
symmetryS S

Article

Image Denoising Using Nonlocal Regularized Deep Image Prior †

Zhonghua Xie 1, Lingjun Liu 1,*, Zhongliang Luo 2 and Jianfeng Huang 2

����������
�������

Citation: Xie, Z.; Liu, L.; Luo, Z.;

Huang, J. Image Denoising Using

Nonlocal Regularized Deep Image

Prior. Symmetry 2021, 13, 2114.

https://doi.org/10.3390/

sym13112114

Academic Editor: Peng-Yeng Yin

Received: 29 September 2021

Accepted: 3 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Huizhou University, Huizhou 516007, China; zhxie@hzu.edu.cn
2 School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516007, China;

hzlaw@hzu.edu.cn (Z.L.); jianfeng.huang@hzu.edu.cn (J.H.)
* Correspondence: ljliu@hzu.edu.cn
† It is an Extended Version of the Conference Paper “Plug-and-Play ADMM Using Deep Image Prior for Image

Denoising” in PRAI 2021.

Abstract: Deep neural networks have shown great potential in various low-level vision tasks, leading
to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised
fashion usually requires the collection of a great number of examples and the consumption of a
significant amount of time. However, the collection of training samples is very difficult for some
application scenarios, such as the full-sampled data of magnetic resonance imaging and the data of
satellite remote sensing imaging. In this paper, we overcome the problem of a lack of training data
by using an unsupervised deep-learning-based method. Specifically, we propose a deep-learning-
based method based on the deep image prior (DIP) method, which only requires a noisy image
as training data, without any clean data. It infers the natural images with random inputs and the
corrupted observation with the help of performing correction via a convolutional network. We
improve the original DIP method as follows: Firstly, the original optimization objective function
is modified by adding nonlocal regularizers, consisting of a spatial filter and a frequency domain
filter, to promote the gradient sparsity of the solution. Secondly, we solve the optimization problem
with the alternating direction method of multipliers (ADMM) framework, resulting in two separate
optimization problems, including a symmetric U-Net training step and a plug-and-play proximal
denoising step. As such, the proposed method exploits the powerful denoising ability of both deep
neural networks and nonlocal regularizations. Experiments validate the effectiveness of leveraging
a combination of DIP and nonlocal regularizers, and demonstrate the superior performance of the
proposed method both quantitatively and visually compared with the original DIP method.

Keywords: deep neural networks; deep image prior (DIP); nonlocal regularizer; plug-and-play;
alternating direction method of multipliers (ADMM)

1. Introduction

Image denoising [1] is an image processing task with a long history, and has a wide
range of application scenarios because noise contamination is inevitable in any image
sensing and transmission process. It aims to recover a clean and clear image from a
corrupted observation polluted by the noise of various distributions. Despite decades of
development, image denoising remains a challenging task due to the need to preserve fine
details while suppressing as much noise as possible.

Plenty of sophisticated denoising algorithms have been proposed to infer the original
image content based on signal estimation theory. These methods can be roughly classified
into two main categories, i.e., model-based methods [2,3] and learning-based methods [4,5].
Model-based methods generally establish optimization objective functions consisting of
an observation model and an image prior model, which can be constructed and solved
from a Bayesian perspective, using the maximum a posteriori (MAP) or the minimum
mean square error (MMSE) estimators. Published works have designed a large amount of
elaborate prior models. At first, researchers believed that images are generally sparse in
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the gradient domain and transform domain, and proposed the well-known total variation
(TV) regularizer [6] and transform domain sparsity [7]; they immediately found that these
regularizers could not describe the local features of images well. Hence, patch-based sparse
representation models [8] then appeared to express more complex local edges and textures
in a patch-wise order. However, they still ignore the relationship among patches. In order
to exploit the dependence between image patches, researchers have proposed various types
of structural sparsity-based models, ranging from tree-structured wavelet sparsity, block-
structured sparsity, and nonlocal sparsity [9,10]. Among them, nonlocal sparse models
that explore spatial self-similarity in the image itself have shown the most benefit to image
denoising. Buades et al. proposed the non-local means (NLMs) method [11] to perform
denoising by averaging similar patches in the image. Dabov et al. then proposed the
block-matching and 3D filtering (BM3D) method [12], which takes advantage of both the
space and frequency domains. It firstly groups similar 2D image blocks into 3D data arrays,
and secondly performs the 3D wavelet transform on the obtained 3D data arrays, thirdly
applies the collaborative filtering on the 3D wavelet coefficients for denoising. After that,
wiener filtering is utilized to carry out denoising again for the purpose of obtaining the
final estimation. Besides these two classic methods, nonlocal image denoising methods also
include the low-rank approach [13], which discovers the matrices grouped by 2D image
blocks that have the low-rank property; the nonlocal model is based on a weighted nuclear
norm constraint and its varieties [14,15], and is an extension of the low-rank approach but
assigns different weights to the coefficients; and the Bayesian modeling method, i.e., the
simultaneous sparse coding with Gaussian scale mixture (SSC-GSM) method [16].

In contrast to model-based methods that enforce a solution to obey some well-designed
prior distributions based on statistics, learning-based methods directly learn mapping func-
tions or sparse transform bases to estimate the missing high-frequency details from the
observed noisy image or a large number of external samples. They can be divided into two
categories by either learning the sparse representation or learning the deep networks. The
well-known K-SVD dictionary learning algorithm [17] belongs to the first category. It trains
an offline dictionary on an external large set of image patches or an online dictionary using
the noisy patches in the image itself in order to have universally good representation for
all test images. The nonlocally centralized sparse representation (NCSR) [18] and external
patch prior guided internal clustering (EPPGIC) [19] methods have extended dictionary
learning to nonlocal domains via the group sparse coding and Gaussian mixture models
learning, respectively. Trainable nonlinear reaction diffusion (TNRD) [20], which tries to
turn nonlinear diffusion models into a learnable deep neural network, denoising CNN
(DnCNN) [21], that introduces the idea of residual learning, and a memory network (Mem-
Net) [22], which designs memory blocks, can be classified into the second category. In
addition, to obtain the true noise level, the noise estimation subnetwork is used in a convo-
lutional blind denoising network (CBDnet) [23]. Recently, a popular attention mechanism
has been introduced in an attention-guided network (Adnet) [24] for more accurate denois-
ing. In order to extend the deep neural networks to solve more common image restoration
problems and obtain better flexibility, combining the optimization-based methods and
deep-learning-based image denoising methods has also been proposed [25,26]. Image
restoration with deep CNN denoiser prior (IRCNN) [26] has been designed to integrate a
set of pre-trained deep neural networks into the half-quadratic splitting framework for var-
ious types of image restoration tasks, including image denoising. Denoising a prior-driven
deep neural network [27] also plugs the CNN denoiser into the half-quadratic splitting
method as an image prior, which is similar to IRCNN but more adaptive, as both the
CNN denoisers and the back-projection modules can be jointly optimized. Besides, an
autoencoder denoiser is plugged into the objective function of image restoration in [28].
The resulting autoencoder error is then backpropagated using gradient descent.

Despite great achievements, the above deep-learning-based methods rely heavily on
a large number of clean samples and a significant amount of training time. To address
this issue, unsupervised deep-learning-based methods [29,30] can achieve precise recovery



Symmetry 2021, 13, 2114 3 of 17

without clean data. While Stein’s unbiased risk estimate (SURE) is used to train a deep
neural network in an unsupervised fashion in [29], generative adversarial networks (GANs)
trained with noisy images are adopted to yield noise-free images in [30]. Nevertheless,
they still require training samples, even for noisy images. Noise2Noise [31] and deep
image prior (DIP) [32] are the two most representative algorithms that only demand a small
amount of training samples. In contrast to the Noise2Noise method, which demands two
independent observations of the corrupted scene, the DIP method only requires the current
noisy image and thus behaves more intelligently. In order to improve the performance of
DIP, researchers have proposed to modify its objective function by either using SURE [33] or
adding the TV sparse term [34] for more stable reconstruction. In addition, integrating DIP
into optimization-based methods, such as the alternating direction method of multipliers
(ADMM) framework, has been proven to be an effective mean of improvement in [35,36].
While the TV sparse term is utilized by ADMM-DIPTV [35], leading to an l2 norm proximity
operator being necessary to complete a step of ADMM, the regularization by denoising
(RED) technique that turns an existing denoiser into a regularizer has been merged with
DIP by DeepRED in [36]. In general, the performance of unsupervised deep-learning-based
methods is worse than that of supervised methods.

In this paper, we focus on enhancing the performance of an unsupervised deep-
learning-based method, i.e., the DIP method. The contributions can be summarized as
follows: (1) we utilize the technique of the plug-and-play prior to explore the power
of existing denoisers, i.e., NLM and BM3D for regularizing the solution of DIP; (2) we
propose a novel objective function that is a linear combination of a data fitting term that
enforces the output of DIP to be close to the observations and a prior term corresponding
to two nonlocal sparsity-based methods, i.e., NLM and BM3D; (3) we adopt the ADMM
method to separate the original complex problem into two simple subproblems via the
variable splitting technique for solving the proposed objective function. Then, we can
independently solve the network training problem based on the DIP process and image
restoration problem via a proximal denoising operation. Thanks to the process of iterative
optimization and nonlocal regularization, our method has better adaptability and flexibility,
and thus gains better performance than the original DIP method.

2. Background
2.1. Image Denoising Problem and Iterative Method

The image restoration includes denoising attempts to restore images that have been
degraded in sensing and transmission processes. It is a common preprocessing task in
computer vision, which directly affects the accuracy of subsequent analysis. Mathematically,
the image restoration can be considered as a linear inverse problem:

y = Hx + w, (1)

where x ∈ RN is the image to be restored, H ∈ RM×N is a degradation matrix, y ∈ RM

is the measurement of x, and w ∈ RM corresponds to the measurement noise, which is
usually assumed to be additive white Gaussian (AWGN) of variance σ2. For the problem
of image denoising, H is an identity matrix. Given the degraded measurement, y, one can
recover x by least-squares estimation:

x = argmin
x
‖y− Hx‖2

2. (2)

Considering that practical inverse problems are often ill-posed or seriously deterio-
rated, the regularized least-squares estimation is more favorable:

x = argmin
x
‖y− Hx‖2

2 + λ<(x), (3)
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where <(x) is the sparse regularization term based on some prior knowledge. The regular-
ization parameter λ pays a role of balancing the trade-off between data fidelity and prior
constraining.

By deriving with respect to x and making the derivative equal to 0, we have the
solution of Equation (2), i.e., x = HTH(HTy), or we can solve Equation (2) with gradient-
descent-based methods. HT is the transpose of H. As for Equation (3), it will take an extra
step, i.e., a proximal denoising step when using gradient-descent-based methods, e.g.,
an iterative shrinkage–thresholding (IST) method, a fast iterative shrinkage–thresholding
algorithm (FISTA), and Nesterov’s algorithm (NESTA) [37]. The alternating expressions in
the IST algorithm, also known as the proximal gradient method, are:

rk = xk − β∇ f (xk)), (4)

xk+1 = proxβ(λ<)(rk), (5)

where xk is the estimate of x at iteration k, and rk is the result of the gradient optimization of
f (x) = ‖y− Hx‖2

2/2. f is a smooth convex function with a Lipschitz constant, L f . Equation
(4) is the gradient search step wherein∇ f (xk) denotes the gradient of the function, f , at the
point xk, and the step size is β = 1/L f . Equation (5) is the the proximal mapping associated
with function <, which is defined as proxβ(λ<)(rk) := argmin

x
1

2β‖x− rk‖2
2 + λ<(x). We

consider the simplest case, i.e., <(x) = ‖Ψx‖1, where Ψx denotes the wavelet transform of
x. Then, the proximal mapping is equal to perfroming the wavelet denoising on rk with a
threshold of βλ.

2.2. Deep Image Prior

The supervised deep-learning-based methods attempt to solve the image restoration
problem by making use of deep neural networks that learn the mapping from degraded
images to clean counterparts with a set of example pairs. The learning of deep networks is
accomplished by back-propagating the error between degraded images and target images,
which can be defined by a mean square error (MSE) base loss function:

`(FΘ(y), x) =
G

∑
i=1
‖FΘ(yi)− xi‖2

2, (6)

where yi and xi denote the i-th pair of degraded and original image patches in a large
image set with the total number of G, respectively, and FΘ(yi) denotes the reconstructed
image patch by the network with parameter set Θ. We can solve Equation (6) by means
of standard stochastic optimization algorithms, e.g., stochastic gradient descent (SGD) or
adaptive moment estimation (ADAM) [38]. Once the network training is finished, the
optimal solution for a given degraded image y is x∗ = FΘ(y). The success of the supervised
deep-learning-based methods relies deeply on the large training set, whose total number
could be tens of thousands.

In some practical sensing applications, it is hard to collect a large training set, for
example, in the field of medical imaging and remote sensing; therefore, we focus on unsu-
pervised deep-learning-based methods. The deep image prior (DIP) method introduced
by Ulyanov et al. in [10] has been shown to be most favorable due to the fact that it only
requires the noisy observation itself without any training samples. It solves the following
minimization problem:

min
Θ
‖y− HFΘ(z)‖2

2, (7)

and presents FΘ(z) as the recovered image. It is pleasantly surprised to be found that with
the help of convolutional neural network (CNN) architecture, one can approximate the
clean image by using a fixed random vector, z, and the degraded image, y. Thus, the deep
network can be regarded as an implicit image prior, exploiting the image self-similarity to
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suppress noise. Since the DIP method does not have the training samples, it corresponds
to an online learning method which solves Equation (7) with the ADAM method.

3. Nonlocal Regularized Deep Image Prior for Image Denoising
3.1. The Proposed Model

Although DIP has been demonstrated to be quite effective for image denoising, its
results still fall short when compared to supervised deep-learning-based methods that
have been shown to be state of the art. In order to improve the performance of DIP, we
propose to boost it using an extra prior to perform regularization. Since the performance
of nonlocal sparsity-based methods has been shown to be close to that of DIP, the explicit
prior chosen by us is a nonlocal constraint that attempts to jointly explore the power of
dual filtering in the spatial and frequency domains by combining nonlocal means and
the BM3D denoising scheme. Mathematically, we try to solve the following constrained
minimization problem:

min
x, Θ

1
2
‖HFΘ(z)− y‖2

2 + λR(x) s.t. x = FΘ(z), (8)

where:
R(x) = ω1Ω(x) + ω2Φ(x), (9)

In Equation (9), Ω(x) and Φ(x) denote the prior constraint corresponding to nonlocal
means [11] and the BM3D denoising [12] scheme, respectively. ω1 and ω2 are two regu-
larization parameters. Through the use of the plug-and-play prior, we do need to offer
explicit expression of Ω(x) and Φ(x), and can take them as black boxes which takes the
noisy observation as an input, and the denoised image as an output. From Equation (8) and
Equation (9), we can see that the combination of complementary regularizers is exploited
in our restoration model, including a deep-neural-network-based prior, i.e., DIP and a
nonlocal dual-filtering-based prior.

3.2. Plug-and-Play ADMM Method

The proposed model, i.e., Equations (8) and (9) cannot be solved by directly applying
the DIP method, which involves computing the derivative of denoisers during the process
of back-propagation. For most of the denoisers, the denoising operators do not have
an explicit input–output relation, thus it is not easy to compute their derivatives. To
remedy this problem, we resort to the alternating direction method of multipliers (ADMM)
method [39], which is a famous variable splitting technique, and is able to separate x in the
nonlocal prior term R(x) from the constraint of our minimization problem, i.e., x = FΘ(z).
With the help of the augmented Lagrangian (AL), we can turn the constraint x = FΘ(z)
into a penalty term, and then merge it into the objective function as follows:

min
x, Θ

1
2
‖HFΘ(z)− y‖2

2 + λR(x) +
µ

2
‖x− FΘ(z)‖2

2 − µuT(x− FΘ(z)), (10)

where µ is the penalty parameter that is a positive scalar, and the vector u is the Lagrangian
multipliers associated with the constraint x = FΘ(z). Merging the last two terms, we have
the scaled form of the AL:

min
x, Θ

1
2
‖HFΘ(z)− y‖2

2 + λR(x) +
µ

2
‖x− FΘ(z)− u‖2

2. (11)

Using the method of alternating optimization, we can simultaneously learn the pa-
rameters of deep neural network, Θ, and then recover the image. Firstly, we estimate the
parameters set, Θ, for fixed x and u, after which we have:

min
Θ

1
2
‖HFΘ(z)− y‖2

2 +
µ

2
‖x− FΘ(z)− u‖2

2. (12)
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This loss function is very close in spirit to the one solved in the original DIP method.
It is added with the second l2 norm term when compared to the one in the original DIP
method; however, it still can be solved by means of back-propagation via applying a
gradient-based method, e.g., ADAM. In particular, while the output of the network, FΘ(z),
is forced to be close to the noise observation, y, in the original DIP method, our modified
method makes it possible to approximate both y and the intermediate result, x− u. Hence,
the loss error to be back-propagated is a linear combination of the l2 distance between
FΘ(z) and y, and the one between FΘ(z) and x− u.

Secondly, given the parameters set, Θ, and u, we need to recover the image, x. At this
point, Equation (11) becomes:

min
x

λR(x) +
µ

2
‖x− FΘ(z)− u‖2

2. (13)

This is exactly the proximal denoising operation. By substituting R(x) with Equation (9)
we have:

min
x

ω1Ω(x) + ω2Φ(x) +
µ

2
‖x− FΘ(z)− u‖2

2. (14)

Note that the regularization parameter, λ, has been merged into ω1 and ω2. The result-
ing composite sparse problem can easily be solved by the method of a composite splitting
algorithm (CSA) [40] based on the technique of variable splitting and operator splitting.
The CSA decomposes the difficult composite regularization problem, i.e., Equation (14) into
two simpler constraint subproblems, and then solves each of them separately. According
to the process of the CSA, we first get the following subproblems:

x1 = argmin
x

ω1

a1
Ω(x) +

µ

2
‖x− FΘ(z)− u‖2

2, (15)

x2 = argmin
x

ω2

a2
Φ(x) +

µ

2
‖x− FΘ(z)− u‖2

2. (16)

Secondly, the solution of Equation (14) is obtained by a linear combination of x1 and
x2 with the weights a1 and a2 as follows:

x = a1x1 + a2x2. (17)

Finally, for fixed Θ and x, the multiplier vector u is computed by:

u = u− x + FΘ(z). (18)

The solutions of Equations (15) and (16), x1 and x2, correspond to the denoised results
of NLM and BM3D denoising, respectively. For NLM, given a collection of similar patches,
a nonlocal mean filter is adopted to estimate the means of these patches, as follows:

x = ∑
i

wixi, (19)

where xi denotes the i-th image patch, and the weight wi is computed by:

wi = exp(−‖xe − xi‖2
2/δ). (20)

In Equation (20), xe denotes the exemplar patch and δ is the parameter representing
the variance. δ = 9 in our experiments. For BM3D denoising, we only consider the initial
hard thresholding step of the BM3D method, which is offered as follows:

Φ(x) = ∑
i
‖ΓXi‖0, (21)
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as we have observed that the secondary Wiener filtering step is of little use in our scheme.
In Equation (21), Xi and Γ denote the 3D data arrays and the 3D wavelet transform. Hence,
the l0 norm in Equation (21) means that the 3D wavelet coefficients should be sparse. It
leads to a hard thresholding step. In practice, the regularization parameters ω1 and ω2,
which have been proven to be closely connected with the thresholds of denoising, do
not need to be set. Instead of setting ω1 and ω2, we turn to determine their thresholds.
While the NLM method does not have a threshold, the threshold of BM3D denoising is
determined by the variance of noise, σ2, which can be obtained by maximum likelihood
estimation:

σ2 = ‖FΘ(z) + u− x‖2
2/M. (22)

In general, the proposed algorithm is summarized in Algorithm 1, named “Nonlocal
Regularized Deep Image Prior (NR-DIP)”. Exploring the power of complementary priors
and ADMM iterations is implemented in our method for image denoising. The flow chart
and the symmetric CNN architecture of our method is represented in Figure 1, from which
it can be seen that our network architecture is consistent with the one in [32], which is
based on the classical U-Net structure, adopting the model of encoder–decoder. While the
“Convolution + Down Sample + Batch Normalization + Leaky ReLU + Convolution + Batch
Normalization + Leaky ReLU” blocks are carried out for feature extraction in the encoder
units, the “Batch Normalization + Convolution + Batch Normalization + Leaky ReLU +
Convolution + Batch Normalization + Leaky ReLU + Up Sample” blocks are performed for
image restoration in the decoder units. Skip connections are added for capturing image
structures of different characteristic scales. The parameters of the network are listed in
Table 1. From Figure 1 and the pseudo code of the proposed algorithm, we can see that
our method is based on the ADMM method. In each ADMM iteration, we firstly perform
the network learning via the ADAM method to obtain the network parameters, Θ, and we
then estimate the noise standard deviation, σ. Finally, we recover the image, x, by using
the network output, FΘ(z), and the multiplier, u, of the previous iteration and then update
the multiplier.

Algorithm 1. Nonlocal Regularized Deep Image Prior.

Input: y, K, a1, a2, σ, x0 = y, u0 = 0.
For k = 0 to K − 1 do

(1) Update Θk+1: Solve min
Θ

1
2‖HFΘ(z)− y‖2

2 +
µ
2 ‖xk − FΘ(z)− uk‖2

2 via ADAM.

(2) Compute FΘk+1
(z) via forward propagation.

(3) Update σk+1: σ2
k+1 = ‖FΘk+1

(z) + uk − xk‖2
2/M.

(4) Update xk+1:

(I) Solve x1 = argmin
x

ω1
a1

Ω(x) + µ
2 ‖x− FΘ(z)− u‖2

2 by performing the NLM

denoising on FΘk+1
(z) + uk.

(II) Solve x2 = argmin
x

ω2
a2

Φ(x) + µ
2 ‖x− FΘ(z)− u‖2

2 by performing the BM3D

denoising on FΘk+1
(z) + uk and set the threshold according to σ2.

(III) Perform linear combination xk+1 = a1x1 + a2x2.

(5) Update uk+1: uk+1 = uk − xk+1 + FΘk+1
(z).

Table 1. The parameters of the network.

Filter_Number Kernel_Size Input_Depth Scale_Number Feature Maps
of Skip Layer Pad

128 3×3 32 5 4 “reflection”
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Figure 1. The flow chart and the CNN architecture based on the U-Net used in our method.

4. Experiments

In order to verify the excellent performance of the proposed NR-DIP for image de-
noising, we compare our method with nine image restoration algorithms, including two
nonlocal sparsity-based methods, i.e., NLM [11] and CBM3D [12] (“C” denotes color image),
two supervised deep-learning-based methods, i.e., FFDNet [41] and IRCNN [26], which
have been shown to be superior to the well-known benchmark method, i.e., DnCNN [21],
and an unsupervised deep-learning-based method, i.e., DIP [32]. Among these comparison
methods, NLM, CBM3D, and DIP are three methods that are the foundation of our method.
Through the comparisons between NLM, CBM3D, DIP, and NR-DIP, one can validate the
benefit of complementary priors. CBM3D can be considered as the most efficient nonlocal
sparsity-based method. While FFDNet represents a class of deep-learning-based methods
which train direct mapping from degraded images to clean images, IRCNN represents the
ones that merge deep neural networks into optimization-based methods. In fact, we also
considered including the ADMM-DIPTV [35] method into our comparisons, but we found
that it suffers from severe performance degradation in the later stage of iteration. Both
ADMM-DIPTV and our method are based on ADMM and DIP; however, ADMM-DIPTV
only combines the TV constraint into the framework of DIP due to its convexity. Introduc-
ing the use of the plug-and-play prior scheme makes the adoption of existing powerful
denoising algorithms available and flexible, greatly extending the recovery ability of DIP.

Figure 2 provides eight test natural images used in our experiments with various sizes.
We generated noisy measurements by adding varying amounts of additive white Gaussian
noise to the test images. The range of the standard deviation of Gaussian noise includes 25,
30, 35, 40, 50, 60, and 75. Then, we applied the comparison methods to execute denoising.
The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [42,43], shown in
Equation (23) and Equation (24):

PSNR(x, y) = 10× log10

(
2552

1
m×n‖x− y‖2

2

)
, (23)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (24)

are used to quantitatively evaluate the qualities of the reconstruction results. In Equation (23),
m and n denote the image size. In Equation (24), µx, µy, σ2

x , σ2
y , and σxy are the average

intensities, standard deviations, and cross-covariance of a clean image, y, and an evaluated
image, x, respectively. For fair comparisons, we have downloaded codes from the websites
of the authors, adopting the default experiment settings. The main parameters of the
proposed NR-DIP algorithm include: (1) the weights of the linear combination, i.e., a1 = 0.4
and a2 = 0.6 in Equation (16); (2) the parameter of ADMM, µ = 0.5, in Equation (14); and
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(3) the learning rate of training is set to 0.008. Due to the long running time of BM3D, we
apply it once every 100 iterations of the ADMM to save time. The DIP-based methods were
implemented in the Python language with a PyTorch framework and run on an NVIDIA
GTX 3090 GPU. NLM and CBM3D were implemented in the Python language, but were
run without a GPU. FFDNet and IRCNN were implemented in the MATLAB language and
also run without GPU because they are already fast. The experimental results including
objective quality, subjective quality, and runtime are present.
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Figure 2. Test images used for image denoising experiments.

We first present the experimental results in terms of objective quality. While the PSNR
results of the comparison methods on the set of test images shown in Figure 2 are offered in
Table 2, the corresponding SSIM results are provided in Table 3. Since FFDNet and IRCNN
do not provide the learned models with a noise standard deviation of 60 and 75, we have
not given their corresponding comparison results. It can be seen in these tables that the
supervised deep-learning-based methods, i.e., FFDNet and IRCNN, outperform others
regardless of a high or low noise level. In both of them, the FFDNet algorithm performs
slightly better. Apart from them, the proposed NR-DIP method has achieved highly com-
petitive denoising performance compared to other leading algorithms, consisting of the
unsupervised deep-learning-based methods, i.e., DIP and the nonlocal sparsity-based meth-
ods, i.e., NLM and CBM3D. The proposed NR-DIP method outperforms the original DIP by
up to 0.5 dB on average, which has verified the effectiveness of our modifications. By em-
ploying NLM and BM3D to regularize the solution of DIP, the NR-DIP method can combine
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the power of nonlocal denoising and deep-learning-based denoising. It leads to a better
solution, which is enforced by complementary priors and is optimized with the ADMM
method when compared to the original DIP. Among the nonlocal sparsity-based methods,
the CBM3D method is obviously better than the NLM. On average, NR-DIP falls behind
FFDNet by less than 1.1 dB. (1) Compared to the supervised deep-learning-based methods
FFDNet and IRCNN, our method is generally worse. It is reasonable that FFDNet and
IRCNN require thousands of samples to train the network, acquiring a good generalization
ability; however, our method solely puts the noisy observation into the network without
requiring any clean images, and thus is prone to over-fitting. Nevertheless, our method is
quite useful for some applications in the case of a lack of sample data. (2) Compared to the
nonlocal sparsity-based methods NLM and CBM3D, our method usually performs better
due to the joint use of NLM, CBM3D, and DIP. (3) Compared to the original DIP method,
our method usually performs better. This is not only because of combining the power of
nonlocal denoising and deep-learning-based denoising, but also because it benefits from
the ADMM iteration that leads to a better solution by alternating optimization. However,
using NLM and CBM3D sometimes slightly reduces the performance of the DIP method
for the image with a complex texture, e.g., the Baboon image, and the lower-power noise
environment. While the output of the network, FΘ(z), is forced to be close to the noise
observation, y, in the original DIP method, our modified method makes it approximate
both y and the intermediate result, x − u. Therefore, when y and x − u contain similar
information, our algorithm does not improve by much. With regard to SSIM, as shown in
Table 3, the results of the original DIP are worse than that of CBM3D, which is inconsistent
with the PSNR results. However, our method does not follow the original DIP to get worse
in terms of SSIM. It is demonstrated that the nonlocal regularized scheme helps to maintain
structural information while removing noise.

In order to show the comparison results more vividly, Figure 3 provides the average
PSNR and SSIM values of the comparisons between the reconstructions by different meth-
ods. The order of performance in terms of PSNR from good to bad is FFDNet, IRCNN,
NR-DIP, DIP, CBM3D, and NLM, while the in terms of SSIM it is FFDNet, IRCNN, NR-DIP,
CBM3D, DIP, and NLM. The average PSNR results of NLM, CBM3D, FFDNet, IRCNN,
DIP, NR-DIP are 27.4 dB, 28.9 dB, 30.7 dB, 30.5 dB, 29.1 dB, and 29.6 dB for the noise
standard deviation ranging from 25 to 50, respectively, while the average PSNR results
of NLM, CBM3D, DIP, and NR-DIP are 23.1 dB, 24.9 dB, 24.0 dB, and 25.3 dB for the
noise standard deviation of 60 and 75, respectively. For a higher noise level, the difference
between algorithms increases, but the order remains unchanged. Note that the NR-DIP
method is better than the original DIP, NLM, and CBM3D methods, and has verified the
effectiveness of the proposed combination scheme. Although the results of NR-DIP still fall
short when compared to the supervised state-of-the-art methods, NR-DIP has been shown
to be quite effective, and demonstrated successfully the problem of image denoising.
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Table 2. The PSNR (dB) results of different methods with varying amounts of additive white Gaussian noise.

Image Plane Lena Baboon Peppers Butterfly House Tower Caps Avg

Noise level σ = 25

NLM 30.51 30.40 25.08 30.14 27.75 30.99 27.44 31.51 29.23
CBM3D 32.04 31.96 25.93 31.48 28.98 32.98 28.42 32.87 30.58
FFDNet 33.07 33.24 27.15 32.06 31.55 32.64 31.41 35.31 32.05
IRCNN 33.20 33.02 27.13 32.14 31.36 32.82 31.35 35.05 32.01

DIP 32.96 32.47 25.64 31.58 29.30 32.33 29.65 33.68 30.95
NR-DIP 33.47 32.74 26.18 31.29 30.68 32.59 29.89 33.98 31.35

Noise level σ = 30

NLM 29.62 29.45 24.25 29.18 26.95 29.96 26.48 30.55 28.31
CBM3D 31.13 31.10 25.05 30.65 28.01 32.09 27.49 32.00 29.69
FFDNet 32.33 32.59 26.39 31.52 30.66 32.12 30.46 34.47 31.32
IRCNN 32.27 32.31 26.37 31.45 30.45 32.17 30.36 34.14 31.19

DIP 31.40 31.10 25.18 30.43 29.53 30.27 28.67 32.57 29.89
NR-DIP 32.09 31.55 25.42 30.86 29.71 32.40 28.85 32.69 30.45

Noise level σ = 35

NLM 28.84 28.58 23.51 28.31 26.21 29.02 25.66 29.71 27.48
CBM3D 30.38 30.30 24.30 29.81 27.20 31.41 26.68 31.23 28.91
FFDNet 31.68 32.02 25.77 31.03 29.92 31.66 29.68 33.78 30.69
IRCNN 31.54 31.75 25.70 30.85 29.68 31.39 29.60 33.50 30.50

DIP 30.57 30.43 24.81 29.22 28.57 30.91 27.42 31.39 29.17
NR-DIP 30.96 30.65 24.78 29.79 28.76 31.61 27.78 31.88 29.53

Noise level σ = 40

NLM 28.04 27.87 22.89 27.51 25.43 28.15 24.92 28.96 26.72
CBM3D 29.65 29.65 23.66 29.05 26.47 30.75 26.05 30.54 28.23
FFDNet 31.12 31.52 25.24 30.59 29.29 31.25 29.01 33.19 30.15
IRCNN 30.89 31.22 25.17 30.32 29.06 30.92 28.91 32.81 29.91

DIP 30.06 30.04 24.29 29.15 27.92 29.73 26.30 30.56 28.50
NR-DIP 30.74 30.25 24.28 29.33 28.24 30.85 27.29 30.93 28.99

Noise level σ = 50

NLM 26.55 26.51 21.88 25.97 23.77 26.40 23.69 27.64 25.30
CBM3D 28.31 28.27 22.66 27.63 25.02 29.25 24.93 29.28 26.92
FFDNet 30.15 30.65 24.37 29.80 28.24 30.47 27.92 32.21 29.23
IRCNN 29.81 30.30 24.29 29.38 27.96 29.81 27.85 31.85 28.91

DIP 28.64 28.39 22.98 27.63 26.32 28.62 25.34 29.35 27.16
NR-DIP 29.12 28.78 23.42 27.87 26.69 29.35 26.07 29.53 27.60

Noise level σ = 60

NLM 24.94 25.33 21.06 24.59 21.99 24.95 22.74 26.49 24.01
CBM3D 26.87 27.06 21.82 26.32 23.68 28.11 24.07 28.09 25.75
FFDNet - - - - - - - - -
IRCNN - - - - - - - - -

DIP 25.94 25.84 21.23 25.10 23.29 26.53 23.36 27.09 24.80
NR-DIP 27.49 27.52 22.40 26.47 25.21 28.21 25.15 28.22 26.33

Noise level σ = 75

NLM 22.76 23.65 20.08 22.76 19.40 23.00 21.49 24.89 22.25
CBM3D 24.82 25.25 20.83 24.46 21.88 25.93 22.85 26.30 24.04
FFDNet - - - - - - - - -
IRCNN - - - - - - - - -

DIP 24.20 24.35 20.07 23.29 21.43 24.27 22.37 25.36 23.17
NR-DIP 24.98 25.36 21.24 24.35 23.22 25.97 23.21 26.26 24.32
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Table 3. The SSIM results of different methods with varying amounts of additive white Gaussian noise.

Image Plane Lena Baboon Peppers Butterfly House Tower Caps Avg
Noise level σ = 25

NLM 0.8291 0.7900 0.7238 0.7614 0.8742 0.8014 0.7843 0.8045 0.7961
CBM3D 0.8854 0.8470 0.7643 0.8066 0.9112 0.8541 0.8439 0.8709 0.8479
FFDNet 0.9120 0.8706 0.8218 0.8429 0.9451 0.8652 0.9079 0.9184 0.8855
IRCNN 0.9100 0.8658 0.8218 0.8383 0.9408 0.8633 0.9070 0.9150 0.8828

DIP 0.8504 0.8117 0.7166 0.7734 0.8851 0.8155 0.8287 0.8511 0.8166
NR-DIP 0.9052 0.8611 0.7869 0.8042 0.9304 0.8420 0.8789 0.8930 0.8627

Noise level σ = 30
NLM 0.8099 0.7632 0.6734 0.7376 0.8537 0.7760 0.7400 0.7728 0.7658

CBM3D 0.8730 0.8321 0.7216 0.7923 0.8965 0.8426 0.8159 0.8536 0.8285
FFDNet 0.9029 0.8612 0.7947 0.8350 0.9369 0.8578 0.8931 0.9067 0.8735
IRCNN 0.8979 0.8540 0.7975 0.8252 0.9303 0.8544 0.8910 0.9010 0.8689

DIP 0.7890 0.7596 0.6918 0.7197 0.8818 0.7937 0.7838 0.8121 0.7789
NR-DIP 0.8863 0.8413 0.7597 0.7943 0.9141 0.8409 0.8594 0.8706 0.8458

Noise level σ = 35
NLM 0.7936 0.7366 0.6261 0.7162 0.8347 0.7506 0.6962 0.7446 0.7373

CBM3D 0.8611 0.8180 0.6809 0.7793 0.8819 0.8339 0.7888 0.8392 0.8104
FFDNet 0.8946 0.8525 0.7694 0.8278 0.9286 0.8517 0.8788 0.8960 0.8624
IRCNN 0.8905 0.8455 0.7680 0.8180 0.9216 0.8459 0.8765 0.8906 0.8571

DIP 0.8341 0.7877 0.6721 0.6597 0.8559 0.6982 0.7008 0.7350 0.7429
NR-DIP 0.8667 0.8236 0.7253 0.7706 0.9001 0.8308 0.8278 0.8573 0.8253

Noise level σ = 40
NLM 0.7802 0.7159 0.5822 0.6989 0.8151 0.7282 0.6563 0.7185 0.7119

CBM3D 0.8506 0.8058 0.6400 0.7669 0.8703 0.8254 0.7663 0.8248 0.7938
FFDNet 0.8870 0.8444 0.7457 0.8211 0.9205 0.8464 0.8650 0.8855 0.8519
IRCNN 0.8803 0.8357 0.7475 0.8071 0.9120 0.8401 0.8612 0.8763 0.8450

DIP 0.8227 0.7743 0.6445 0.7328 0.8018 0.6508 0.6107 0.7910 0.7286
NR-DIP 0.8703 0.8182 0.7014 0.7725 0.8951 0.8196 0.8129 0.8377 0.8160

Noise level σ = 50
NLM 0.7550 0.6792 0.5077 0.6700 0.7725 0.6897 0.5881 0.6818 0.6680

CBM3D 0.8306 0.7816 0.5711 0.7463 0.8434 0.8072 0.7222 0.8037 0.7633
FFDNet 0.8735 0.8296 0.7014 0.8088 0.9062 0.8372 0.8387 0.8659 0.8327
IRCNN 0.8665 0.8207 0.7025 0.7930 0.8957 0.8288 0.8360 0.8582 0.8252

DIP 0.8012 0.7378 0.5748 0.6999 0.7577 0.6080 0.6990 0.7355 0.7017
NR-DIP 0.8523 0.7944 0.6544 0.7532 0.8770 0.7917 0.7737 0.8134 0.7888

Noise level σ = 60
NLM 0.7298 0.6579 0.4433 0.6504 0.7242 0.6682 0.5431 0.6598 0.6346

CBM3D 0.8119 0.7630 0.5080 0.7288 0.8147 0.7939 0.6855 0.7851 0.7364
FFDNet - - - - - - - - -
IRCNN - - - - - - - - -

DIP 0.7686 0.6872 0.5277 0.6767 0.7853 0.7027 0.6444 0.7287 0.6902
NR-DIP 0.8388 0.7799 0.5758 0.7361 0.8456 0.7797 0.7377 0.7938 0.7609

Noise level σ = 75
NLM 0.6934 0.6349 0.3687 0.6276 0.6387 0.6366 0.5032 0.6539 0.5946

CBM3D 0.7860 0.7334 0.4333 0.7019 0.7718 0.7634 0.6359 0.7644 0.6988
FFDNet - - - - - - - - -
IRCNN - - - - - - - - -

DIP 0.7409 0.6821 0.4634 0.5981 0.6822 0.6423 0.5431 0.7205 0.6341
NR-DIP 0.8035 0.7489 0.4969 0.7076 0.7933 0.7474 0.6632 0.7697 0.7163

4.1. Subjective Quality Evaluation

Visual comparisons between the restoration results by competing methods are pro-
vided in Figures 4–7 with the standard deviation of noise, i.e., sigma = 25, 35, 50, and
75 representing the performance under various kinds of noise environments. From these
figures, one can clearly see that the best denoising results are still achieved by a supervised
deep-learning-based method, i.e., FFDNet. Meanwhile, IRCNN performs comparably with
FFDNet, following closely. For the rest of the algorithms that do not rely on large amounts
of training data, the proposed algorithm NR-DIP performs better than others, and enjoys
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great advantages in producing clearer images, e.g., the edges and fine textures. While
the NLM method over-smoothed and provided a lack of image details, meaning that its
denoising ability is relatively poor, the CBM3D method results in ringing artifacts due to
the truncation operation in the frequency domain. In contrast, the restoration results by
DIP suffers from noticeable artifacts, especially for a higher noise level when compared
to the one by NR-DIP, which delivers excellent image contrast and clear details due to its
capability of achieving a better spatial adaptation by using complementary priors. For a
higher noise level, the denoised images of all competing algorithms are seriously degraded,
but the proposed NR-DIP method still shows its advantages in recovering more a detailed
image when compared to the competing ones, except for FFDNet and IRCNN. These results
verify again that the combination of CBM3D, NLM, and DIP is reasonable.
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4.2. Runtime Comparison

In order to evaluate the running time and convergence of the proposed method, we
also traced the runtime and PSNR of each iteration for the original DIP method as well as
our method. The results are illustrated in Figure 8, which presents the iteration number vs.
PSNR curves of the House and Butterfly images, respectively. In particular, the performance
curves in Figure 8 correspond to the experiment in Figures 5 and 6. In Figure 8, the NR-DIP
method achieves the better performance in terms of PSNR and iterations than the original
DIP after around 1000 iterations. These curves validate that the proposed method NR-DIP
can converge to a good denoised result in a reasonable number of iterations.

The average runtime to recover an image with a size of 512 × 512 by FFDNet, IRCNN,
NLM, CBM3D, DIP and NR-DIP, are about 1.23 s, 2.26 s, 2.68 s, 24.80 s, 148.09 s and 244.16 s,
respectively. We list the average runtime in Table 4. The supervised deep learning methods,
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FFDNet and IRCNN, are fast and take only several seconds to remove noise for an image,
but they take a lot of time to train deep neural networks. The unsupervised deep learning
methods use an online learning scheme, resulting in a slow speed. Merging nonlocal
regularization into the framework of DIP in our method definitely increases the running
time, but within a reasonable range.
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Table 4. The average runtime of different denoising methods.

Methods NLM CBM3D FFDNet IRCNN DIP NR-DIP

Runtime 2.68 24.80 1.23 2.26 148.09 244.16

5. Conclusions

We have proposed an effective iterative algorithm equipped with the deep image
prior and the plug-and-play nonlocal priors for image denoising. Our work contributes
the following: First, guided by information theory, the use of complementary constraints
was introduced to construct the nonlocal regularized deep image prior model for an
unsupervised deep-learning-based image denoising problem. It can substantially enhance
the performance of the original DIP by jointly utilizing the nonlocal information in the
spatial and frequency domains. Second, an effective ADMM-based algorithm with excellent
denoising ability is proposed in this paper to make the proposed model much easier to be
solved by using the technique of variable splitting. Finally, our experiments on several
natural images demonstrate the superiority of the proposed algorithm to two nonlocal
sparsity-based denoising algorithms and the original DIP method. While this work has
designed a flexible combination of the unsupervised deep-learning-based method DIP
and the plug-and-play priors in the framework of ADMM, in addition to demonstrating
promising performance, we plan to combine the DIP with other supervised deep-learning-
based methods to boost denoising performance in future work.
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