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Abstract: Due to the benefits of convolutional neural networks (CNNs) in image classification, they
have been extensively used in the computerized classification and focus of crop pests. The intention of
the current find out about is to advance a deep convolutional neural network to mechanically identify
14 species of tea pests that possess symmetry properties. (1) As there are not enough tea pests images
in the network to train the deep convolutional neural network, we proposes to classify tea pests
images by fine-tuning the VGGNET-16 deep convolutional neural network. (2) Through comparison
with traditional machine learning algorithms Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP), the performance of our method is evaluated (3) The three methods can identify tea
tree pests well: the proposed convolutional neural network classification has accuracy up to 97.75%,
while MLP and SVM have accuracies of 76.07% and 68.81%, respectively. Our proposed method
performs the best of the assessed recognition algorithms. The experimental results also show that the
fine-tuning method is a very powerful and efficient tool for small datasets in practical problems.

Keywords: CNN; fine-tune; SVM; MLP; tea pests classification

1. Introduction

In 2016, China is the largest producer of tea in the world, with a total output of tea
plant production exceeding 2.4 billion tons [1]. Tea trees (Camellia sinensis) are perennial
evergreen plants, and they are widely planted in south China, where the warm and humid
climate is particularly suitable for the growth of tea trees. Tea trees are especially suitable
for insects life because of their clumpy shrubbery, large-scale planting, and climates within
which they grow. Tea pests can cause 11–55% loss in yield if left unchecked [2]. However,
the abuse of insecticides can not only lead to resistance in some pests but also pollute
the environment. Some pesticides can also concentrate and accumulate in the food chain,
endangering human health. Timely diagnosis of insect pests and the adoption of efficient,
targeted, environmentally friendly prevention and control measures have become the main
challenges tea gardens are facing today.

Usually, tea pests diagnosis is based on appearance characteristics of insects. Due
to lack of pests biology and identification, farmers are unable to timely diagnose insect
pest types, thus causing serious damage to the production process. Furthermore, the
availability of agricultural experts is limited [3]. Therefore, an automatic identification
system for tea pests can ensure that agricultural producers accurately assess tea pests
and thus determine the most economical and effective control methods to employ. This
allows farmers to reduce labor costs and losses while ensuring the quality of tea. With the
rapid development of agricultural information technology, computer image processing,
and pattern recognition technology, image-based classification has been used to identify
crop pests [4]. At present, the general methods of image-based crop pest identification are
image acquisition, feature extraction, and classifier selection. Insect pest images can be
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obtained by photographing insect specimens. There are many online datasets containing
such images, such as ImageNet [5] and Plant Village [6]. The extracted features are mainly
based on global features (color, shape, and texture) and local features (scale-invariant
feature transform (SIFT), speeded-up robust features (SURF) and histogram of oriented
gradient (HOG). These features are easy to extract and require little computation and
therefore are most widely used. Finally, the extracted features are led to the classifier (such
as SVM, MLP, and KNN) for classification and recognition. The main disadvantage of the
above method is that it requires manual extraction in advance, and the selection of features
directly affects the final recognition accuracy.

In recent years, with the continuous expansion and improvement of the Internet and
hardware performance, deep learning theory has developed rapidly. Due to its superior
performance in feature extraction, model generalization, and fitting, it has attracted con-
siderable attention from researchers. CNN is widely used in image recognition. The main
characteristic of CNN is that it uses a stacked layer of non-linear processing units to extract
the features of input images autonomously, resulting in end-to-end feature extraction
and classification [7]. More and more agricultural researchers have begun to use CNN in
research and applications [8–11], which has further enhanced the accuracy of classification.

AlexNet [12] gained the ImageNet Large Scale Visual Recognition Challenge in 2012,
and the cnn has been broadly used for the reason that then. Currently, representative CNN
models include VGGNet [13], GoogleNet [14], and ResNet [15]. The CNN is composed of
repeatedly stacked convolutional layers and a pooling layer, as well as a full connection
layer for classification. Local receptive fields, shared weights, and pooling are the main
characteristics, and the network performs significantly higher than usual shallow machine
learning algorithms with handcrafted features.

Deep CNN require a lot of training data because of the big quantity of parameters
to be learned. The size of the training dataset determines the identification accuracy of
the network, which is liable to overfitting when a small training dataset is used. It also
affects the variance and bias during modeling. Over-fitting is that the model cannot be well
generalized from the original data set to a new data set, which is model error in statistics.
Although there are many online datasets with over a million images, like ImageNet, but
there are insufficient data in some specific fields, such as medicine and agriculture. Even if
there is a large amount of data, there are not enough labeled training data. Huge manpower
and financial resources are needed to create a training dataset from such a large amount
of data. Furthermore, in many machine learning methods, the training data and the test
data must conform to the assumption of independent and identically distributed [16].
Thankfully, transfer learning solves the small dataset problem [17,18]. Therefore, Transfer
learning is a machine learning method using the learned better features in the source
domain to train the related task or other domain; in other words, transfer learning uses
the parameters of the trained networks to improve the predictive function of the target
networks [19]. Meanwhile, the target networks do not need to be trained from scratch.
Instead, we can use the trained parameters of the source networks to train the target
networks, which can significantly reduce training time. Yosinski [20] used transfer learning
onCNN and proved the validity of this method; the results indicated that LeNet, AlexNet,
VGGNET, Inception, and ResNet are suitable for transfer learning. Many researchers have
studied transfer learning [21–25]. There are two main ways to implement transfer learning
in convolutional neural networks.

1. Take CNN (also recognized as the pre-training model) as the feature extractor, remove
the last layer of the network, take the rest of CNN as the feature extractor to get the
vectors, and then use these feature vectors to train a classifier (such as an SVM).

2. Fine-tune the weight parameters of the target CNN on the new dataset. In the
fine-tuning process, all the layer parameters of the model can be adjusted, or the
parameters of the first several layers of the model can be fixed. Then we train the
parameters of the last layers or just the softmax layer. We fine-tune the last layer
because the features extracted from the first few layers of the CNN are universal
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features, while the features extracted from the last few layers of the model are related
to datasets and classification tasks. Therefore, only the latter layers can be adjusted in
the new datasets, and the training time can be greatly shortened.

In this study, we adopt a classical CNN (VGGNET-16) to extract features and classify
tea pests images. The network is pre-trained on the ImageNet database and fine-tuned with
our tea pests images database. We compare our method against Support Vector Machine
(SVM) and Multi-Layer Perceptron (MLP) algorithms. The dense scale-invariant feature
transform (DSIFT)-based bag of visual words (BoVW) model is used to obtain image
features for the two classifiers. Liblinear classifier is used in order to get better accuracy
for large-scale data classification. And the one vs. rest implementation method is adopted,
which the advantage is the algorithm runs more efficient than the SVM. MLP classifier is a
kind of artificial neural network. This article mainly uses a three-layer perceptron structure.
As the extracted features are 1000-dimensional vectors, the input layer contains 1000 nodes,
the hidden layer contains 100 nodes, and the output layer contains seven nodes, which are
the number of tea leaf diseases, and 14 nodes are the number of pests.

2. Materials and Methods
2.1. Insect Image Dataset

Because there are not enough tea pests images on the Internet, we collected our own
pest photos in a field tea garden; this also made the network model to be more easily applied
to actual agricultural environment. Images of tea pests were taken 20 cm directly above
the pest and captured in the auto-focus mode at a resolution of 4000 × 3000 pixels using a
Cannon PowerShot G12 camera in real tea plantation environment in the Hubei province
of China. A total of 2562 tea pests images were obtained: these included 14 different insects
which possess symmetry property, as identified by an entomologist (Figure 1). All the
images in this manuscript were resized to 256 × 256 pixels, and the 224 pixels sub-blocks
of the image were randomly extracted as CNN input. In order to enhance the classifier’s
generalization potential a, we enlarged the size of the dataset. Three methods have been
used to convert the image and improve classification (Figure 2). Finally, there have been
13,487 images in the database.

The data are split into training dataset, validation dataset, and test dataset, with
percentage ratios of 80%, 10%, and 10%, respectively. The validation dataset determines if
the model is overfitting, and the test dataset is used for prediction and evaluation of the
models. Table 1 suggests the number of images for classes used in every datasets for the
pests classification.

Figure 1. Cont.
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Figure 1. Example tea tree pest images. (1) Homona coffearia (Meyrick); (2) Eterusia aedea (Linnaeus); (3) Euproctis pseudo-
conspersa (Strand); (4) Arctornis alba (Bremer); (5) Amata germana (Felder); (6) Rikiosatoa vandervoordeni (Prout); (7) Culcula
panterinaria (Bremer et Gray); (8) Scopula subpunctaria (Herrich-Schaeffer); (9) Ricania sublimbata (Jacobi); (10) Ricania
speculum (Walker); (11) Euricania ocellus (Walker); (12) Spilosoma menthastri (Esper); (13) Spilarctia subcarnea (Walker); and
(14) Ceratonoros transiens (Walker).

Figure 2. Examples of data augmentation used for R. vandervoordeni insect images. (a) Initial; (b) flip horizontal; (c) flip
vertical; (d) right-rotated 90◦; (e) left-rotated 90◦; (f) rotated 180◦; and (g–i) randomly cropped.
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Table 1. Dataset of 14 insects used in this study.

Class Number of Images from
the Dataset Used for Train

Number of Images from the
Dataset Used for Validate

Number of Images from
the Dataset Used for Test

(1) Ricania speculum (Walker) 768 96 96
(2) Euricania ocellus (Walker) 730 91 91
(3) Ricania sublimbata (Jacobi) 722 90 90

(4) Ceratonoros transiens (Walker) 768 96 96
(5) Spilarctia subcarnea (Walker) 804 101 100
(6) Homona coffearia (Meyrick) 710 89 89
(7) Eterusia aedea (Linnaeus) 774 97 97

(8) Culcula panterinaria (Bremer et Gray) 770 96 96
(9) Euproctis pseudoconspersa (Strand) 802 100 100

(10) Arctornis alba (Bremer) 760 95 95
(11) Rikiosatoa vandervoordeni (Prout) 843 105 105

(12) Scopula subpunctaria
(Herrich-Schaeffer) 794 99 99

(13) Amata germana (Felder) 790 99 99
(14) Spilosoma menthastri (Esper) 756 95 94

Total 10,791 1349 1347

2.2. Performance Measurements

Accuracy and mean class accuracy (MCA) indices were used to evaluate algorithm
performances. CCRk is first defined as the correct classification rate for category k, as
decided with Equation (1):

CCRk =
Ck
Nk

(1)

where Ck is the number of correct identifications for category k and Nk is the total number
of elements in category k. Classification accuracy is t decided with Equation (2):

Accuracy =
∑k CCRk·Nk

∑k Nk
(2)

MCA is decided with Equation (3):

MCA =
1
k ∑

k
CCRk (3)

where k is the total number of classes.

2.3. Pre-Trained Convolutional Neural Networks

We use the VGGNet architecture, which is developed by the Visual Geometry Group
of the University of Oxford and researchers from Google DeepMind. This architecture won
second place in the classification project and first place in the positioning project of the 2014
ILSVRC competition held by ImageNet. VGGNet constructs six kinds of CNN of different
structures: two networks with 11 layers, one network with 13 layers, two networks with
16 layers, and one network with 19 layers. These are realized by repeatedly stacking small
convolution kernels of 3 × 3 and maximum pooling layer of 2 × 2. The purpose of using
small convolution kernels is not only to ensure the visual field of perception but also to
reduce the parameters of the convolutional layer. Although the number of network layers
increases from 11 to 19, increasing the network depth will not bring obvious parameter
expansion; instead, higher accuracy will be achieved. Compared with the previous CNN
structure, the error rate of VGGNet is reduced. The network architecture is shown in
Figure 3. Layer parameters for the VGGNet-16 are shown in Table 2.
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Figure 3. Architecture of the VGGNet-16 network.

Table 2. Layer parameters for VGGNet-16.

Layer Parameter Output

Input 224 × 224 × 3 -
Conv1-1 64 convolution filters (3 × 3), 1 stride, 1 pad 224 × 224 × 64
Conv1-2 64 convolution filters (3 × 3), 1 stride, 1 pad 224 × 224 × 64

Max pool 1 Max pooling (2 × 2), 2 stride 112 × 112 × 64
Conv2-1 128 convolution filters (3 × 3), 1 stride, 1 pad 112 × 112 × 128
Conv2-2 128 convolution filters (3 × 3), 1 stride, 1 pad 112 × 112 × 128

Max pool 2 Max pooling (2 × 2), 2 stride 56 × 56 × 128
Conv3-1 256 convolution filters (3 × 3), 1 stride, 1 pad 56 × 56 × 256
Conv3-2 256 convolution filters (3 × 3), 1 stride, 1 pad 56 × 56 × 256
Conv3-3 256 convolution filters (3 × 3), 1 stride, 1 pad 56 × 56 × 256

Max pool 3 Max pooling (2 × 2), 2 stride 28× 28 × 256
Conv4-1 512 convolution filters (3 × 3), 1 stride, 1 pad 28× 28 × 512
Conv4-2 512 convolution filters (3 × 3), 1 stride, 1 pad 28× 28 × 512
Conv4-3 512 convolution filters (3 × 3), 1 stride, 1 pad 28× 28 × 512

Max pool 4 Max pooling (2 × 2), 2 stride 14× 14 × 512
Conv5-1 512 convolution filters (3 × 3), 1 stride, 1 pad 14× 14 × 512
Conv5-2 512 convolution filters (3 × 3), 1 stride, 1 pad 14× 14 × 512
Conv5-3 512 convolution filters (3 × 3), 1 stride, 1 pad 14× 14 × 512

Max pool 5 Max pooling (2 × 2), 2 stride 7× 7 × 512
Full Connect-6 4096 × 1 × 1, 1 stride 4069
Full Connect-7 4096 × 1 × 1, 1 stride 4069
Full Connect-8 14 × 1 × 1, 1 stride 14

Output - 1

Caffe’s Model Zoo provides a large number of pre-training models that can be used
for transfer learning [26]. We downloaded the VGGNet-16 model from Caffe’s Model Zoo
and pre-trained it on the ILSVRC 2012 (ImageNet) dataset [5].

2.4. Fine-Tune the CNN Model

Our target dataset is not very different from the ImageNet dataset, as we only re-
trained the last fully connected layers. If we retrained the whole network end-to-end,
then our training dataset would be prone to overfitting. The number of neurons in the
last softmax layer is replaced with the new class number (i.e., 14 neurons). As we only
trained the softmax layer of the network, the learning rate of the top layer’s parameters
(the convolutional layer) is set to 0, that is, the parameters were frozen, and there is no
need to train those layers. The parameters of the pre-trained VGGNet-16 were used as
initialization parameters for the top layers of the target networks, and the parameters of the
softmax layer were initialized with random values. The fine-tuning network is trained us-
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ing stochastic gradient descent with a batch size of 32. As the parameters of the pre-trained
model were randomly initialized and trained from scratch, the learning rate, step size,
and iterations were relatively large. Moreover, the parameters of the pre-trained model
were relatively good and did not need to be updated very quickly during the fine-tuning.
Therefore, the learning rate during fine-tuning is reduced accordingly. We changed the
basic learning rate from 0.01 to 0.001. The momentum is 0.9, and the weight decay is 0.0005.
Deep learning library Caffe is used to implement our experiments.

2.5. Dense SIFT-Based BoVW Model

The Bag of Word (BoW) model is initially mainly used for text classification and
retrieval technology. Due to the profitable utility of the BoW model in text classification
and retrieval and the robustness of local features of images, Csurka [27] introduced the
BoW model into the field of computer vision in 2004. The core idea of the BoVWis that the
image is handled as a document, with the characteristics of the image (usually the local
characteristics) being treated as words; however, the difference is that the images are not
ready-made words that need to be independent of each other. Similar characteristics can be
seen as a word, and the image can be described as an unordered set of local characteristics
(visual words). Although local features (such as SIFT descriptor) can describe an image,
each SIFT descriptor is a vector of 128 dimensions, and an image contains thousands of
SIFT descriptor. The computation is extremely heavy, and thus the vector data will be
clustered; a cluster can represent a word.

Image classification with the BoVW algorithm mainly includes the following steps.

1. Extraction and description the image features: Detect interest points through random
sampling and obtain local features of the image. Common local features descriptors
include the SIFT, SURF, and HOG. In our study, we employ the DSIFT descriptor. The
main difference between the DSIFT and SIFT is their different sampling methods. SIFT
descriptor detects and screens the feature point by building scale space. Conversely,
the DSIFT descriptor divides the image into rectangular areas of the same size and
then uses a fixed-size window to sample from left to right and from top to bottom with
a certain step length to extract the SIFT features. Finally, each feature is represented by
a 128-dimension vector. The features extracted by this method are evenly distributed
with the same specifications, and have stable illumination, translation, and rotation.

2. Construction the visual vocabulary: K-means algorithm is used to cluster the local
feature vectors of all sample images. The size of the visual vocabulary is N, if there
are N cluster centers (defined as a visual word). In this manuscript, the size of the
visual vocabulary is defined as 1000.

3. Image representation: We measure distance each local features to the visual word
of the vocabulary and map the local features to the nearest visual word. We then
compute the occurrences of each visual word in the image, which becomes a N-
dimensional numerical vector. In this paper, each tea pests image represented by a
1000-dimensional numerical vector.

4. Training classifier: In our study, we apply the SVM and MLP to classify and identify
the 1000-dimensional numerical vector and the label of the input image is determined
by the classifier. The workflow based on the BoVW model is shown in Figure 4.

Figure 4. Workflow based on the BoVW model used for insect recognition.
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3. Results

In this study, we evaluated the identification accuracy of tea tree pest species by
implementing a convolutional neural network and traditional machine learning algorithm.
We trained and fine-tuned the VGGNET-16 deep learning framework structure. The
experimental results are shown in Figure 5. The error matrices of the three methods are
shown in Figures 6–8.

Figure 5. Accuracy of the three classification models in identifying 14 tea pests.

Figure 6. Error matrix showing the classification accuracy of the CNN algorithm.
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Figure 7. Error matrix showing the classification accuracy of the MLP algorithm.

Figure 8. Error matrix showing the classification accuracy of the SVM algorithm.
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After fine-tuning the architectures, the identification accuracy of Ricania speculum
(Walker), Spilosoma menthastri (Esper), Ricania sublimbata Jacobi, Ceratonoros transiens
(Walker), Culcula panterinaria (Bremer et Gray), and Scopula subpunctaria (Herrich-
Schaeffer) were up to 100%. The identification accuracy of other pests is between 90% and
98.88%, and the overall MCA is 97.75%.

When using MLP, Ricania sublimbata Jacobi had the highest recognition accuracy
of 88.89%, followed by Ricania speculum (Walker) (accuracy of 87.5%). Arctornis alba
(Bremer) had the lowest recognition accuracy (only 54.74%). The identification accuracy of
other pests ranged from 62% to 82.83%. The MCA is 76.07%.

When utilizing the SVM, Ricania sublimbata Jacobi had the highest recognition ac-
curacy of 81.11%, followed by Ricania speculum (Walker) (accuracy of 80.21%). Arctornis
alba (Bremer) had the lowest recognition accuracy (49.47%). Other pests were identified
with an accuracy ranging from 57% to 67%. The MCA is 68.81%.

In addition, the performance of our method is compared against the methods in
literature [18]. The accuracy of our method is slightly higher than the aforementioned
algorithms (Table 3). Although the species of pests in Literature 29 are few, they have
a complicated shooting background, which is the main reason for their low accuracy.
Consequently, the method proposed here to classify tea pests is slightly superior to the
previously described algorithms.

Table 3. Comparison of our proposed algorithms and previously published classification algorithms.

Method Pest Category Accuracy (%)

VGGNet-16 14 97.75%

VGGNet-16 9 92.13%

VGGNet-19 9 97.39%

In general, the recognition accuracy of the convolutional neural network is better
than those of the traditional machine learning algorithms. By fine-tuning the pre-training
network on our dataset, the network could easily achieve state-of-the-art accuracy while
also saving a lot of training time. Therefore, transfer learning is an efficient deep learning
algorithm in image classification. It does not need to train the network from scratch and
has low dataset size requirements.

4. Discussion

Convolutional neural networks have been widely used in agricultural fields, such as
in plant disease identification, and with favorable performance. In this study, we showed
that image-based tea tree pest recognition with convolutional neural networks is efficient.
This method avoids the artificial extraction and filtering of features from images in advance,
as is the case in the SVM and MLP, thus saving a lot of time. Moreover, feature selection is a
subjective activity, and its quality directly affects the recognition accuracy of the algorithm.
However, the convolutional neural network can automatically carry out feature extraction
and recognition without human intervention.

Traditional machine learning involves learning knowledge from a large number of
annotated data and then using this model to classify new data. However, due to the small
amount of data available on tea pests, we applied the transfer learning method to realize
a deep neural network for tea pests identification. We could thus use a small amount of
training data and training time, and our experimental results showed that our network had
the highest prediction accuracies compared with two traditional classifiers. Therefore, we
showed that transfer learning can realize the identification of tea tree pests under natural
light conditions by fine-tuning the VGGNET model with a small size of data. The overall
identification accuracy is satisfactory.

In our paper, the process of sample data augmentation is time-consuming, but with
the non-stop boom of network data resources, the range of sample images of tea pests
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will proceed to increase and become easier to obtain. Although the current convolutional
neural network has a better identification accuracy than traditional classifiers for tea tree
pests, we still need to improve the operation time of the network. This is a direction for
future study. At present, the CNN has been applied to the identification of the grape pests.
However, it needs to be in addition investigated according to the actual situation of the
grape pests, so as to verify this model is highly optimized for general use. Meanwhile, our
next step is to apply transfer learning to other network structures to identify more species
of tea pests.
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