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Abstract: Hand-eye calibration and three-dimensional space target positioning are the keys to
realize the automatic grasping of the manipulator. Aiming at the problems of a difficult camera
manipulator calibration and poor real-time segmentation and positioning of stacked targets in
industrial environment, a rapid target positioning method of self-calibration manipulator is proposed.
Firstly, the spatial spherical autonomous path planning is carried out based on the quaternion linear
interpolation method to calculate spatially symmetric path trajectory of the calibrator. The RGB-
D camera mounted at the end of the manipulator is used to obtain multiple groups of RGB and
depth images of the calibration plate. Combined with the position and attitude of the manipulator
end, the internal and external parameters of the camera and the hand-eye conversion matrix are
automatically calibrated. Then, based on KD tree algorithm, the holes in the point cloud are extracted
to plan the shooting pose of the complementary image, and the target object is photographed from
multiple symmetric angles. Combined with the iterative shooting pose of the manipulator, the rapid
registration of the point cloud is realized and the complete outer surface model of the target object
is obtained. Finally, the improved double pyramid feature fusion depth image is used to segment
the RGB image through Mask R-CNN and mapped to the point cloud space, to achieve fast target
segmentation of end-to-end 3D point cloud. The experimental results show that the eye-in-hand
manipulator system can be self-calibrated to greatly simplify the calibration process and achieve
the calibration accuracy of the traditional calibration method. The average error in each direction
of the calibration result is less than 2 mm, which can achieve the acquisition accuracy of the vision
sensor. It can also register and reconstruct point clouds for complex scenes in 1 s. The improved
Mask-RCNN increases the segmentation accuracy of stacking objects by 8%. Compared with the
physical error of hardware, the positioning error is no more than 0.89% and can meet the requirements
of practical applications.

Keywords: self-calibration; trajectory planning; point cloud registration; point cloud segmentation
of stacked objects; Mask R-CNN

1. Introduction

In industrial scenes, robots to perceive the 3D environment and operate on targets are
the key to achieving intelligent manufacturing [1,2]. The realization of rapid self-calibration
and rapid spatial positioning of targets in complex environments is important technologies,
and they have always been hotspots in robotics and computer vision [3,4].

In order to recognize, locate and manipulate objects in 3D environment, robots must
locate their poses and then operate them accordingly through robot actuators. The es-
tablishment of a vision-based intelligent robot system usually requires calibration of the
spatial posture relationship between vision sensor and robot actuator (hand-eye calibra-
tion). The point cloud model is widely used in industrial 3D vision for its flexibility, matrix
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representation and ease of calculation. The robot perceives the environment and targets
through 3D vision and needs to reconstruct the spatial environment through point clouds.
The target object is segmented from the environment to achieve specific operations on the
object, such as machine assembly, industrial stacked parts sorting and 3D reconstruction of
large components.

The calibration of the vision system is divided into camera calibration and hand-eye
calibration. Due to the physical properties of the lens in the vision sensor, the image will be
distorted. Camera calibration calculates the aberration coefficients and the physical param-
eters of lens, and then establishes the conversion relationships of image pixel coordinates
to physical coordinate systems. Zhang proposed a classical camera calibration method by
using a checkerboard as a calibration plate to calibrate cameras. This method is widely
used in camera calibration for its high calibration accuracy [5].

In terms of point cloud reconstruction after calibration, point cloud registration have
to be carried out. Traditional hand-eye calibration methods generally require professional
operators to operate cameras and manipulators to shoot multiple calibration images. For
example, Arne Peters et al. proposed a calibration method for a six-axis robot based
on 2D laser rangefinder, and the robot can be calibrated by hand-eye without standard
calibration parts [6]. Mingyang Li et al. carried out hand-eye calibration of the robot
from the perspective of 3D reconstruction and proposed a reconstruction-based calibration
accuracy evaluation method [7]. Although these methods can calibrate the internal and
external parameters of the camera and the relationship between the end- effector of the
manipulator and the camera, the process is generally too complicated. Operators are
required to have a professional level, especially in environments that operators cannot
reach. The rapid, automatic and accurate calibration of the robot hand-eye system cannot be
achieved, and the application occasions and production efficiency of the robot are limited.

Spatial point cloud registration matches the points with the same meaning obtained
from the point cloud in the same scene, aligning the two clouds in the same coordinate
system through spatial transformation so as to reconstruct the expression of the three-
dimensional model of the target in the manipulator coordinate system. This is a prerequisite
for spatial positioning [7,8]. Boce Xue et al. realized the three-dimensional reconstruction
of the welding joint based on Kalman filter and more, and guided the robot to complete
the welding of the joint [9]. Peters Arne et al. used a two-dimensional LiDAR to generate
a 3D scan of the surrounding area through a moving sensor, and ran an iterative closest
point (ICP) variant on it to estimate the missing part of the motion chain to reconstruct a
three-dimensional model of the environment [6]. These registration algorithms based on
point pair relationship generally have the disadvantages of time-consuming, insufficient
accuracy and noise sensitivity, which seriously affect the real-time and accuracy of the
manipulator operation. QY Zhou presented an algorithm for fast global registration of
partially overlapping 3D surfaces. The algorithm operates on candidate matches that covers
the surfaces [10]. However, it requires a complete point cloud to register the target point
cloud, so it is not suitable for point cloud registration of unknown objects. Yang, H et al.
proposed the first fast and certifiable algorithm for the registration of two sets of point cloud
in the presence of large amounts of outlier correspondence. Additionally, it is more accurate
than ICP while being orders of magnitude faster, and with the continuous improvement of
3D datasets in recent years, deep learning has started to be applied in 3D feature matching
algorithms [10,11]. Zeng et al. proposed a deep learning model based on 3DMatch for local
feature learning [12], which is a data-driven model that learns a local volumetric patch
descriptor for establishing correspondence between partial 3D data. Using 3DMatch for
self-supervised feature learning to obtain local feature descriptors.

In the registered point cloud space, segmenting the object of interest from the back-
ground and other objects for spatial positioning is a key step for the manipulator to achieve
target positioning. Zhao et al. proposed an improved pattern matching segmentation
algorithm based on the maximum likelihood estimation sampling consensus (MLESAC)
algorithm to refine and segment indoor objects [13]. Awwad proposed an improved plane
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segmentation method based on Seq-NV-RANSAC for unstructured 3D point clouds [14].
These methods can segment space objects. However, because they all directly operate on
massive point cloud data, and they require extensive computational resources. Moreover,
due to the interference of random noise, these methods have poor segmentation effects on
randomly stacked objects. Recently, deep learning theory and practice have been continu-
ously applied in many topics. Maturana et al. proposed a Voxnet structure, which uses
3D CNN to process the voxels of the grid, rasterize the 3D shape and sample the distance
function on dense voxels, and apply 3D CNN on the whole voxels to classify 3D data
quickly and accurately [15]. However, this algorithm uses the voxel space as the definition
domain of calculation. It needs large computation, is uneasy to store, and depends on the
accuracy of voxel segmentation.

In this paper, algorithms are designed based on three necessary stages (Hand-eye
calibration, point cloud reconstruction, point cloud segmentation) of an intelligent robot
system with 3D vision. A RGB camera and a depth camera are used to form the RGB-D
camera, which are mounted near the end-effector. Aiming at the problem of cumber-
some hand-eye calibration steps and relying on manual operation to a large extent, a
self-calibration method of eye-in-hand manipulator system is proposed. It automatically
plans image acquisition path planning based on quaternion spherical linear interpolation
method to calculate spatially symmetric path trajectory of the calibrator, and collects multi-
ple sets of photos of the calibration board. Combining the RGB camera, the depth camera
and in the end pose of the manipulator, the internal parameter matrix, external parameter
matrix and hand-eye conversion matrix of the RGB-D camera (RGB camera and depth
camera) can be solved without human intervention. With regard to the poor real-time
and low accuracy of traditional point cloud registration, a rapid point cloud registration
method based on the shooting pose space coordinate conversion of iterative manipulator
is proposed. The missing part of the point cloud is extracted and the symmetric shooting
pose of the complementary image is planned, to fill the point cloud holes caused by the
shooting blind area and improve the registration accuracy. Complete point cloud recon-
struction of the environment and stationary objects. Due to the poor real-time performance
of traditional point cloud target segmentation method and poor adaptability to stacked
targets, an improved double pyramid feature fusion depth image is proposed to segment
the RGB image through Mask R-CNN [16] and map it to the point cloud space to realize
the rapid instance segmentation of point cloud targets.

The main contributions of this paper are as follows: (1) a self-calibration method of
eye-in-hand manipulator system is proposed; (2) a millisecond fast and accurate point
cloud hole completion registration method is proposed, which can quickly reconstruct the
outer surface model of the static target object; (3) a 2D to 3D end-to-end 3D segmentation
method is proposed, and finally an independent point cloud of stacked objects is obtained
to achieve fast and accurate point cloud segmentation.

2. Related Works

The operation of the robot on the target object involves hand-eye calibration [6], point
cloud reconstruction [17] and segmentation [13] technology, and these technologies have
also been research hotspots.

(1) Vision system calibration

The calibration of the vision system is divided into camera internal parameter cal-
ibration and hand-eye calibration. For RGB-D camera, if use it to generate point cloud
image with texture information, it is necessary to calibrate RGB camera and depth camera
to obtain the relationship between RGB image and depth image.

Currently, the calibration method of camera internal parameters mainly uses Zhang
Zhengyou calibration method [5]. However, in view of the problem that the depth camera
cannot find the corner points of the checkerboard, SMISEK J et al. [18] proposed to block
the infrared transmitter of the RGB-D camera and use a halogen lamp to generate infrared
images, and infrared images instead of depth images are used to calibrate the position
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between the two cameras. Zhang et al. [19] proposed the maximum likelihood solution for
the joint calibration of two cameras, according to the criterion that the points on the depth
image calibration plate should be coplanar and the corresponding points of depth image
and color image can be specially specified.

The hand-eye calibration of RGB-D camera is the same as that of RGB camera.
Tsai et al. [20] proposed a new analytical algorithm for hand-eye calibration and gave
the principle of selecting the data set for hand-eye calibration under this method for the
first time. Fassi I et al. [21] proposed an algorithm to analyze the hand-eye calibration
matrix formula from a geometric perspective, and studied the excessive restriction and
singularity in the algorithm.

However, the above methods all need to be carried out independently. The operation
of camera calibration needs to be completed first to obtain the calibration result, and then
the operation of hand-eye calibration is carried. Moreover, most of the calibration of RGB-D
cameras requires additional hardware equipment overhead. Whether it is camera internal
parameter and distortion coefficient calibration or hand-eye calibration, it is necessary to
move the camera and calibration parts multiple times to collect multi-calibration parts
pictures to obtain landmark points to solve the overdetermined linear equations and obtain
the results. The process requires professional manual intervention, which brings trouble to
actual operation. Combined with the advantages of controllable pose of the manipulator,
this paper uses the calibration parts that can be recognized by both RGB camera and depth
camera to complete the internal and external parameter calibration of the camera and
hand-eye calibration and reduce manual intervention as much as possible.

(2) Point cloud registration

In terms of point cloud reconstruction after calibration, it is necessary to take a global
shot of the object during the reconstruction process to obtain complete three-dimensional
information, as the point cloud data collected from different viewpoints are based on
the coordinate system of the vision sensor. The point clouds are all unified in the same
world coordinate system to complete the point cloud completion and reconstruction, which
requires the point cloud registration [22]. Coarse registration provides a good initial value
for fine registration, minimizing the spatial position difference between point clouds to
achieve three-dimensional reconstruction. Currently, the more common point cloud coarse
registration algorithms are PFH (point feature histogram) [23], FPFH (fast point feature
histogram) [24], 3Dsc (3D shape context) [25]. The more common point cloud precision
registration algorithms are NDT (normal distribution transformation) [26], ICP (iterative
closest point) [27] and their variants [28,29].

In addition to the classic algorithm mentioned above, Thirion J et al. [30] proposed
to establish an extremal mesh based on the special principal curvature in the point cloud
model, and to use its rigid body transformation invariance to carry out coarse registration.
However, the mesh established by this method is often vulnerable to noise interference and
is only suitable for ideal models. Aiger et al. [31] believe that when the noise of the point
cloud is in a certain threshold, the coarse registration can be achieved only based on the
congruence relationship of the quadrilateral formed by four coplanar points. Nevertheless,
it adopts the idea of exhaustive, which computationally expensive. Mellado et al. [32]
proposed a coarse registration method based on index technology to realize the linear time
complexity in view of the low global comparison efficiency of [31] proposed algorithm. Fast
Global Registration [10] is widely used for its fast performance. However, in order to in-
crease the registration accuracy and speed, lots of parameters need to be set. Sukhyun Lim
et al. proposed a method to help Fast Global Registration set parameters [33]. Through
analysis and experiment, the parameters that work effectively in actual registration are
proposed. This result will help determine the direction when a Fast Global Registration
method is needed. Li et al. proposed a point cloud registration method based on convolu-
tional neural networks with improved Harris-SIFT (scale-invariant feature transform) [34].
They improved Harris-SIFT to extract the stable key points of point cloud models in 3D
space. Meanwhile, the weighted adjacency matrix of the key points is used as the input
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feature map of the convolutional neural network to achieve the prediction matching of
key points of the source and target point clouds. However, in order to extract key points
accurately, this algorithm must target point clouds with a large number of repetitive parts.

However, the above rough registration algorithm of point cloud usually has the
characteristics of large calculation and time-consuming, which cannot ensure the accurate
registration of two point clouds under noise or strong convergence. In this paper, combined
with the controllable nature of the hand-eye system, the missing point cloud is automatically
detected, and the missing parts are registered in a targeted manner to repair the missing
point cloud and improve the real-time registration.

(3) Point cloud instance segmentation

After obtaining a more complete environmental point cloud model, only when the
target object is extracted from the environment can the manipulator carry out corresponding
operations on the target [29]. Traditional point cloud segmentation mainly uses the position
relationship between points in point cloud data to segment it, mainly including clustering
and region growth. Wang et al. proposed a point cloud segmentation algorithm that uses
the core ideas of local sampling and statistical inference. The algorithm uses anomalous
sample datasets to determine the planes and surfaces in the point cloud data to obtain
valid samples, using local evaluation and constraints to obtain segmentation results [35].
However, the traditional point cloud segmentation methods cannot meet the requirements
of real-time semantic segmentation of large-scale point cloud in artificial intelligence, and
cannot accurately segment continuous contact objects, such as stacking in most cases.

Kalogerakis et al. [36] designed a projection convolutional network applied to 3D
shape segmentation, and proposed a deep network architecture for 3D shape segmentation
and inferred recognition of individual parts. The algorithm combines FCNs (fully convolu-
tional networks) and CRFs (conditional random field) by using a pre-trained model for
image recognition of end-to-end training. FCN projects multi-view images to different
parts of the corresponding 3D objects, and then uses surface feature-based CRF to segment
the 3D shapes by combining the features on the surfaces of different parts of the projected
3D objects. This method processes the input data efficiently with an image-based CNN,
but cannot determine the size of the number of views covering the 3D model, which may
lead to the loss of 3D information.

The development of two-dimensional image processing by RGB-D cameras and ar-
tificial intelligence provides a way to segment three-dimensional point clouds based on
two-dimensional images for point cloud segmentation. The multi-view convolutional
neural network (MVCNN) proposed by Su et al. [37] firstly simulates the camera shooting
three-dimensional objects from multiple angles to obtain projected two-dimensional im-
ages. Then it uses the pre-trained network under ImageNet to extract features. Finally, the
features from each perspective are aggregated by pooling, and input into the classification
network for classification. Feng Y et al. [38] proposed GVCNN base on MVCNN. They
grouped the feature descriptors extracted by CNN and used the group feature descriptors
for classification to further improve the classification accuracy. The advantage of this
method is that it can directly use the existing two-dimensional neural network for training.
Experiments prove that this method has better results in point cloud classification tasks.
Nevertheless, the disadvantage is that the parameter setting in the process of rendering
the 3D point cloud into a 2D image relies on manual experience heavily. The extraction of
two-dimensional feature images will inevitably lead to information loss, and the internal
structure information of three-dimensional objects cannot be obtained. Therefore, the effect
is not satisfactory in high-resolution point cloud segmentation.

According to the advanced ideas provided by the above-mentioned similar studies, a
double pyramid feature fusion model based on Mask R-CNN is designed. This model su-
perimposes the depth image on the original three-channel RGB image as a new channel, and
uses the convolutional neural network for learning to realize the point cloud segmentation.
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3. Principle and Method

In order to achieve rapid self-calibration of the vision system and rapid target posi-
tioning, this paper builds a robotic arm system shown as Figure 1. The system mainly
includes the manipulator, end-effector, RGB-D camera and table tennis calibration board.
The depth image acquisition device we use consists of two symmetric infrared (IR) cameras.
The depth image is computed from the parallax of the dual IR cameras and combined with
the RGB camera to generate a point cloud image with texture information.

Figure 1. Vision guided intelligent robot system.

The experimental platform uses a STEP-SD500E six-axis robotic arm (repeatable
positioning accuracy ±2 mm) with a pneumatic end-effector to form a robotic system. The
camera uses the Percipio-FM830 RGB-D camera, which consists of an infrared (IR) projector,
two IR cameras and an RGB camera. The IR projector with IR camera forms a binocular
camera to acquire Depth images, and each pixel represents the distance from the camera to
each point in the scene. The monocular RGB camera acquires RGB images. The acquisition
error of the RGB-D camera is 0.2%~1% of the shooting distance. The image resolution is
1280 × 960.

As shown in Figure 2, the system process can be divided into three stages: (1) in the self-
calibration stage of the manipulator hand-eye system, the image acquisition path planning
is automatically planned based on the quaternion spherical linear interpolation method
and the image of the calibration board is collected to solve the calibration parameters;
(2) the point cloud hole completion stage is based on the point cloud rapid registration
method of the iterative manipulator shooting pose space coordinate conversion to complete
the point cloud reconstruction of the outer surface of the object; (3) the point cloud instance
segmentation stage uses the improved double pyramid feature fusion depth image to
segment the RGB image through Mask R-CNN, and maps it to the point cloud space to
achieve point cloud instance segmentation.
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Figure 2. The algorithm flow.

3.1. Hand-Eye System Self-Calibration

The RGB-D camera used in this paper consists of an RGB camera and a depth camera,
which can obtain depth images and RGB images, respectively. As the RGB camera and the
depth camera are not in the same position in space, camera calibration is necessary to unify
the reference systems of the two images and obtain the conversion relationship between
the image coordinate system and physical coordinate system. The RGB camera is used as a
reference for hand-eye calibration and completes calibration of the hand-eye system.

As both the depth map and the RGB map are more sensitive to the contour of the
three-dimensional object. A three-dimensional calibration object needs to be made, because
ping pong balls are very easy to obtain, and the size is appropriate. The balls need to be
spaced in a certain viewing angle to ensure that they are not blocked from each other. This
paper uses the self-made table tennis array as shown in Figure 3 as the three-dimensional
calibration object. The diameter of each ping pong ball is 40 mm and the spacing is 90 mm.

Figure 3. Three-dimensional calibration object.

The path is automatically planned for the camera to shoot the calibration parts, and
multiple sets of calibration pictures are collected. The center coordinates of the ping-pong
ball under RGB and depth images are detected by Hough transform, and the two sets of
linear overdetermined equations are solved to obtain the internal and external parameters
and hand-eye calibration matrix of the camera.
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3.1.1. Automatic Acquisition of Calibration Images Based on Spatial
Spherical Interpolation

This paper proposes an automatic path planning algorithm based on quaternion Slerp
space spherical linear interpolation. Given two initial shooting poses, the continuous
shooting path S can be automatically planned, and multiple pictures of the calibration parts
shot at different angles can be collected.

As shown in Figure 4, the two manipulator postures MA and MB are manually set as
initial values through the teach pendant, so that the calibration parts MA and MB are in
the middle of the field of view of the RGB image and the Depth image.

Figure 4. Image of initial pose calibration parts: (a) RGB map of pose A; (b) depth map of pose A; (c) RGB map of pose B;
(d) depth map of pose B.

It is also possible to use an external global camera to obtain the position of the
calibrator to automatically calculate the initial value, but this increases the hardware cost
and complexity of the operation.

As shown in Figure 5, after the initial value poses A and B are located at the space
point A, B, the intersection of the direction pointed by the manipulator end is set as the
center of the circle O to make the spherical surface Γ. Let the intersection of L and the range
of movement Θ of the manipulator end-effector is ∆. Connect A, B to get a straight line L,
project it on ∆, and achieve a space curve S. Then the two ends of the record pointing to
the center O of the sphere are the poses M1 and Mj, and interpolate the image acquisition

pose
{

base
end M p

}
=
{

M1, M2, . . . , Mj
}

of j pointing to the center of the sphere O, and they
are each spatially symmetric about the calibrator.

Figure 5. Schematic diagram of acquisition curve L.
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Make the transformation of posture Mi to posture Mj, the coordinates (T =
[

tx ty tz
]T)

of the center of posture Mj is under Mi. The direction of the x-axis, y-axis and z-axis of
posture Mj can be expressed by vectors, which are the mutually orthogonal unit vectors
(s, n, a) in Mi. Define the rotation matrix R as:

R =
[

s n a
]
=

 sx nx ax
sy ny ay
sz nz az

 (1)

The end pose M of the robot is composed of translational freedom T and rotation
freedom R. Because they are two different units of quantities, the normalization method
cannot be used for simultaneous planning. Therefore, the position and posture need to be
planned separately, and then synchronized. The augmented matrix synthesized by T and R
is easy to send singular solutions in the special pose of the manipulator, so a quaternion is
introduced to represent the robot posture to avoid singularity [39].

Convert Equation (1) to a unit quaternion Q = [q1, q2, q3, q4] through Equation (2):
q1 = 1

2
√

sx + ny + az + 1
q2 = 1

2 sign
(
nz − ay

)√
sx − ny − az + 1

q3 = 1
2 sign(ax − sz)

√
−sx + ny − az + 1

q4 = 1
2 sign

(
sy − nx

)√
−sx − ny + az + 1

(2)

The unit quaternion and the quaternion in the same direction have the same rotation
function, thereby the quaternion can be used to plan the direction of the path, and the
position matrix T can be used to plan the position.

As shown in Figure 6, the directions of the end-point poses M1 and Mj of the feasible
region are represented by quaternion as Q1 and Qj, and the path is planned by Slerp
interpolation [40] along the space curve S.

Figure 6. Slerp interpolation.

The Slerp function of the quaternion interpolation of the p-th point unit can be obtained:

Slerp
(
Q1, Qp, u

)
= Q1

(
Q−1

1 Qp

)u
(3)

In the process of real-time interpolation and image acquisition, each frame taken
continuously shall be consistent with the mechanical pose of the frame as far as possible.
Thereby, it is necessary to avoid time-consuming calculations such as power, inverse and
multiplication of quaternion. Equation (4) can be obtained from several relationship in
Figure 7, and θ is the angle between quaternions Q1 and Qj.

kp =
sin uθ

sin θ
(4)
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Figure 7. Derivation of Slerp interpolation formula.

Similarly, k1 = sin(1−u)θ
sin θ can be solved. The p-th pose pointing to the center of the

sphere can express the scale coefficient µ as:

µ =
θ

p− 1
(5)

Slerp interpolation formula (3) is rewritten as:

Slerp
(
q1, qj, p

)
=

sin
[
(1− θ

p−1 )θ
]

sin θ
q1 +

sin
[
( θ

p−1 )θ
]

sin θ
qj (6)

In Equation (6), there are only number multiplication and addition with small cal-
culation amount, and it can maintain high real-time performance with the camera for
continuous shooting.

3.1.2. Calibration Data Processing Method

On the movement curve S, j(j > 3) image acquisition poses
{

base
end MS

}
= {M1, M2, . . . ,

Mj} are selected to obtain the key frames of RGB and Depth images. The coordinates of the
center of the sphere are extracted through the Hough circle detection algorithm, as shown
in Figure 8.

Figure 8. Calibration image key frame: (a) RGB images; (b) depth images.

Using Zhang Zhengyou calibration method, the internal parameter matrix Kc and
distortion coefficient of RGB camera, the internal parameter matrix Kd and distortion
coefficient of depth camera are calculated respectively. After the distortion coefficient is
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used to repair the image distortion, the RGB image is fused with the depth image through
Equation (7), so that each pixel of the RGB image corresponds to a depth value.

.
Pcc = Tw2cPw = Tw2cT−1

w2d

.
Pdc

Td2c = Tw2cT−1
w2d =

[
Rw2cR−1

w2d tw2c − Rw2cR−1
w2dtw2d

0 1

]
(7)

where,
•
Pcc is the space point converted from the world coordinate system to the color

coordinate system; Tw2c is the external parameter matrix from the world coordinate system
to the color camera coordinate system; Td2c is the external parameter matrix from the
depth camera coordinate system to the color camera coordinate system; Pw is the point
from the depth map to the world coordinate system; Tw2d is the external parameter matrix
converted from the world coordinate system to the depth camera coordinate system, and
Pdc is the three-dimensional point coordinate of a point in the depth map of the depth
camera coordinate system.

After fusing the depth values, 4 channels of data are obtained, which are three color com-
ponents and one depth component, and then a textured point cloud image can be constructed.

Taking the RGB camera as the reference, the pose sequence
{cam

boardM
}

of the calibration
part under j camera coordinate systems by locating the center point of the calibration plate
is obtained. Corresponding to the j pose sequence

{
base
tool M

}
of the manipulator end-effector

during shooting, the hand-eye calibration matrix is calculated by Equation (8).
cam
boardM2 × cam

boardM−1
1 × cam

baseM = cam
baseM ×

base
tool M−1

2 × base
tool M1

. . .
cam
boardMn × cam

boardM−1
n−1 × cam

baseM = cam
baseM ×

base
tool M−1

n × base
tool Mn−1

(8)

where, as the calibration part is fixed relative to the coordinate system base, and base
boardM is

constant; cam
boardM is obtained by the image algorithm through each shot of the calibration

part, and base
tool M can be obtained by reading the manipulator teach pendant.

cam
baseM can be obtained by solving Equation (8), and the hand-eye calibration matrix

cam
tool M can be obtained through Equation (9).

cam
tool M = base

tool M × cam
baseM (9)

Generally, given only two initial shooting values, the calibration parameters of RGB-D
camera can be automatically calculated by this algorithm, and the textured point cloud can
be generated by integrating RGB and depth data, to finally realize the hand-eye calibration
of manipulator and RGB-D camera.

3.2. Fast Point Cloud Registration

The point cloud image obtained by photographing the target in the scene with RGB-D
camera usually forms the point cloud hole in the blind area of field of vision as shown
in Figure 9. This results in reconstruction failure and is unable to provide accurate pose
information of the target for subsequent grasping, dispensing and assembly. Thus a
point cloud hole filling shooting method is proposed, and fast point cloud registration
is conducted.
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Figure 9. Lack of visual blind area in point cloud.

3.2.1. Pose Calculation of Point Cloud Hole Completion Shooting

1 Hole discrimination:

KD tree with strong adaptability, low memory consumption and not affected by point
cloud density is used to establish the topological relationship of point cloud. The Euclidean
distance from the sampling point to its k adjacent points is calculated. The point whose
distance is less than the given hole repair threshold is determined as the boundary point of
the hole.

Firstly calculate the average density Dcp of the point cloud. n points are randomly
selected from the sample as feature points to obtain the feature point set {Pi}, and
i = 0, 1, . . . , n. KD tree is used to traverse each point in the point cloud to find the k
points with the smallest distance from it. Calculate the distance Di between K adjacent
points and Pi, and average all Di to obtain the point cloud density Dcp. The hole threshold
Thole is obtained from the point cloud density Dcp by specifying the threshold coefficient µ.

Thole = µ× Dcp (10)

Then K neighborhood search is used to traverse all points of the point cloud, find the
k′ points closest to them, and calculate the distance Dj between this point and k′ points,
j =0, 1, . . . , k. Once a distance in sequence

{
Dj
}

is greater than the hole threshold Thole, the

point is considered as a boundary point and saved in the boundary point set
{

Pborder
n

}
.

After the boundary point set
{

Pborder
n

}
is obtained, the boundary Bordern is further

extracted. Using the K neighborhood search method, K adjacent points Pk(k = 1, 2, . . . , k)
of Pborder

i is found to obtain the boundary {Bordern} and calculate the pose
{

obj
hole Mn

}
of

each hole. Where n is less than or equal to the number of holes, and the local hole boundary
detection effect is shown in Figure 10.
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Figure 10. Local hole boundary detection effect.

2 Complementary image shooting pose calculation:

After knowing the pose obj
holeM of the hole compared with the object obj, it is necessary

to automatically plan the manipulator to move to the appropriate pose to supplement the
blind area of the field of view collected for the first time. Take the coordinate of a point
on the object as O, the first shooting pose as MI , O as the center of the circle and OA as
the radius to make the spherical surface Γ. Note that the intersection of Γ and the activity
range Θ of the manipulator end-effector is ∆. The normal plane composed of the missing
hole contour of the point cloud is moved to the spatial sphere ∆ through the translation
matrix ∆

holeT .
Convert it to the manipulator shooting pose through the following formula:

base
end M = base

obj M × obj
holeM ×

∆
holeT × end

camM−1 (11)

Repeat the above process, and stop if one of the following conditions is met: (1) the
missing hole has no intersection with the feasible region of the manipulator after moving
through the translation matrix, i.e., the manipulator cannot move to the supplementary
image shooting pose due to its mechanical structure; (2) no holes that meet the requirements,
i.e., the holes in the working part of the model are supplemented and meet the requirements;
(3) when the set upper limit of image acquisition is reached, image acquisition is stopped.

3.2.2. Registration of Complementary Point Clouds

According to the position relationship of the manipulator under different shooting
angles, the point cloud coarse registration is carried out for the collected multi-frame data,
and then the ICP algorithm is used for the fine registration of coarse registration results.
After multiple sets of point cloud data are registered, the point cloud is too dense and
redundant, and downsampling algorithm is needed to remove redundant points.
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(1) Coarse registration of point cloud based on manipulator pose: Record the pose base
tool M

of the manipulator when collecting images, and obtain the pose base
cam M of the camera

through the hand-eye calibration matrix cam
tool M.

base
cam M =

[ base
cam R base

cam T
0 1

]
= base

tool M × cam
tool M

−1 (12)

The initial point cloud data collected each time is moved to the base coordinate system
through rigid body transformation, so that the point cloud coordinate system coincides
with the base system and satisfies, xi

yi
zi

 = base
cam R

 x′i
y′i
z′i

+ base
cam T (13)

where, xi, yi, zi and x′i , y′i, z′i are the coordinates in the coordinate system before and after
the point cloud conversion.

(2) The steps of point cloud fine registration based on ICP algorithm are as follows:

Step 1: Convert the point cloud {PC1} collected for the first time to the coordinate
system through Equation (13) to obtain {PC1}′;

Step 2: Convert the point cloud {PCi} collected for the i time to the base through
Equation (13) to obtain {PCi}′. Then ICP algorithm is used to register {PCi} to {PC1}
based on {PC1} and fuse {PCi} into {PC1};

Step 3: Repeat Step 2 until all complementary point clouds are registered to obtain a
{PC} composed of multiple complementary point clouds.

(3) Downsampling of point clouds

After multiple sets of point cloud data registration, although some holes are filled, it
also causes the redundancy of point clouds in overlapping areas. It is not conducive to
the segmentation of point clouds. In this paper, a method based on geometric sampling is
proposed to the downsampling of the registered point cloud to obtain point cloud data
with uniform density. This not only reduces the amount of invalid data, but also retains
the details of the model.

Firstly, the k-nearest neighbor point cloud around each point cloud is approximately
in a local plane. The implicit surface equation obtained by least square fitting is F(x, y, z),
and then the Gaussian curvature K at point p(x, y, z̃) is calculated as follows:

K =
∇F×H∗(F)×∇FT

|∇F|4
(14)

where, ∇F is the gradient corresponding to the implicit equation at x, y, z; H(F) is the
Hessian matrix describing the local curvature of the function, and H∗(F) is the adjoint
matrix of H(F).

The given point cloud model {PC} is represented by {PC} = {pi}(i = 1, 2, . . . , n),
and the point set of iterative farthest point sampling can be expressed as G =

{
Gj
}

,
(j = 1, 2, . . . , k). Assuming that the current sampling is point j, the next sampling point
should be point m (m = Gk, 1 ≤ m ≤ k) that farthest from point j, and m satisfies:

d(k, P) = maxj∈P(d(j, P)) = maxj∈P(minKi≤n(d(j, Pi))) (15)

where, d(j, Pi) is the distance between two points. It can be seen from Equation (15) that
the fusion of Euclidean distance and curvature can sample more model details, and

d = d(k, P) + αcm (16)
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where, Cm is the curvature of m, and α is the weight set to balance Euclidean distance
and curvature.

Figure 11a is a point cloud image with multiple holes generated by the viewing
angle blind area acquired for the first time; Figure 11b is the point cloud model after
complementary point cloud registration, which completes the point cloud model within
the activity range of the robotic arm. Figure 11c is a sparse point cloud model that can
accurately express the shape of an object after geometric sampling, and it also can save
computational resources for subsequent operations.

Figure 11. Point cloud processing: (a) original point cloud; (b) complementary point cloud registration results; (c) sparse
point cloud model.

3.3. Point Cloud Instance Segmentation

Presently, the traditional point cloud segmentation methods cannot segment the point
cloud in multiple scenes. As multi-dimensional information, the huge data structure and
chaotic distribution of point cloud also bring great difficulties to the data annotation of deep
learning. Thus RGB-D image acquisition equipment provides us with new ideas. The RGB
image is used to fuse the depth image for two-dimensional input, and the Mask-RCNN
is improved by using their sensitive characteristics to the object boundary. It not only
facilitates the annotation training, but also increases the accuracy of segmentation. The
RGB segmentation results of the fusion segmentation are obtained and mapped to the point
cloud space to achieve point cloud segmentation.

In order to better combine the complementary advantages of RGB and depth images,
this paper proposes a double pyramid feature fusion network, which uses convolutional
networks of different complexity to extract RGB and depth features, respectively.

The residual network with a deeper network layer is used to extract the features of
RGB images, and the network branch with a smaller number of layers is used to extract
the features of depth images. As shown in Figure 12, the image pyramid is used in the
feature extraction stage to save RGB and depth features of different resolutions. RGB
features with the same resolution are added with depth features, and then input them
the into RPN (region proposal network) layer. The header structure network segment of
Mask-RCNN forms a double pyramid feature fusion network to realize multi-class instance
segmentation of RGB-D images.

Studies have shown that the feature maps at the top of the image pyramid will
contain richer semantic information, but the corresponding location information is less
accurate. Although low-level feature maps contain less semantic information, the location
information is more accurate [41]. In this paper, the application more focuses on the
accurate extraction of location information. Depth information is more effective in position
detection tasks, and the results of semantic detection are inaccurate in most cases. Therefore,
the use of RGB images and depth images at the same time can achieve the enhancement
effect of two features. The high-level RGB features contain rich semantic information, and
the low-level depth features contain accurate location information. This requirement can
be met by fusing the relatively low-level depth feature with the RGB feature of the same
resolution and inputting it into the shared feature map of RPN.
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Figure 12. Block diagram of the dual pyramid feature fusion network model.

Based on the above inference, in order to achieve the effect of making full use of depth
information, the same residual network as the RGB branch cannot be used. Referring to the
structural design of residual network convolution module [42], the depth feature maps of
different resolutions are extracted through multiple convolution blocks, and the structure
of one convolution block is shown in Figure 13.

Figure 13. Convolution block structure diagram.

The main structure of the convolution block contains three convolution layers, and
the shortcut connection network path contains a single convolutional layer and a single
BN layer. The size of the convolution kernel is 1 × 1, and the step size is 2. The input
depth feature map passes through a convolution block model, and its size is one-fourth
of the original. A structure similar to this module in the residual network structure of
RGB features is extracted, but it contains many deep residual block models. Hence, for
the feature map with the same resolution, the Depth image undergoes fewer convolution
operations, and the extracted features are lower than the RGB features. This conforms to
the RGB feature-guided semantic segmentation, and the depth feature perfects the target
of position detection.
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The instance segmentation result under RGB image obtained by the algorithm finally
is shown in Figure 14a, which indicates that the toolbox is more accurately marked in the
image. The marked ROI (region of interest) is mapped to the point cloud space, and the
point cloud of the toolbox is segmented from the point cloud image, as shown in Figure 14b
with a red point. The segmentation results meet the expectations of the algorithm design.

Figure 14. Instance segmentation effect: (a) instance segmentation effect of RGB image; (b) instance segmentation effect of
point cloud.

4. Results

The experiment consists of four parts: (1) self-calibration experiment of the hand-eye
system of the manipulator to verify the influence of sampling points K on the calibration
accuracy; (2) point cloud rapid registration experiment to verify the accuracy and time
of point cloud registration and fusion in different posture; (3) point cloud segmentation
experiment, use the Mask-RCNN network fused with depth information to segment the
point cloud, and compare the segmentation effects before and after the improvement;
(4) reconstruction and positioning accuracy analysis to verify the overall accuracy of the
hand-eye system and algorithm in this paper.

The experiment settings are as follows: The experimental platform consists of STEP-
SD500E six-axis manipulator (repetitive positioning accuracy ±0.02mm) and Percipio-
FM830 structured light camera (the error is 0.2%–1% of the distance, 13 FPS) (as shown in
Figure 1). The diameter of the ping-pong ball used for the calibration piece is 40mm, and
the spacing between each ping-pong ball is 90 mm, forming a 2× 5 matrix calibration piece
(as shown in Figure 3). The computer CPU is i5-10500H with a main frequency of 2.5 GHz.

4.1. Self-Calibration Experiment of the Manipulator Hand-Eye System

Two initial pose values A and B are specified. The calibration path obtained by
Equation (6) is shown in Figure 15, and image acquisition on the calibration part is carried
out. The number of actually collected images has a certain impact on the calibration
accuracy. Experiments are conducted to determine the appropriate p-value by giving a
different number of sampling points p.

If the motion speed of the manipulator is set to be constant, the processing of the
calibration image is carried out by the algorithm in the background, and the difference in
time depends on the number of calibration images. The sampling points p = 5, 8, 11, 14, 17,
20, 23, 26, 29, 32, 35, 38, 41, 44 between A and B are selected for calibration test respectively,
and the variation curve of internal parameters Fx, Fy, Cx and Cy of RGB camera with
sampling points p is obtained as shown in Figure 16.
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Figure 15. Shooting pose.

Figure 16. The relationship between the p-value of the sampling point and the calibration result: (a) The internal reference
Fx varies with value p of the sampling points; (b) the internal reference Fy varies with value p of the sampling point; (c) the
internal reference Cx varies with Value p of the sampling point; (d) the internal reference Cy varies with Value p of the
sampling point.
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It can be seen from Figure 16 that when the sampling point p is small, the fluctuation
of each parameter is more obvious. When the sampling point p reaches about 23 frames,
each calibration parameter gradually stabilizes.

The spherical coordinates are used as data for solving the linear system of equations in
calibration algorithm, and they are inevitably subject errors. In order to verify the accuracy
of the calibration, the camera shooting poses are inverted by the poses of each group of the
calibration objects, and the robotic arm poses are obtained from Equation (9). As shown
in Figure 17, the calibration position error of the hand-eye system to the sampling point
p-value is related, which is obtained by comparing each set of real shooting poses with the
inverse-sought shooting poses.

Figure 17. The relationship between the p-value of the calibration position error of the hand-eye system.

It can be seen from Figure 17 that when the sampling point p is small, the calibration
error is larger. When the sampling point p reaches about 23 frames, the calibration error of
the hand-eye system is less than 2 mm. This tends to be stable and close to the acquisition
accuracy of the camera.

4.2. Point Cloud Reconstruction Experiment

In the experiment, several objects with different poses and stacks are selected to test
the registration and reconstruction effects of the algorithm in this paper and compare them
with the classic registration algorithm. Because it needs to fuse multiple point clouds
from different angles, and an iterative registration method is adopted to register the two
point clouds after fusion and then register with the next point cloud. In this paper, several
classical coarse registration algorithms with the precision registration algorithm ICP are
chosen as a control group. Four complementary shooting pose images are taken in the
experiment, thus three times of registration is required. The iterative registration results
are shown in Figure 18 and the time-consuming is shown in Table 1. The error statistics of
the registration results for each algorithm are shown in Figure 19.
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Figure 18. Iterative registration results: (a) original RGB data; (b) original depth data; (c) original point cloud data; (d) PFH
with ICP; (e) 3Dsc with ICP; (f) NDT with ICP; (g) algorithm proposed in this paper (precision registration with ICP);
(h) algorithm proposed in this paper (no precise registration).
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Table 1. Time-consuming of each algorithm.

Algorithm
The First

Registration Time
(s)

The Second
Registration Time

(s)

The Third
Registration Time

(s)

Total
Registration Time

(s)

PFH with ICP 49.162 37.585 22.458 109.205
3Dsc with ICP 514.435 393.293 235.002 1142.730
NDT with ICP 4.711 3.602 2.152 10.465

Algorithm proposed in this paper
(Precision registration with ICP) 1.467 1.746 1.215 1.863

Algorithm proposed in this paper
(No precise registration) 0.128 0.245 0.229 0.602

Figure 19. Error of registration results.

It can be seen from Figure 18c that the point clouds taken from different angles cannot
be directly fused in the same coordinate system, and the fusion of complementary point
clouds must be realized through the point cloud registration algorithm. As shown in
Figures 18g and 19 and Table 1, the registration results of the algorithm in this paper are
accurate and the maximum error does not exceed 2 mm. The algorithm in this paper is
more economical in computational resources than the compared algorithms.

4.3. Point Cloud Segmentation and Precision Experiment

Several commonly available items are selected and tested under independent and
stacking conditions to test the point cloud segmentation effect and positioning accuracy.

(1) The segmentation test is carried out on the independent object to segment the
ground background and the target object. The results are shown in Figure 20.

Comparing Figures 20d and 20e, it can be found that for a single object, the difference
between Mask-RCNN and the improved results is not obvious. Because a single object
without occlusion can get a good segmentation effect in Mask-RCNN, the improved result
is only more accurate in detail and edge processing than before.

(2) The purpose of the segmentation test on different kinds of stacked objects is to
separate the stacked objects, so as to further process the target object according to the
application scenario. The results are shown in Figure 21.



Symmetry 2021, 13, 2135 22 of 29

Figure 20. Independent object test results: (a) RGB image; (b) depth image; (c) point cloud; (d) segmentation effect of
Mask-RCNN; (e) the improved segmentation effect; (f) segmentation effect of Mask-RCNN; (g) the improved point cloud
segmentation effect.

Figure 21. Test results of stacked objects: (a) RGB image; (b) depth image; (c) point cloud; (d) segmentation effect of
Mask-RCNN; (e) the improved segmentation effect; (f) segmentation effect of Mask-RCNN; (g) the improved point cloud
segmentation effect.

As shown in Table 2, they are the point cloud segmentation results of the above
experiments. The accuracy results of multiple experiments with different objects are shown
in Figure 22.
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Table 2. Experimental results of point cloud segmentation.

Method
Single Object Multiple Objects

Points Accuracy Time-Consuming Points Accuracy Time-Consuming

Mask-RCNN 18,823 94.23% 1258 ms 53,016 90.06% 1374 ms
Ours 18,823 98.29% 1702 ms 53,016 97.32% 1924 ms

Figure 22. Accuracy of segmentation of different objects.

The experimental results show that the improved Mask-RCNN in this paper has a
significant improvement in the accuracy of point cloud segmentation, although it takes
slightly more time than before. As shown in Figure 21f,g, the algorithm in this paper has a
more obvious advantage in the segmentation of stacked objects.

4.4. Reconstruction and Positioning Accuracy Analysis

The measurement accuracy is measured and analyzed by the Euclidean distance be-
tween two points in space and the angle between the straight lines. During the experiment,
100 sets of image point data are randomly selected. Using the triangulation principle,
the image data are reconstructed with spatial points according to the calibration result
parameters of different image numbers. However, due to the limitation that the physical
error of the RGB-D camera increases with the increase of the measured object distance (as
shown in Figure 23). After eliminating the theoretical physical error, the root mean square
error of the distance between two points in space and the angle between lines is calculated
through all data, and the result is shown in Figure 24.

The distance between the test object and the camera is about 1.3 m. It can be seen
from Figure 23 that the physical error of the camera is about 3 mm. Therefore, the average
reconstruction error of the actual algorithm in Figure 24 is 1.08 mm and the angle error is
0.61◦, which can meet the requirements of visual reconstruction.
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Figure 23. RGB-D camera hardware errors (from RGB-D camera hardware for description).

Figure 24. Error map reconstruction.

In order to test the positioning accuracy of the hand-eye system, we use a standard
cube to extract the test points through the algorithm in this paper, and guide the manipula-
tor end-effector to contact each test vertex respectively and calculate the linear distance
between the test points (Table 3).
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Table 3. Positioning error.

Test Line Theoretical Value of T (mm) Actual Value (mm) Error Rate

X direction 115 116.02 0.89%
Y direction 173 174.12 0.58%
Z direction 247 245.62 0.56%

Through the above tests, Figure 24 shows that the camera internal parameter calibra-
tion results adopted in this paper have certain stability in three-dimensional reconstruction.
As shown in Table 3, the maximum error of the average error in each direction of the
hand-eye system positioning is only 0.89% after excluding the camera hardware error.
The reconstruction accuracy is less than 1.5 mm and the angle error is less than 1◦ after
excluding the camera hardware error.

5. Discussion
5.1. Discussion of Calibration

As there is a certain coupling between the internal and external parameters during the
calibration process, when the sampling point p is increased, it means that the constraints
on the internal parameters are strengthened. The more p-values of the sampling points,
the stronger the constraints on the parameters. This will reduce the coupling between the
internal and external parameters, thus obtaining stable internal parameters.

For the experiment in this article, more than 23 images can make the calibration result
stable. The effect of adding additional images on improving stability is no longer obvious. As
shown in Figure 17, the integrated calibration error of the hand-eye system by the algorithm
in this paper is less than 2 mm, which is close to the hardware accuracy of the camera sensor,
when p = 23. Therefore, the selection of p = 23 can meet the actual calibration requirements.

This self-calibration method can complete the calibration of the internal and external
parameters of the camera and the hand-eye matrix at one time. Compared with the
eye-out-of-hand calibration method based on 3D printing ball [24], the self-calibration
algorithm based on quaternion space curve path planning proposed in this paper can
complete both internal and external parameter calibration of RGB-D camera and hand-eye
calibration. Compared with the hand-eye calibration method based on three-dimensional
reconstruction and line laser sensor [22], although the calibration accuracy in this paper
cannot reach the method of [22], the calibration parts and equipment used in this paper
can be easily obtained. The operation method is simpler and more suitable for the actual
working environment.

5.2. Discussion of Registration and Reconstruction

As a classical method of point cloud coarse registration, PFH is too sensitive to
the matching of point pairs as shown in Figure 18d. Due to the rapid fitting and early
convergence of parts with very similar characteristics such as the ground, the detailed
parts of the target object are not fully integrated and forms a certain angle dislocation.
Accumulation of registration errors through three iterations leads to unsatisfactory results.
3Dsc uses logarithmic distance segmentation to make the shape context descriptor more
sensitive to adjacent sampling points than far away points. Therefore, local features can be
strengthened. As shown in Figure 18e, the algorithm has good registration results in the
iterative registration process. However, due to the high computational time complexity,
it is not suitable for the registration scene with strong real-time. NDT algorithm needs to
divide the point cloud space into multiple cells, and its parameter setting is very important.
Too big will result in low accuracy, too small will result in too high memory, thus only
when the difference between the two images is small can it be matched accurately. As
shown in Figure 18f, the performance of NDT is not ideal due to the large differences in the
poses of complementary point clouds.

Generally, in the coarse registration stage, due to the controllable position and attitude
of the camera in space, it has a good initial value when using ICP algorithm. This can greatly
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improve the accuracy and effectiveness of ICP algorithm. In the iterative process, compared
with other coarse registration algorithms using point pair features, each registration is
based on the results of the previous registration, thus it will gradually accumulate if there
is an error. The registration accuracy of the coarse registration algorithm in this paper is
not affected by the previous registration results, and the time-consuming is very low. It
will not accumulate in the subsequent registration because of the large registration error
in one time. Thereby this algorithm has great advantages in the eye-in-hand system. The
above experiments also show that when the hardware acquisition accuracy of the point
cloud acquisition device is much smaller than the positioning accuracy of the robotic arm,
the desired results can be obtained without even using a precision registration algorithm
such as the ICP algorithm.

The accuracy of point cloud reconstruction is obtained by the experiments in Section 4.4
of this paper. As shown in Table 2, the maximum error of the average error in each direction
of the hand-eye system positioning is only 0.89% after excluding the camera hardware
error. Therefore, the algorithm in this paper can give full play to the highest performance
of the hardware equipment used in practical applications. If higher accuracy is needed, the
equipment with better hardware accuracy can be chosen to cooperate with the algorithm in
this paper.

5.3. Discussion of Registration and Reconstruction

As shown in Figure 21d,e, the improved Mask-RCNN cannot accurately extract and
segment large-area occluded objects. However, because the depth image is more sensitive
to the stereo contour, the improved algorithm can accurately recognize large-area occluded
objects. The overall segmentation accuracy after the improvement is 3.1% higher than
before, and the accuracy in individual cases is 8% higher than before.

From the above experimental results, it can be seen that the improved double pyramid
feature fusion network model has stronger detail segmentation performance than Mask-
RCNN in single object segmentation, especially in areas with obvious depth changes.
For multi-object segmentation, Mask-RCNN cannot accurately generate mask for heavily
occluded objects. The improved double pyramid feature fusion network is integrated into
the depth image, which not only retains the color and edge sensitivity of Mask-RCNN, but
also increases the sensitivity to depth change. Therefore, the occluded objects can still be
segmented. However, in the case of too much occlusion, the phenomenon of dividing the
same object into multiple objects (as shown in Figure 21g) needs to be further improved in
the follow-up work.

6. Conclusions

In this paper, a fast self-calibration, point cloud reconstruction and segmentation
method of RGB-D camera eye-in-hand system is proposed to quickly locate the target
in space.

(1) The algorithm in this paper is based on quaternion linear interpolation method for
spatial spherical autonomous path planning. It can realize the self-calibration of
the eye-on-hand system. The calibration of the RGB-D camera and the hand-eye
calibration can be completed after the initial poses are set manually. During the
self-calibration process, when the samples are 23, the calibration accuracy is close to
the hardware accuracy of the camera sensor. The overall calibration time depends on
the movement speed of the manipulator and the frame rate of the image acquisition
device. The integrated error of hand-eye system positioning in each direction is
less than 2 mm, which can reach the acquisition accuracy of the vision sensor. The
algorithm in this paper has a certain speed, convenience and accuracy.

(2) In the point cloud complementary image acquisition and point cloud registration
reconstruction. The algorithm in this paper is based on the KD tree, that can accurately
identify the missing pose of the point cloud hole. The holes in the point cloud are
extracted to plan the shooting pose of the complementary image, and the target
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object is photographed from multiple symmetric angles. Combined with the iterative
shooting pose of the manipulator, the rapid registration of the point cloud is realized,
and the complete outer surface model of the target object is obtained. In terms of
time and accuracy, it has greater advantages over traditional point-to-feature based
algorithms, and only takes 0.602 s to complete the registration of a million-level
point cloud. The accuracy of the reconstruction algorithm is less than 1.5 mm after
eliminating the camera hardware error, and the angle error is less than 1◦. The
maximum average error of the hand-eye system positioning in each direction is only
0.89% after excluding the camera hardware error.

(3) In point cloud segmentation, the improved double pyramid feature fusion Depth
image is used to segment the RGB image through Mask R-CNN and mapped to
the point cloud space, to achieve fast target segmentation of end-to-end 3D point
cloud. The algorithm in this paper performs well in the segmentation of large-area
occluded objects. Before the improvement, Mask-RCNN cannot accurately extract
and segment large-area occluded objects, but the improved algorithm can accurately
identify large-area occluded objects. Under multi-object stacking, the algorithm in this
paper is obviously better than before. The overall segmentation accuracy improved
by 3.1% over the pre-improvement, and that in the stacked case improved by 8% over
the pre-improvement.

However, the self-calibration algorithm in this paper is limited to the eye-in-hand
system, and further research is needed to extend it to the eye-out-of-hand system and
mobile robots. In the results of point cloud segmentation, although the algorithm can
segment large-area occluded objects, the discontinuity of point cloud caused by occlusion
makes the algorithm recognize it as two objects, which also needs to be further improved
in the follow-up work.
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