyan, L.; Holczer, T.; Schoch, E.; Freudiger, J.; Raya, M.; Ma, Z.; Kargl, F.; Kung, A.; Hubaux, J.P. Secure
vehicular communication systems: Design and architecture. IEEE Commun. Mag. 2008, 46, 100–109. [CrossRef]

33. Bariah, L.; Shehada, D.; Salahat, E.; Yeun, C.Y. Recent advances in VANET security: A survey. In Proceedings of the 2015 IEEE
82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–7.

34. Seo, H.; Lee, K.D.; Yasukawa, S.; Peng, Y.; Sartori, P. LTE evolution for vehicle-to-everything services. IEEE Commun. Mag. 2016,
54, 22–28. [CrossRef]

35. Sharma, S.; Kaushik, B. A survey on internet of vehicles: Applications, security issues & solutions. Veh. Commun. 2019, 20, 100182.
36. Vijayarangam, S.; Chandra Babu, G.; Ananda Murugan, S.; Kalpana, N.; Malarvizhi Kumar, P. Enhancing the security and

performance of nodes in Internet of Vehicles. Concurr. Comput. Pract. Exp. 2021, 33, 1. [CrossRef]
37. Almehrezi, F.R.; Yeun, C.Y.; Yoo, P.D.; Damiani, E.; Al Hammadi, Y.; Yeun, H. An Emerging Security Framework for Connected

Autonomous Vehicles. In Proceedings of the 2020 7th International Conference on Behavioural and Social Computing (BESC),
Bournemouth, UK, 5–7 November 2020; pp. 1–4.

38. Forecast, C.C. Global connected car market to grow threefold within five years. In GSMA Connected Living Programme: MAutomo-
tive; GSMA: London, UK, 2013.

39. Lu, N.; Cheng, N.; Zhang, N.; Shen, X.; Mark, J.W. Connected vehicles: Solutions and challenges. IEEE Internet Things J. 2014,
1, 289–299. [CrossRef]

40. Liu, N. Internet of Vehicles: Your next connection. Huawei WinWin 2011, 11, 23–28.
41. Kim, K.; Kim, J.S.; Jeong, S.; Park, J.H.; Kim, H.K. Cybersecurity for autonomous vehicles: Review of attacks and defense. Comput.

Secur. 2021, 103, 102150. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2008.4689252
http://dx.doi.org/10.1109/MCOM.2016.7497762
http://dx.doi.org/10.1002/cpe.5080
http://dx.doi.org/10.1109/JIOT.2014.2327587
http://dx.doi.org/10.1016/j.cose.2020.102150

	Introduction
	Related Work
	Overview of Blockchain Technology
	Overview of Oracles
	Overview of Ipfs
	Overview of Trust
	Overview of Software Testing and Certifications
	Common Criteria
	The Trusted Computer System Evaluation Criteria
	Society of American Engineers Cyber Security Guidebook for Cyber-Physical Vehicle Systems
	Linux Test Project

	Repository-Based Blockchain Approaches
	Analysis of Security Testing

	Enhanced Autonomous Vehicle Conceptual Model
	Vehicle
	Communication
	Edge Cloud

	Blockchain-Based Trusted Testcase Repository
	Overview of Proposed Approach
	Technology and Architecture
	Blockchain Technology
	Validation Mechanism

	Solution Design
	Testcase Registration
	Testcase Validation
	Query and Filter
	Testcase Manager
	Repository Manager
	Distributed Data Storage

	Implementation Analysis

	Conclusions and Future Work
	References

