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Abstract: Key performance indicator (KPI) anomaly detection is the underlying core technology
in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent
anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network
structure composed of encoder and decoder, which has attracted extensive attention because of
its ability to capture complex KPI data features and better detection results. However, VAE is not
well applied to the modeling of KPI time series data and it is often necessary to set the threshold
to obtain more accurate results. In response to these problems, this paper proposes a novel hybrid
method for KPI anomaly detection based on VAE and support vector data description (SVDD). This
method consists of two modules: a VAE reconstructor and SVDD anomaly detector. In the VAE
reconstruction module, firstly, bi-directional long short-term memory (BiLSTM) is used to replace
the traditional feedforward neural network in VAE to capture the time correlation of sequences;
then, batch normalization is used at the output of the encoder to prevent the disappearance of KL
(Kullback-Leibler) divergence, which prevents ignoring latent variables to reconstruct data directly.
Finally, exponentially weighted moving average (EWMA) is used to smooth the reconstruction error,
which reduces false positives and false negatives during the detection process. In the SVDD anomaly
detection module, smoothed reconstruction errors are introduced into the SVDD for training to
determine the threshold of adaptively anomaly detection. Experimental results on the public dataset
show that this method has a better detection effect than baseline methods.

Keywords: key performance indicator (KPI); anomaly detection; variational auto-encoder (VAE);
support vector data description (SVDD)

1. Introduction

In recent years, with the development of technologies, such as machine learning and
deep learning, the concept of Artificial Intelligence for IT operations (AIOps) has been
proposed. AIOps combines Artificial Intelligence (AI) with operation and maintenance (O
and M) to automatically monitor and manage IT services, and improve O and M efficiency.
KPI (key performance indicator) anomaly detection is an underlying core technology of
intelligent operation and maintenance. Most of the key technologies of intelligent operation
and maintenance depend on the results of KPI anomaly detection [1]. In order to provide
an efficient and reliable service, KPIs must be monitored in real time to detect anomalies
on time. It is necessary for those KPI fluctuations with relatively short durations that
must also be accurately monitored to avoid future economic losses. KPI data is a time
series data with specific meaning, obtained through periodic sampling in the format of
(timestamp, value). KPIs can be roughly divided into two types: service KPIs and machine
KPIs. Service KPIs can reflect the scale and quality of web services, such as web page
response time, web page visits, number of connection errors, etc. Machine KPIs can reflect
the health status of machines (servers, routers, and switches), such as CPU utilization,
memory utilization, disk IO, network card throughput, etc. In addition, KPIs also show
diversity in shape characteristics, which can be roughly divided into periodic KPIs, stable
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KPIs, and continuously fluctuating KPIs. In the actual scenes, the occurrence frequency
of anomalies is very low, which leads to extremely unbalanced data samples. Due to the
complexity of the business system, it will be constantly updated and upgraded, resulting
in the diversity of anomaly types. Because of these characteristics, the precision and recall
of existing anomaly detection algorithms are not high, and there are a lot of false positives
and false negatives. This not only increases the workload of operation and maintenance
personnel, but also makes them unable to find abnormal KPIs timely and accurately.

At present, a series of KPI anomaly detection methods have been proposed by the
academia and industry, and these methods are gradually changing from statistical methods
to machine learning methods. Deep learning is a subset of machine learning that can
automatically learn features from data to achieve good performance and flexibility. As a
powerful symmetrical neural network, deep generative models have been widely used in
the field of anomaly detection. The learning goal of deep generation models is to narrow the
gap between the restored data and the original data as much as possible. Based on the idea
that normal data patterns occur frequently and anomalies rarely occur, the “compression
restore” process will find the main data patterns instead of restoring the abnormal patterns.
Anomaly detection needs to learn the normal pattern of data, so generation models are
very suitable. Among them, the representative algorithms are variational auto-encoder
(VAE) [2] and generative adversarial network (GAN) [3].

VAE is an unsupervised generative network model, which is composed of encoder
and decoder. The encoder maps the input data X to latent variable Z, and the decoder maps
the latent variable Z back to X. Generally, the encoder and decoder are the same and share
network parameters, so this architecture is called symmetrical [4]. VAE and GAN learn
the distribution of normal data, while abnormal data cannot fit this distribution. Anomaly
detection is based on the asymmetry of normal data and abnormal data distribution. VAE
obtains the distribution of data by variational inference. GAN directly uses the generator to
simulate the distribution of data, and the discriminator determines whether the distribution
simulated by the generator is good or bad. VAE is less difficult to train and more robust to
noise than GAN, so it is more suitable for KPI anomaly detection. However, KPI anomaly
detection methods based on VAE still have the following problems:

(1) VAE is not well suited for time series modeling. Previous VAE-based KPI anomaly
detection methods [5,6] regard time series as sliding windows, ignoring the time
relationship between sliding windows in the encoding process. In order to solve this
problem, researchers combine LSTM [7] and VAE. Specifically, LSTM is used to replace
the feedforward neural network in VAE, which can extract the characteristics, such as
time dependence and correlation between data [8,9]. However, when VAE combines
with the strong autoregressive decoder (LSTM), KL (Kullback-Leibler) divergence
will disappear [10]. Because of the autoregressive of decoder, latent variables in VAE
are often ignored and data is reconstructed directly. At this time, the approximate
posterior is close to the prior, which causes the KL divergence term in the loss function
to be reduced to 0. Some studies [10-13] have tried to solve this problem before, but
additional parameters or training processes need to be added.

(2) VAE needs to set the threshold for anomaly detection. VAE detects anomalies by
comparing the reconstruction results with the original inputs, that is, reconstruction
errors. To some extent, the reconstruction error represents an instantaneous measure
of anomaly degree. If a threshold is set directly on the reconstruction error, it will
lead to a large number of false positives and false negatives. Moreover, for a large
number of different types of KPIs, it is difficult to set a unified threshold for recon-
struction errors. Early VAE-based anomaly detection studies [5,14] often ignored
the importance of threshold selection. Some studies [14,15] adjusted the threshold
through cross-validation. However, anomalous samples are rare, and establishing
a sufficiently large validation set is a luxury. Other attempts [5,16] only evaluate
the best performance of models in the test set, which makes it difficult to reproduce
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the results in practical application. Therefore, anomaly detection models need to
determine the threshold automatically.

In response to the above-mentioned problems, this paper applies VAE and SVDD to
KPI anomaly detection. We use the public data set collected from the real operation and
maintenance environment to prove the effectiveness of this method. The main contributions
of this paper are summarized as follows:

(1) In order to better capture the time correlation of the KPI time series, the encoder and
decoder of the VAE are designed as BILSTM [17]. Compared with LSTM, BiLSTM
processes sequences in both positive and negative directions. Its advantage lies in
considering not only past KPI data, but also future KPI data.

(2) It focuses on the problem of the disappearance of KL divergence in the loss function
during model training, avoiding the strong autoregressive decoder to ignore latent
variables and directly reconstruct the data. In this paper, batch normalization [18]
is used at the output of the encoder to make the KL divergence have a lower bound
greater than zero. This method can effectively prevent the disappearance of KL
divergence without introducing any new model components or modifying targets.

(3) Due to the unpredictability of system behavior, normal behavior can also lead to sharp
error peaks. In this paper, EWMA [19] is used to smooth the reconstruction error to
suppress frequent error peaks. Simultaneously, the effect of eliminating short-term
trends and retaining long-term trends can be achieved, which will minimize false
positives and false negatives in the detection process.

(4) Inorder to solve the threshold adaptation problem of KPI anomaly detection, smoothed
reconstruction errors are put into the SVDD [20] for training. The threshold de-
termined by the SVDD has good adaptability and improves the performance of
anomaly detection.

2. Related Work

At present, there are few anomaly detection methods for KPI, but, as a kind of time
series data, many time series anomaly detection methods are worthy of reference. The exist-
ing studies in this section are divided into three categories: traditional statistical methods,
supervised machine learning methods, and unsupervised machine learning methods.

The method based on traditional statistics is the earliest method to study time series.
The general idea of this method is to make some assumptions about the distribution of data,
and then use the statistical inference method to find the anomalies under this assumption.
For example, the well-known 3 — o [21] criterion assumes that data follow a normal
distribution, and, if some values exceed 3 standard deviations, they can be considered
outliers. With the development of technology, the ARIMA [22,23] and Holt—Winters [24]
methods are proposed. Both of these algorithms use a predictive idea to fit the law of
time series. Then, prediction results are compared with actual time series, and anomalies
are determined by setting a threshold for prediction errors. However, anomaly detection
methods based on traditional statistics usually have simple assumptions about time series.
Moreover, experts are required to select detectors for given time series and fine-tune the
parameters of detectors based on the training data. Therefore, it does not apply to complex
monitoring indicator data in actual O and M scenes.

The method based on supervised machine learning can avoid parameters adjustment
in traditional statistical algorithms. Among them, the EGADS [25] framework developed by
Yahoo and the Opprentice [26] framework developed by then Tsinghua Netman Laboratory
are very representative. EGADS and Opprentice are supervised ensemble learning methods.
These two methods use anomaly scores output by various traditional anomaly detection
algorithms as features, and use user feedback as labels to train anomaly classifiers, which
have achieved good results in KPI anomaly detection. However, supervised methods rely
heavily on good manual labeling, which is usually not feasible in practical applications.
In addition, the ensemble learning classifier based on multi anomaly detectors also faces
some problems, such as a large amount of calculation, imbalance of positive and negative
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samples, among others. Therefore, unsupervised learning methods have become the main
research direction of KPI anomaly detection.

The method based on unsupervised machine learning determines the “normal area” by
using a single class label (normal KPI samples). Then, by comparing the difference between
the KPI observation value and “normal area”, we can infer the abnormal degree of data.
Since normal samples are far more numerous than abnormal samples in anomaly detection,
the model can still be trained even without labels. However, traditional unsupervised
machine learning methods need to spend a lot of time to extract the features of data
for anomaly detection, such as OCSVM [27], K-means [28], GMM [29], etc. Since deep
generative models can automatically capture complex features from data and have higher
accuracy, they have received extensive attention. Donut [5] was the first unsupervised
model that applied a deep generative model to KPI anomaly detection. Donut puts forward
innovations, such as M-ELBO, MCMC iteration, and missing value zero fillings on the basis
of VAE, which has excellent performance on periodic KPIs. Subsequently, Buzz [6] solved
the problem that was difficult for donut as it handles more complex data distribution.
It measures the distance of data distributions and generates distributions through the
Wasserstein distance. In fact, Buzz optimizes the likelihood evidence lower bound of a
variant VAE by adversarial training. Buzz has a better detection effect on aperiodic KPIs.
However, the KPI anomaly detection method based on VAE does not consider the time
dependence of data, which limits its applicability to time series. Although LSTM-VAE [8]
solves this problem, it will encounter the problem of KL divergence disappearing during
training. In addition, the VAE judges anomalies by means of reconstruction, with manual
determination of thresholds that have poor adaptability. Some recent studies [30,31] have
achieved good results by using models to automatically determine thresholds.

This paper uses the public benchmark data set, with related research works of anomaly
detection under the same data set that are introduced as follows. KPI-TSAD [32] is a time
series deep learning model based on convolution and long short-term memory (LSTM)
neural network, and uses a variational auto-encoder (VAE) oversampling model to solve
the imbalanced classification problem. Although the method based on supervised learning
has achieved good performance in anomaly detection, it needs a lot of labeled data for
training. LSTM-based VAE-GAN [9] regards the long short-term memory (LSTM) network
as the encoder, generator, and discriminator of VAE-GAN, and jointly trains the encoder,
generator, and discriminator. In the anomaly detection stage, anomalies are detected based
on reconstruction errors and discrimination results. However, it needs to accumulate
certain data to adjust the threshold of the abnormal score. PAD [33] is a method for robust
prediction and unsupervised anomaly detection. The prediction block (LSTM) obtains a
clean input from the time series reconstructed by the VAE, making it robust to anomalies
and noise. At the same time, because LSTM helps to maintain a long-term sequence
pattern, VAE performs better in anomaly detection. ALSR [34] is a machine learning
scheme for continuous interval KPI anomaly detection. The anomaly detection scheme
is optimized by using the different characteristics of abnormal points in the continuous
anomaly interval, so that it has better detection accuracy. FluxEV [35] mainly improves
SPOT [36], which is only sensitive to extreme values and therefore cannot detect local
fluctuations. The method of moment estimation is used to optimize maximum likelihood
estimation in SPOT to improve computational efficiency. This paper mainly aims at solving
the problems of KPI anomaly detection based on VAE. However, the works discussed
above are different from the problems addressed in this paper. For example, KPI-TSAD [32]
solves the problem of data imbalance through VAE. LSTM-based VAE-GAN [9] aims to
resolve the problem of errors in the mapping of GAN from real-time space to potential
space. PAD [33] considers two aspects: state prediction and anomaly detection. ALSR [34]
mainly focuses on anomaly detection in continuous intervals. FluxEV [35] focuses on
improving computational efficiency.
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3. Anomaly Detection Method
3.1. Method Flow

The problem to be solved in this paper is how to detect anomalies in KPI time series
data. In order to solve this problem, a novel hybrid anomaly detection method is proposed.
The method flow is shown in Figure 1, which mainly includes data preprocessing, a
VAE-based reconstruction module, and SVDD-based anomaly detection module. In the
training stage, data preprocessing was firstly carried out, that is, missing value filling
and data normalization were performed on the original KPI time series. Then, the VAE
reconstruction was carried out, that is, the BILSTM-VAE model was trained and batch
normalization was used to prevent the disappearance of the KL divergence. Finally, SVDD
anomaly detection was carried out, and reconstruction errors smoothed by EWMA were
put into the SVDD for training. The center a and radius R of the SVDD hypersphere were
calculated, and the radius R is the threshold of anomaly detection. In the test stage, the
test data were preprocessed and input into the trained BiLSTM-VAE model to obtain the
reconstructed test data. If the smoothed reconstruction error was less than or equal to the
threshold R, it would be judged as normal. If it was greater than the threshold R, it would
be judged as abnormal.

r--r—-r———™"~""~>"™"™""™"™""™""™"""™"""™"""™>">"""™>"™>7™77— \r Tt al
| ([ |
: Batch Normalization Reconstruction module | : Anomaly detection module :
| ’ basedon VAE | | based SVDD |
| To prevent the disappearance of 1 X |
| KL divergence | | Reconstruction |
\ 4 . error after

| Reconstruction [ smoothing i |
KPI Dataset . [ - . VAR eror | EWMA L1 S | SVDD determines the | |
L—/_\ Data preprocessing > Training BiLSTM-VAE model smoothing Ol threshold R |
T | I I
| : Model | : Reconstruction Threshold R :
! | Y Reconstruction | | error after A 4 |

| error W smoothing A aly detecti
————— b Online detection -—_—— E M.A R ———— nomaly detection |
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Figure 1. Method flow chart.

3.2. Data Preprocessing
3.2.1. Missing Value Processing

In the real scene, there may be a small number of missing reports or noise data may be
deleted in the original KPI data, resulting in the loss of values in the data. Supplementing
appropriate data is helpful for subsequent model training. When the number of missing
values is small, the effects of nearest neighbor interpolation, linear interpolation, and cubic
polynomial interpolation are similar [37]. There are fewer missing values in the KPI dataset
used in this paper. After measuring speed and simplicity, the linear interpolation method
was selected to deal with missing values. First, the slope was calculated according to the
data before and after the missing value, and then the missing KPI data was supplemented
according to the slope. Figure 2 shows the interpolation method. If the data x; was lost,
the slope would be calculated as follows:

X — X5 _
fe1 — -1

Next, the missing KPI data x; was calculated based on the slope b:

Xp = X1 + b X (t — tr_1), )
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Figure 2. Schematic diagram of the interpolation method.

3.2.2. Data Standardization

In order to eliminate the dimensional influence between indicators, data standardiza-
tion is needed. After data standardization, all indicators are in the same order of magnitude,
which is suitable for comprehensive comparative evaluation. In addition, it can reduce
the training time of the model and make the training process converge as soon as possible.
This paper normalizes the KPI data, and the data was mapped to the range of 0-1. The
normalization formula is as follows:

= X — min' ’ 3)
max — min
3.3. Reconstruction Module Based on VAE
3.3.1. BILSTM-VAE Model

In physics, symmetry has a more profound meaning, which refers to invariance under
certain transformations. In the VAE, the data is invariant in time and space after encoding
and decoding operations, so it just conforms to the concept of symmetry.

The encoder of the VAE is used to learn the distribution of training data and generate
the compressed value of training data, and the decoder reconstructs the compressed data.
The basic idea is to use a deep neural network to model two complex probability density
functions: posteriori probability distribution and conditional probability distribution.
The neural network fitting x — z is called the inference network q, (z | x), as shown in
Formula (4). The neural network fitting z — x is called the generative network p_ (x| 2),
as shown in Formula (5).

2~ Enc(x) =, (z | x), @

x ~ Dec(z) = p, (x| 2), (5)

KPI data belongs to time series. Using the memory function of LSTM [7], LSTM
network units are introduced into the VAE network to replace traditional neural units in
the inference network and generation network. The time dependence and correlation of
input data can be learned, which is helpful to extract appropriate features in the hidden
layer and reconstruct the input sequence. In this paper, BILSTM [17] is used as the encoder
and decoder of VAE. Compared with LSTM, the advantage of BiLSTM is not only to
consider the past KPI data, but also to consider the future KPI data. Figure 3 shows the
network structure of BILSTM-VAE.
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Figure 3. BILSTM-VAE network structure.

Firstly, time series were divided into sub-sequences corresponding to input variables

by the sliding window with a certain step size. Each input sample of the encoder was a
vector of a specific size, expressed as x = {x1,x2,x3, - - -, x¢ }. Then, the encoder encoded
input variables into latent variables through the inference network. It was assumed that
the true posterior of latent variables z obeys the standard Gaussian distribution (standard
normal distribution), i.e., p, (z) = N(0,I). According to the description of reference [2], the
standard normal distribution can simulate any distribution through a sufficiently complex
function. It can be proved by the inverse transformation sampling theorem. F(x) is a
cumulative distribution function; U is a standard normal distribution variable between 0
and 1; and F~1(U) is a sample of the target distribution. Then, the following formula can
be obtained:

P(F7H(U) < x)

— P(U < F(x)) ®)

=F(x)

In short, we can use a normal distribution to obtain a complex distribution through
the D(z) function of the decoder to output X. In this way, X and x have the same probability
distribution and content. Therefore, this assumption was reasonable. Specifically, given a
real sample x;, we assumed that there is a distribution p, (z | x¢) exclusively belonging to
x¢, and further assumed that this distribution is (independent and multivariate) normal
distribution. If p_ (z | x¢) belongs exclusively to x;, it is reasonable to say that z sampled
from this distribution should be restored to x;. Since the distributions assumed above are
normal distributions, it was necessary to obtain the corresponding variance and mean.
Then, a z; was sampled from this exclusive distribution and X was obtained through a
decoder X; = D(z;).

The approximate posterior distribution g, (z | x) also obeys the Gaussian distribution
N(u,cl), where p and o are the mean and variance of the Gaussian distribution. It is not
difficult to see that the function of the encoder is to generate the mean i and variance o
through two networks. The encoder was parameterized through BiLSTM with an activation
function to generate hidden state sequences in both directions, forward — and backward
<. The final encoder hidden states of both passes were concatenated with each other to
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produce the vector h; = [Zt, Zt] u and o were derived from the final encoder hidden state
h; using two fully connected layers with linear and Softplus activations, respectively.

Latent variables were obtained by reparameterization, that is, z = p + 0 © &. Among
them, e ~ N (0, I) is an auxiliary noise variable, and ® represents the product at the element
level. Evidently, noise will increase the difficulty of reconstruction. Resampling essentially
adds “Gaussian noise” to the encoder result (the mean value), so that the decoder result can
be robust to noise. Another encoder result (the variance) was used to dynamically adjust
the intensity of noise. Intuitively, when the decoder is not well trained, it will appropriately
reduce the noise to make the fitting easier (the reconstruction error becomes smaller). On
the contrary, if the decoder is well trained, the noise will increase, making the fitting more
difficult (the reconstruction error becomes larger).

Finally, the decoder decoded latent variables back to the original data space through
the generation network p, (x | z), so as to obtain reconstructed data samples.

In VAE, the parameters of the network were optimized by maximizing the lower
bound of evidence ELBO,,,, as shown in Formula (7):

ELBOu. = E; iy llog p, (¥ | 2)] — Dia(g, (2| ¥) | p,(2)), %

where the first term represents the reconstruction term, and E, (z|x) is the logarithmic
¢

likelihood estimate of the posterior probability of x. The second term represents the
regularization term, which measures the gap between approximate posterior g, (z | x)
and true posterior p (z) by KL divergence. The goal of optimization is to maximize
the likelihood function of generated data and minimize the KL divergence between the
approximate posterior distribution and the true posterior distribution. In short, on the one
hand, the output was fitted to the input as much as possible. On the other hand, the noise
was appropriately increased through the KL divergence to prevent over-fitting.

3.3.2. Batch Normalization Prevents the Disappearance of KL Divergence

When VAE is used with a powerful autoregressive decoder (LSTM), KL divergence
often disappears. This is generally believed due to the strong autoregression of the decoder,
that is, the generated network p, (x | z) is too strong. This will cause the model to abandon
the use of the approximate posterior of encoder and directly use the latent variables of the
model. At the same time, the KL divergence term will quickly decrease to 0, that is, prior
and approximate posterior are equal. In addition, the reparameter operation will introduce
noise during training. When it has high noise, latent variables are difficult to be used, so
the VAE ignores latent variables and carries out the reconstruction independently. When
the KL divergence is 0, the encoder outputs a constant vector. The use of VAE usually
focuses on its ability to construct coding vectors unsupervised. Therefore, the problem of
the KL divergence disappearance must be solved when applying VAE.

Based on the batch normalized-VAE (BN-VAE) method proposed in reference [18], this
paper solves the problem of KL disappearance. This method has good results in language
modeling, text classification, and dialog generation. This paper applies it to the field of
anomaly detection for the first time. The core idea of BN-VAE is to apply BN to the mean
vector output by the encoder, so as to ensure that the expected lower limit of KL divergence
distribution is positive, as shown in Figure 4.
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Figure 4. Adding BN to VAE prevents the disappearance of the KL divergence.

In order to explain how BN was associated with KL divergence, the KL divergence
term formula is given first:

14
—EZylz—i—Uiz—logUiz—l, (8)
i=1

In the above formula, d is the dimension of latent variables. y; and o; are the mean
and standard deviation of posterior distribution of the i-th dimension of latent variables,
respectively. In the actual calculation, we often used batch training, so the above formula
was further calculated during the training process:

b d
KL =0 ¥ ¥ (uf;+ 07 —logey; —1)
: ©)
_1)

b b
1”11 + Li- 1 o _ Tialogay
b

In the above formula, b is the size of batch. When b is large enough, the KL term
will approximate the average value of KL of the whole data set. Thus, we limited the
distribution of KL in the data set by limiting the distribution of mean and variance. In this
way, KL was equivalent to the distribution of posterior distribution parameters of latent
variables. Therefore, the above formula can be expressed as follows:

NI~ N~

E[KL] (Var[pi] + E?[u;] + E*[07] — E[logo7] — 1)

, (10)

%

(Var[p] + E*[ui])

IM= L=

In the above formula, E2[c?] — E[logc?] — 1 > 0 can be derived from e* > x + 1, so
the inequality holds. Through this transformation, it is not difficult to realize that batch
normalization can be used to constrain the distribution of mean. The mean value in the
posterior distribution was performed as follows:

— H B g (11)
OB

R

In the above formula, ji; is the mean value of y; transformed by the BN layer. ug;
and op; represent the mean and standard deviation of y;. f and <y are parameters in
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batch normalization, which can control the variance and mean value of y; distribution,
respectively. Finally, Formula (12) was obtained by replacing y; in KL formula:

E[KL] > (Var[p;] + E2[p;])

, (12)

It~

1

5 (4B

|l N

Therefore, as long as B and 7y are well controlled (mainly v is fixed to a certain constant),
the KL divergence term can have a positive lower bound. In this way, KL divergence and
BN were cleverly linked to avoid the disappearance of KL divergence.

3.3.3. EWMA Smoothing Reconstruction Errors

The difference sequence d = | X — x | can be obtained by comparing reconstructed KPI
sequence with the original sequence. However, the original difference sequence represents
an instantaneous measure of the predictability of the current input. Nevertheless, in many
practical applications, the underlying system is inherently unpredictable. In this case,
predictable change usually means meaningless behavior. This is seen, for example, in
the latency of HTTP requests for websites. Although the latency is usually low, it is not
uncommon for random jumps to reach the peak corresponding to anomaly scores. In
fact, abnormal observations usually occur continuously, and it is acceptable to trigger an
alarm in a short time. Setting thresholds directly on original difference sequences will lead
to many false positives. Therefore, this paper uses EWMA [19] to smooth the difference
sequence to suppress the frequently occurring error peaks. System behavior is usually not
perfectly predictable, and normal behavior can also cause sharp peaks in error values [38].
At time k, the smoothed sequence ¢, was obtained according to the original difference
sequence dj. The calculation process is shown in Formula (13):

e = adp + (1 —a)ep_q, (13)

In the above formula, a(0 < a < 1) is the weight coefficient of EWMA for the historical
measurement value. The closer its value is to 1, the lower weight for the past measurement
value. o determines the ability of EWMA to track sudden changes in actual data, namely
timeliness. With the increase in «, the timeliness of EWMA is stronger; otherwise, it is
weaker. EWMA also shows a certain ability to absorb instantaneous bursts. By controlling
«, short-term fluctuations are eliminated and long-term development trends are retained,
providing a smooth form of sequences.

3.4. Anomaly Detection Module Based on SVDD

SVDD [20] is an algorithm that can describe the target data in a hypersphere, which
can contain as many data points as possible. It can be described as: if only one class can be
judged, then the smallest hypersphere needs to be found through SVDD to include all the
data of this class. When the hypersphere is used to identify new data, if the data fall within
the hypersphere, the data are considered to belong to this class. Otherwise, the data do not
belong to this class.

When training the SVDD classifier, this paper inputs the reconstruction error of
normal data into the SVDD for training to determine the threshold. In the test phase, the
reconstruction error of abnormal data was greater than that of normal data, so it exceeded
the threshold to realize anomaly detection. However, different KPI curves correspond to
different reconstruction error curves. If a fixed threshold is set based on human experience,
a large number of false positives and false negatives will be caused. Therefore, this paper
inputs the reconstruction error into SVDD for training to determine the threshold, which
can adaptively set different thresholds for different KPIs.

The goal of the SVDD is to find support vectors and use them to construct a minimal
closed hypersphere that contains all or most of the target training samples. In this paper,
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target training samples are the smoothed reconstruction error of normal KPI, expressed as
e = {ey, ey, ¢e, - - -, en}, where n is the number of samples. The sample was distributed in a
ball with center a and radius R, i.e., ||e; — 11||2 < R2. By introducing the slack variable ¢,
it was allowed that some samples were no longer in the ball, that is, ||e; — a||2 <RZ+¢.
The training objective was to minimize the value of radius R and slack variable ¢;, so the
objective function was expressed as Formula (14):

n
minF(R,a,&) =R2+CYL &
t=1

er—a S + ts t = e, n
S.T. ’
>0

Among them, ¢; is the slack variable, which is used to measure a small amount of
abnormal data outside the hypersphere. C is the penalty coefficient used to control the
volume of the hypersphere, and its value ranges from 0 to 1. The slack variable ¢; prevented
the model from being “destroyed” by individual extreme data points. In short, if most data
points are in a small area and only a few abnormal data are far away from them, the model
prefers to regard those few data points as anomalies. To avoid the model making excessive
sacrifices to cater to few data points, the model tolerated some data points that did not
meet the rigid constraints and gave them some elasticity. C adjusted the influence of the
slack variable. Generally speaking, the slack space is given to those data points that need
slack. If C is large, the loss caused by the slack variable in the loss function is large. Then,
the slack variable will be reduced during training. In this way, the model does not tolerate
those outliers and just wants to include them. On the contrary, if C is small, the model will
give outliers greater elasticity, so that they can not be included.

In order to make the training process easier to understand, the hypersphere was
visualized in two-dimensional and three-dimensional space respectively, as shown in
Figures 5 and 6. The hypersphere corresponds to a curve in two-dimensional space and a
sphere in three-dimensional space. Under normal circumstances, the data will not show
spherical distribution, so the Gaussian kernel function method was used to improve the
expression ability of model. Figures 5a and 6a show the contour distance visualization of hy-
persphere in two-dimensional and three-dimensional space, respectively. Figures 5b and 6b
show the decision boundary visualization of hypersphere in two-dimensional and three-
dimensional space, respectively.

Contour of distance (gaussian)

e Dccision boundary B Training data ()
® Trainingdata(+)  ® Supportveclors

(a) (b)

Figure 5. Visualization of the hypersphere in two-dimensional space: (a) Contour of distance; and
(b) Decision boundary.
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10 -10

(a) (b)

Figure 6. Visualization of the hypersphere in three-dimensional space: (a) Contour of distance; and
(b) Decision boundary.

The optimization problem was solved by the Lagrange multiplier method, and the
following Lagrange function was obtained:

L(R,a,&) = R*+CY & — Y At [R2+ & — [let —al’] — Y Bec, (15)
t=1 t=1 t=1

where A¢ and f; are Lagrange multipliers. The distance from ¢; to 4 is recorded as g(e;),
and the calculation formula is as follows:

n n n

gler) = llec —all = | (er,er) —2) Ai(eier) + Y ) Aidj(eieg), (16)

i=1 i=1j=1

The calculation formula of radius R is as follows:

n n n

R=|(es,es)—2) Ailejes)+ Y. Y Aidi(eie)), (17)

i=1 i=1j=1

Among them, e, is a support vector on the sphere of the hypersphere. ¢; and ¢; are
any two samples input to the SVDD. In addition, in order to make the samples linearly
separable in the feature space, it was necessary to map samples from the original space to
the high-dimensional feature space by using a kernel function. In this paper, a Gaussian
kernel function is used to map samples from original space to appropriate feature space.
The expression of Gaussian kernel function is:

KGuuss(ei/ej) = exp(—Hei - j”z/sz)r (18)

where s is the Gaussian kernel parameter.

In the anomaly detection stage, g (etest) > R indicates that the distance from ees; to a is
greater than R, then Xy is the abnormal KPI data. g(eest) < R indicates that the distance
from eyt to a is less than or equal to R, then X is the normal KPI data. The process of
anomaly detection is shown in Figure 7.
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Figure 7. Anomaly detection based on SVDD.

4. Experimental Procedure

The experimental environment of this paper was Windows 10 (64-bit) operating
system. The hardware configuration was Intel (R) Core (TM) i7-8700CPU@3.20 GHz
16 G RBM and 237 G solid state drive. The development language was python3.6, the
development framework was Keras, and the back-end engine was TensorFlow.

4.1. Dataset

The KPI dataset used in this paper was published by the AIOps challenge competition (http:
/ /iops.ai/competition_detail /?competition_id=5&flag=1 (accessed on 10 September 2021)),
which provides the KPI desensitization time series with anomaly labels. The data were
collected from the real operation and maintenance environment of top Internet companies,
such as Sogou, Tencent, eBay, Baidu, and Alibaba, and the sampling interval was 1 min.
We randomly selected two KPIs to verify the proposed method in this paper. As shown in
Table 1, the ratio of normal samples to abnormal samples in the data set was obviously very
uneven, and abnormal samples account for less than 10% of the total number of samples.
Figure 8 shows the visualization effect of two KPIs. It can be observed that KPIs showed a
certain degree of periodicity and trend.

Table 1. Dataset details.

Dataset KPI'1 KPI 2
Total points 128,562 129,035
Anomaly points 10,550/8.21% 7666/5.94%
Missing points 3233/0.02% 2755/0.02%

Duration 91 days 91 days

Sample Frequency 1412.77 1417.97
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time

Figure 8. Two KPIs from real production environments.

4.2. Evaluation Metrics

In the anomaly detection module, this paper determines the threshold through SVDD.
When the reconstruction error was greater than the threshold, the point was judged as
an anomaly. Operation and maintenance personnel usually only care about whether
the anomaly detection algorithm can detect a continuous anomaly interval, rather than
detecting each anomaly point in the anomaly interval. Therefore, the evaluation of this
paper adopts the strategy described in the literature [5]. If the anomaly detection algorithm
made a judgment fast enough (before the maximum allowable delay) after the beginning
of anomalies, it was considered to have successfully detected the whole anomaly segment.
The alarm delay was the time difference between first anomaly point and first detection
point in the anomaly segment. If the anomaly detection algorithm did not issue any alarm
before the maximum allowable delay, even if the anomaly detection algorithm detected
the anomaly, we considered that the algorithm failed to successfully detect the anomaly
segment. Figure 9 shows the anomaly detection results with an alarm delay of 1 min (1 grid).
The first line represents the real labeled data, including 10 consecutive time points and
2 anomaly intervals. The second line represents the output results of the anomaly detection
method. The third line represents the anomaly detection results corrected according to
the alarm delay. For the first anomaly interval, if the anomaly detection method found an
anomaly within the longest delay alarm, it was considered that the whole anomaly interval
was successfully detected. For the second anomaly interval, it was considered that the
anomaly interval was not successfully detected, because the detection result exceeded the
alarm delay.

goundtth | O | O 1 |2 | 2100121111

point-wise result | ] 0 0 1 1 1 0 0 0 1

adjusted result 1 O 1 1 1 1 O O O O

Figure 9. Description of anomaly detection policies.
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Therefore, the anomaly detection of time series can be regarded as a classification
problem. In this paper, Precision, Recall, and F1-score are used to evaluate the performance
of detection. Precision represents the proportion of correct prediction being positive in
relation to the total prediction being positive. Recall represents the proportion of correct
prediction being positive in relation to the total actual being positive. F1-score is the
weighted harmonic average of Precision and Recall. The calculation formula is as follows:

TP

Precision — — 11 1
recision TP+ P’ (19)
TP
Recall = TP+ EN’ (20)
2 % Precisi
Fl-score — X Precision X Recall’ 1)

Precision + Recall

where TP is the number of anomaly points correctly detected; FP is the number of normal
points incorrectly identified as anomaly points; and FN is the number of anomaly points
incorrectly identified as normal points.

4.3. Experimental Parameter Setting

In the experiment, each KPI time series was divided into training set and test set
by 8:2. After the many repeated experiments that were conducted in the context of this
paper, the final hyperparameters are shown in Table 2 on the premise of balancing the
time-consuming and detection effect.

Table 2. Main hyperparameter settings.

Hyperparameter Name Hyperparameter Value
Batch size 256
Number of iterations 100
Optimizer Adam
Learning rate 0.0005
LSTM unit size 128
Latent variable dimension 10
Sliding window length 12
Alarm delay 7
Penalty coefficient of SVDD 0.25
Gaussian kernel parameter of SVDD 9

In the process of adjusting the parameters, we found that the sliding window length
W and latent variable dimension K had a great influence on the results of the anomaly
detection. Too short sliding windows could not obtain the relationship between adjacent
points. Too long sliding windows relied too much on historical information and lacked
sensitivity to current values. Latent variables represent all the important information
needed to contain the original data point. The representation ability of potential space
varies with the dimension of latent variables. Therefore, this paper tests the best F1-score
of algorithm under different sliding window lengths and latent variable dimensions, as
shown in Figure 10. It can be seen that, when the sliding window length W = 12 and latent
variable dimension K = 10, the F1-score reaches the optimal value. In addition, when SVDD
determined the threshold, the selection of the penalty coefficient and kernel parameters
also had an important impact on the effect of anomaly detection. In this paper, the accuracy
of anomaly detection is used as the fitness function, and the penalty coefficient C = 0.25
and the Gaussian kernel parameter s = 9 are obtained by the particle swarm optimization
algorithm [39].
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Figure 10. The best F1-score under different sliding window lengths and latent variable dimensions: (a) Different sliding
window lengths; and (b) Different latent variable dimensions.

4.4. Experimental Results of Anomaly Detection

In this paper, normal data are used to train BILSTM-VAE model and the distribution of
normal data is learned. During the test phase, the model did not reconstruct the anomalous
data well, because of the different distributions of the anomalous data from the normal
data. To visually observe this, we plotted the reconstruction effect of two KPIs on a partial
test set. As shown in Figure 11, normal samples of two KPIs can be reconstructed well,
while abnormal samples cannot be reconstructed well, resulting in higher reconstruction
errors. Figure 12 shows original the reconstruction errors of two KPIs. It can be seen that
reconstruction errors of normal points are closer to 0, while abnormal points will lead to
the error peak. However, setting a fixed threshold directly on the original reconstruction
error threshold will not only lead to a large number of false positives and false negatives,
but also to the need to adjust the threshold manually. In addition, it is unrealistic to set a
unified threshold for different KPIs, which may lead to poor adaptability. Therefore, this
paper uses EWMA to smooth the reconstruction error and SVDD to adaptively determine
the threshold. Figure 13 shows smoothed reconstruction errors of two KPIs, and the red
dotted line is the threshold determined by SVDD. It can be seen from the figure that the
threshold of KPI 1 is 0.04, and the threshold of KPI 2 is 0.018. The errors of normal points are
lower than the threshold, and the errors of abnormal points are higher than the threshold.
In summary, the method in this paper can accurately detect anomalies and adaptively
determine the optimal threshold for each KPL

KPI 1 KPI 2

10 ——— Time series with anomalies 10 —— Time series with anomalies

08 Reconstructed time series 08 Reconstructed time series

0.6 0.6
] @
= E
g 04 g 0.4

02 - L

0.0

0.0
1000 2000 3000 4000 0 1000 2000 3000 4000
time ime
(@ (b)

Figure 11. The reconstruction effect of two KPIs: (a) KPI 1; and (b) KPI 2.
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Figure 12. Original reconstruction errors of two KPIs: (a) KPI 1; and (b) KPI 2.
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Figure 13. Smoothed reconstruction errors of two KPIs: (a) KPI 1; and (b) KPI 2.

4.5. Comparative Experiment and Analysis

In order to verify the effectiveness of this method, we selected three methods as

baseline to test the detection effect of each method on the KPI data set. These methods
included the VAE-based anomaly detection method Donut [5] and LSTM-VAE [8]. In fact,
VAE was part of our approach. In order to make a fair comparison, the hyperparameters
of Donut and LSTM-VAE were the same as the method in this paper. In addition, we also
compared the supervised learning method Opprentice [26] as the most competitive method
of non-deep learning:

Opprentice [26] is an ensemble supervised algorithm that uses random forest clas-
sifiers. Its principal concept is to use more than ten different types of detectors to
extract hundreds of abnormal features. Then, using the manually labeled data and
anomaly features, the anomaly detection problem can be transformed into a super-
vised classification problem in machine learning. The extracted features are used as
the input of machine learning algorithm. The points on the KPI curve are divided into
normal points and abnormal points through a classification algorithm, so as to realize
anomaly detection.

Donut [5] is an unsupervised anomaly detection algorithm based on VAE. Through
the improved variational lower bound and Markov chain Monte Carlo interpolation
technology, the algorithm can be used without labels. Donut applies a sliding window
on the KPI to obtain the sub-sequence, and tries to identify the normal pattern. Then,
anomalies are determined by reconstruction probability. In fact, it selects a threshold
for each KPL

LSTM-VAE [8] combines LSTM and VAE to make it more suitable for time series
modeling. Specifically, it replaces the feedforward neural network in VAE with
LSTM. LSTM-VAE fuses sequences and reconstructs their expected distribution by
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introducing a schedule based variational a priori. In the anomaly detection phase, it
uses an anomaly score based on reconstruction probability and a state-based threshold.

Table 3 shows the best Precision, Recall, and F1-score of various anomaly detection
methods on two KPIs. Opprentice based on machine learning performed worse than VAE
based on deep learning, and it needed labels for training, which was difficult to achieve in
the actual scene. Donut made a series of improvements based on VAE so that it can train
without labels. Since Donut treats time series as sliding windows and does not process
time information, Donut’s performance was poor when anomaly detection relies on time
information. LSTM-VAE can extract the time correlation of sequence better than Donut,
so a better detection effect was obtained. The method in this paper is VAE-SVDD—VAE
uses BiLSTM as encoder and decoder; batch normalization avoids the disappearance of the
KL divergence; EWMA smooths the original reconstruction error; and SVDD adaptively
determines the threshold. Through the above improvements, VAE-SVDD had higher
Precision, Recall, and F1-score compared to other baseline methods.

Table 3. Experimental results of various anomaly detection methods.

KPI1 KPI 2
Method
Precision Recall F1-Score Precision Recall F1-Score
Opprentice 0.72 0.66 0.69 0.78 0.70 0.74
Donut 0.83 0.76 0.79 0.86 0.83 0.84
LSTM-VAE 0.91 0.84 0.87 0.90 0.85 0.87
VAE-SVDD 0.95 0.96 0.95 0.97 0.96 0.96

VAE-SVDD uses VAE to reconstruct KPI data and uses SVDD to train the recon-
struction error again. It is necessary to compare the complexity of VAE-SVDD with other
detection methods. This paper records the anomaly detection time of various anomaly
detection methods. Table 4 shows the average duration of 5 anomaly detections performed
by each method on the test set (containing 26,358 data). The Opprentice method is based on
arandom forest, and it can improve efficiency through parallelization, so the detection time
is short. Donut based on VAE is more complex than the Opprentice method, resulting in
slightly longer detection time. LSTM-VAE integrates LSTM and VAE, which evidently leads
to a longer detection time. In VAE-SVDD, the encoder and decoder of VAE were designed
as BiLSTM, and the threshold was determined by SVDD. However, these optimization
mechanisms also increased the detection time. Although the detection time of VAE-SVDD
was slightly longer than other methods, the detection was more accurate. Therefore, it is
still acceptable in the actual situation.

Table 4. Average detection time.

Evaluation Index Opprentice Donut LSTM-VAE VAE-SVDD
Detection time (s) 34.5 46.3 53.8 65.2

4.6. Effects of Different Components
4.6.1. Time Correlation

In this paper, BILSTM network is used as the encoder and decoder of VAE, which can
better capture the time correlation of sequence data. We compared the distribution of latent
variables between VAE and BiLSTM-VAE to prove that time correlation has a positive
effect. In order to verify this time correlation, part of the test set containing anomalies was
selected. At the same time, the hours of timestamp were extracted as labels, that is, there
were 24 types of labels.

In order to facilitate visualization, we used a principal component analysis (PCA) [40]
and t-distributed Stochastic Neighbor Embedding (t-SNE) [41] to reduce the dimension of
latent variables to 2. Latent variables can be regarded as the characteristic representation of
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data. PCA replaces original 10 features with a smaller number of 2 features. New features
are the linear combination of old features. These linear combinations maximize the sample
variance and try to make new features irrelevant to each other. The mapping from old
features to new features captures the inherent variability in the data. In addition, it has
the advantage of being quick and easy to implement. However, the nonlinear correlation
between samples may be lost after linear dimension reduction using PCA. In contrast,
t-SNE is a nonlinear dimension reduction method. It converts the similarity of data points
into joint probability and optimizes the KL error between low-dimensional data and high-
dimensional data. t-SNE dimension reduction can not only maintain the difference of data,
but also maintain the local structure of data. However, the results of t-SNE have a certain
degree of randomness, rather than the consistency of PCA results. Therefore, we combined
the two methods to visualize latent variables after dimension reduction. It can be more
reasonable to prove that our method better captures the potential pattern of data, that is,
time correlation.

Figure 14 shows the two-dimensional visualization effect of VAE latent variables on
KPI 1. Figure 15 shows the two-dimensional visualization effect of BilSTM-VAE latent
variables on KPI 1. Figure 16 shows the two-dimensional visualization effect of VAE
latent variables on KPI 2. Figure 17 shows the two-dimensional visualization effect of
BilSTM-VAE latent variables on KPI 2. All subgraphs (a) are the visualization effect of the
PCA on latent variables after dimension reduction. All subgraphs (b) are the visualization
effect of t-SNE on latent variables after dimension reduction. Evidently, the latent variables
distribution of BILSTM-VAE is more regular than VAE. It was proved that BILSTM-VAE
captures the time correlation of sequences better than VAE. It can be observed from the
figure that the latent variables of the time-aligned sequence are roughly in the same area,
and the anomaly moment will show a large deviation (such as 8 o’clock). The literature [5]
explains this effect for the first time, which is called time gradient.
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Figure 14. Two-dimensional visualization of the VAE latent variables for KPI 1: (a) PCA on z; and (b) t-SNE on z.
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Figure 15. Two-dimensional visualization of the BILSTM-VAE latent variables for KPI 1: (a) PCA on z; and (b) t-SNE on z.
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Figure 16. Two-dimensional visualization of the VAE latent variables for KPI 2: (a) PCA on z; and (b) t-SNE on z.
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Figure 17. Two-dimensional visualization of the BILSTM-VAE latent variables for KPI 2: (a) PCA on z; and (b) t-SNE on z.

4.6.2. Batch Normalization

We used batch normalization to prevent the disappearance of the KL divergence during
model training. In order to highlight the effect of batch normalization, we visualized the
loss and accuracy of the model during training. As shown in Figure 18a, the accuracy of
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the model with BN (97%) is significantly higher than that of the model without BN (87%).
From the perspective of training speed, the model with BN is already very close to the final
convergence at the 22nd iteration. The model without BN is close to the final convergence
at the 42nd time, indicating that the model with BN is faster. As shown in Figure 18b, the
model with BN is lower than the model without BN, regardless of the loss of training set or
test set. In conclusion, BN can accelerate the training speed of the model and even play a
positive role in improving accuracy and reducing loss.

Model accuracy Model loss

o o o
~ © ©

Validation Accuracy

=3
o

—— Training Loss without BN
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—— Training Loss with BN

—— Validation Loss with BN

—— No Batch Normalization
With Batch Normalization
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Figure 18. Comparative effects of batch normalization are introduced during training: (a) Model accuracy; and

(b) Model loss.

4.6.3. EWMA Smoothing

We used EWMA to smooth the error sequence, which reduces false positives and false
negatives during the detection process. To prove that the smoothing operation can improve
the effectiveness of anomaly detection, we compared the detection effects of no smoothing
and EWMA smoothing on two KPIs, as shown in Table 5. As can be seen from the table,
Precision, Recall, and F1-score all improved greatly after EWMA smoothing.

Table 5. EWMA smoothing effect.

Dataset Method Precision Recall F1-Score
KPI1 No smoothing 0.88 0.85 0.86
EWMA smoothing 0.95 0.96 0.95
KPL2 No smoothing 0.91 0.88 0.89
EWMA smoothing 0.97 0.96 0.96

4.6.4. Adaptive Threshold

We used SVDD to determine the threshold of anomaly detection, so that different
thresholds can be set adaptively for different KPIs. Figure 19 shows the PRC curve and
ROC curve of the two threshold methods, proving that the adaptive threshold has a better
effect than the fixed threshold. The larger the area under the curve is, the better the model
effect is. Compared with the traditional fixed threshold, the adaptive threshold not only
has a higher precision rate and recall rate, but also produces a higher true positive rate
(TPR) under the same false positive rate (FPR).
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Figure 19. Comparison of the adaptive threshold and fixed threshold: (a) PRC; and (b) ROC.

5. Conclusions

In this paper, a novel KPI anomaly detection method is proposed by combining
VAE and SVDD. In this method, firstly, the encoder and decoder of VAE were designed as
BiLSTM to capture the time dependence of data. Then, batch normalization was used on the
output of the encoder to prevent the KL divergence from disappearing. In addition, EWMA
was used to smooth reconstruction errors to eliminate accidental error peaks. Finally,
smoothed reconstruction error sequences were put into the SVDD for training to determine
the threshold of anomaly detection adaptively. In the experiment, the appropriate sliding
window length and latent variable dimension were selected. The visualization effect
of latent variables showed that time-aligned sequences are in the same region of latent
variables space, and the model can better capture the time correlation of sequences. Batch
normalization can speed up training and reduce loss. The reconstruction error after
smoothing can reduce false positives and false negatives in the detection to some extent.
Compared with the fixed threshold, the adaptive threshold has more flexibility and a better
effect. The comparison result with current advanced baseline methods shows that the
method in this paper has a better detection effect. Moreover, although the method in this
paper is applied to KPI's univariate time series, it is also applicable to multivariate time
series. The adaptive threshold can be applied not only to reconstruction errors, but also
effectively to prediction errors.

In the future, we will continue our work focusing on the following two aspects:

(1) The linear interpolation method is too simple. When there are many missing values,
some errors may be caused. Next, we will explore interpolation methods that can
handle both linear and nonlinear data, such as modeling interpolation.

(2) The duration of anomaly detection is important. Next, we can improve the VAE-SVDD
model structure and adjust parameters to obtain better performance.
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