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Abstract: Breakthrough advances in informatics over the last decade have thoroughly influenced
the field of immunology. The intermingling of machine learning with wet lab applications and
clinical results has hatched the newly defined immunoinformatics society. Immunoinformatics of
the central neural system, referred to as neuroimmunoinformatics (NII), investigates symmetrical
and asymmetrical interactions of the brain-immune interface. This interdisciplinary overview on
NII is addressed to bioscientists and computer scientists. We delineate the dominating trajectories
and field-shaping achievements and elaborate on future directions using bridging language and
terminology. Computation, varying from linear modeling to complex deep learning approaches, fuels
neuroimmunology through three core directions. Firstly, by providing big-data analysis software for
high-throughput methods such as next-generation sequencing and genome-wide association studies.
Secondly, by designing models for the prediction of protein morphology, functions, and symmetrical
and asymmetrical protein–protein interactions. Finally, NII boosts the output of quantitative pathol-
ogy by enabling the automatization of tedious processes such as cell counting, tracing, and arbor
analysis. The new classification of microglia, the brain’s innate immune cells, was an NII achievement.
Deep sequencing classifies microglia in “sensotypes” to accurately describe the versatility of immune
responses to physiological and pathological challenges, as well as to experimental conditions such as
xenografting and organoids. NII approaches complex tasks in the brain-immune interface, recognizes
patterns and allows for hypothesis-free predictions with ultimate targeted individualized treatment
strategies, and personalizes disease prognosis and treatment response.

Keywords: machine learning; immunology; brain; microglia; big data

1. Introduction

Breakthrough advances in informatics have thoroughly shaped the field of immunol-
ogy. The intermingling of machine learning applications with wet lab and clinical results,
facilitated by the expanding marketing of user-friendly computer interfaces for lab scien-
tists, has hatched the newly defined society of immunoinformatics. Immunoinformatics
flourished in the last decade by detangling tumor immunology, predicting cancer epitopes,
and sequencing the adaptive immune receptor repertoires, as has been widely reviewed
previously [1,2].

In this review, the immunoinformatics of the central neural system (CNS) is referred to
as neuroimmunoinformatics (NII). NII emerges as a minor subfield out of the broader im-
munoinformatics community, with outlined aims and purposes that diverge from the more
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established neuroinformatics field. In the latter, computational advances, including deep
learning, engage in explaining, imitating, or predicting the output of neuronal networks
towards the probability “to spike or not-to-spike” in symmetrical models, usually without
encountering the role of parallel existing, asymmetrically intermingling cellular structures:
the glial cells [3]. NII aims to bridge this gap by determining immunological tissue states
using molecular and morphological information and associating immunology with physio-
logical processes, developmental stages, and disease pathogenesis. The contribution of NII
in exploring the brain-immune interface contributes to designing individualized treatment
strategies, thus personalizing disease prognosis and treatment response.

One individuality of NII compared to classical immunoinformatics is the multifaceted,
asymmetrical, and diverse profile of the CNS immune system. Microglial cells (MG),
the main orchestrators of the innate immunity behind the blood-brain barrier, are dual
receptors of both immunological signals and neuronal activity. This duality as immune
and homeostatic cells perplexes the MG responses to diseases and expands the field of
NII far beyond conventional immunological questions to embrace (patho-)genetic models
of development, aging, degeneration, and synaptic transmission [4]. Another challenge
confronting NII is the existence of the “blood-brain barrier”, optimally formulated as the
“blood-brain selective communication”. An essential pharmacokinetic component in NII
modeling is a complex epithelial barrier that modifies MG-lymphocyte communication,
antigen presentation, cytokine diffusion kinetics, and surface receptor expression in a
disease-selective manner.

The aim of this review is to provide a balanced interdisciplinary overview of infor-
matic approaches in the current NII research, its dominating trajectories, field-shaping
achievements, and future directions. Computation, varying from statistical modeling to
advanced deep learning approaches, fuels neuroimmunology through three core directions:
(i) providing analysis software for high-throughput methods and big-data; (ii) designing
deep learning models for automated analysis and prediction of symmetrical and asym-
metrical protein morphology, functions, interactions and molecular mechanisms, and
downstream pathways; and (iii) inspiring visualization tools of high-dimensional data that
inspire associations and reveal higher-order symmetries of the brain function. Another
non-amenable contribution of informatics with a crucial impact on globalization or re-
search is the organization of public repositories and analysis platforms, which broaden the
availability of multivendor data and rare material. Some indicative neuroimmunological
databases are listed in this review (Table 1), and plenty of others can be retrieved from the
cited literature. Interdisciplinary readability is supported by a glossary (Table 2).

Table 1. Public repositories in the neuroimmunological research.

Database URL Content

Sequencing

Glial heterogeneity www.glia-network.de/index.php/databases.html
(accessed on 1 July 2021) RNA-seq databases of glial cells

BrainRNAseq www.BrainRNAseq.org (accessed on 1 July 2021) RNA-seq database of glial cells

ImMunoGeneTics www.imgt.org (accessed on 1 July 2021) sequence, genome, structure and
monoclonal antibodies database

MSigDB, Molecular Signature
DataBase

www.gsea-msigdb.org/gsea/msigdb (accessed on
1 July 2021)

Gene Set Enrichment Analysis
database

GTEx, Genotype
Tissue-Expression repository www.gtexportal.org/home/ (accessed on 1 July 2021) eQTL database

ImmPort and ImmuneSpace www.immuneprofiling.org (accessed on 1 July 2021)
cross-essay human immunological
data, including computational
interface

www.glia-network.de/index.php/databases.html
www.BrainRNAseq.org
www.imgt.org
www.gsea-msigdb.org/gsea/msigdb
www.gtexportal.org/home/
www.immuneprofiling.org
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Table 1. Cont.

Database URL Content

IEDB, Immune Epitope
DataBase www.iedb.org/ (accessed on 1 July 2021)

antibody and T cell epitopes
studied in humans, non-human
primates, and other animal species
in the context of infectious disease,
allergy, autoimmunity, and
transplantation

ImmGen www.immgen.org/ (accessed on 1 July 2021)
microarray dissection of gene
expression and its regulation in the
immune system of the mouse

InnateDB www.innatedb.com/ (accessed on 1 July 2021)

genes, proteins,
experimentally-verified interactions,
and signaling pathways involved in
the innate immune response of
humans, mice, and bovines to
microbial infection

Morphology

Neuromorph www.neuromorpho.org (accessed on 1 July 2021) morphology, tracing reconstructions
of neurons, astroglia, and microglia

FARSight farsight-toolkit.ee.uh.edu/wiki/Main_Page (accessed on
1 July 2021)

Toolkit for Python, cell arborization
visualization, analysis, and
quantitation applying unsupervised
clustering

FindMyCells www.findmycells.org/index.html (accessed on
1 July 2021)

Deep learning tool for single-cell
detection

Table 2. Glossary.

Assay for Transposase-Accessible Chromatin Using
Sequencing (ATAC-Seq)

Method for Determining Chromatin Accessibility Across the Genome by
Sequencing Regions of Open Chromatin

Automated Segmentation Algorithm (ASA) Stereology Stereology with an integrated automated segmentation algorithm for cell
recognition

Blood-brain barrier Anatomical and functional blood vessels “seal” that keeps harmful
substances from reaching the brain

Chromatin Immunoprecipitation and DNAseq
(ChIPseq)

Chromatin Immunoprecipitation (ChIP) and next-generation sequencing
(ChIPseq) explores interactions between DNA, histones, and
transcription factors

Cytometry by Time of Flight (CyTOF) CyTOF is a hybrid method of mass spectrometry and flow cytometry,
based on isotope reporters

Epigenetics Heritable changes in gene expression that take place without altering
DNA sequence or modifications of the chromatin environment

Epigenome Wide Association studies (EWAS)

An epigenome-wide association study (EWAS) is an examination of a
genome-wide set of quantifiable epigenetic marks, such as DNA
methylation, in different individuals to derive associations between
epigenetic variation and a particular identifiable phenotype/trait

Expression and methylation Quantitative Trait Loci
(eQTL, meQTL) Genomic loci that explain the variation in RNA expression

Genome-Wide Association Studies (GWAS)
A genome-wide association study (GWAS) associates genetic variations
with diseases. The method involves a population-wide genome screening
and isolates genetic markers with possible disease predictive value

www.iedb.org/
www.immgen.org/
www.innatedb.com/
www.neuromorpho.org
www.findmycells.org/index.html
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Table 2. Cont.

Genome-Wide Transcriptional Profiling (GWTP)
Unbiased, hypothesis-free approach that associates genetic changes with
disparate states of the immune system to construct genotype-phenotype
associations

h-iPSC organoids

Organoids are in vitro cultured three-dimensional structures that
recapitulate key aspects of in vivo organs. They can be established from
pluripotent stem cells (PSC) and induced adult stem cells (iPSC). The
abbreviation “h-” speaks for the human PSC origin

Human Leukocyte Antigen (HLA) type
HLA are proteins that are located on the surface of the white blood cells
and other tissues in the body. There are three general groups of HLA:
HLA-A, HLA-B, and HLA-DR

Lacunarity and fractal dimension The fractal dimension represents the roughness (hence texture)
Lacunarity is a measure of gaps between (the fractal) objects

Lineage trajectories Clonal lineage tracing of stem cells to define the outcome of
differentiation

Microglial sensome Proteomics, genomics, and epigenomics defining microglial reactive
states

Microglial sensotypes Newly-introduced categorization of microglia based on the deep
sequencing profile (sensome) as a response to stimuli

Micro-RNAs (miRNA)

A microRNA (abbreviated miRNA) is a small single-stranded non-coding
RNA molecule (containing about 22 nucleotides) found in plants,
animals, and some viruses that functions in RNA silencing and
post-transcriptional regulation of gene expression

Neuroimmunoinformatics Immunoinformatics of the central neural system

Neuroinformatics
Neuroinformatics is the field that combines informatics and neuroscience.
Neuroinformatics is related to neuroscience data and information
processing by artificial neural networks

Probabilistic causal network models

More popular with the name “Bayesian networks”, probabilistic causal
networks provide a mathematical model for inferring causal relationships
among molecular and higher-order phenotypes. Bayesian networks
represent the most popular subcategory of probabilistic causal networks

PU.1 Transcription factor that activates gene expression during myeloid and
B-lymphocyte development

SALL1 Transcriptional regulator encoding gene allocated in microglia

Signature gene libraries Cell type-specific gene clusters

Single-cell profile deconvolution Predict cell-specific profiles from large cell populations using machine
learning and signature gene libraries

T-helper cell
Helper T cell, also called the CD4+ cell, T helper cell, or helper T
lymphocyte, a type of white blood cell and key mediator of the immune
function

Ventral and dorsal h-iPSC organoids Organoids deriving from ventral and dorsal neurotube stem cells

Xenografting Xenotransplantation or heterologous transplant, the transplantation of
living cells, tissues or organs from one species to another.

2. Literature Search and Field Definition

Broad literature research in NII was conducted in PubMed using the following MeSH
terms and modulations in several possible combinations: deep learning, artificial intelli-
gence, machine learning, informatics, transcriptome [AND] Immunology, microglia, anti-
bod*, complement, inflammation, immune cells, macrophages, lymphocytes [AND] brain,
brain development, brain aging, epilepsy, brain tumor*, brain degeneration, dementia.
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From a wealth of literature, we selected the most representative and impactful publica-
tions. All MeSH hits were evaluated for scientific rigor, editorial quality, journal reputation,
and indexing status in consensus. Meticulous work was granted to select:

1. Original publications and methods that contributed to breakthrough observations in
the field (result-oriented selection approach), such as the TYROBP role in Alzheimer’s
disease;

2. Well-renowned public databases that set a new cornerstone for data science (data-
driven approach);

3. Outstanding longitudinal works that reshaped the doctrines of neuroimmunology in
the last decade, such as the innovative classification of microglial cell activation and
the development of image reconstruction tools (longitudinal approach).

The broadness of this review required the inclusion of a wide range of data, varying
from in vitro to in vivo and in silico, deriving primarily from rats, mice, and human
beings. With particular references to public databases, neuroimmunoinformatics allows for
maximizing the usage and amplifying the impact of rare data, such as human databases of
rare diseases. Unless explicitly stated, the laboratory research is based on rodent models.

This review includes a selection of current breakthrough methods, such as the deep
learning implementation in immunological research on induced human Pluripotent Stem
Cells (iPSC) organoids.

3. Big Data-Omics in Neuroimmunoinformatics

In the following sections, we summarize some machine-learning facilitated neu-
roimmunological achievements from the field of MG genomics. Detailed resources and
technical details on available machine learning tools and platforms have been reviewed
elsewhere [2,4–8]. This chapter is structured to illustrate genetic research in a top-down ap-
proach, from tissue-based to the single-cell or even subcellular level. A separate paragraph
describes the influence of NII on epigenetics.

3.1. Genome-Wide Studies

Genome-Wide Transcriptional Profiling (GWTP) applies genome-wide transcrip-
tomics to create hypothesis-free associations between genetic changes with disparate
states of the immune system, hence constructing genotype-phenotype associations [6].
Although GWTP studies offer a precious substrate for data-driven research, the method
is tissue-based and includes non-weighted information from various cell types. Machine
learning powers the implementation of signature gene libraries, i.e., cell type-specific gene
clusters, to infer single-cell profiles from GWTP tissue data, a process called “single-cell
profile deconvolution”. Thus, using machine learning, deconvolution studies predict
cell-specific profiles from GWTP big-data [9,10]. Some powerful deconvolution algorithms
in immunoinformatics are CIBERSORT [11], trained on microarray data of immunological
databases such as the Immunological Genome Project (ImmGen) [12], TIMER [13], and
MCP counter [14], trained on RNA sequencing (RNA-seq) data. Both can predict immune
cell populations in a tissue sample genome or transcriptome based on signature genes [1].
In recent original work, Elkjaer et al. used GWTP to describe lesion endophenotypes in the
progressive type of multiple sclerosis. TGFβ-R2 was identified as a central hub, and decon-
volution analysis revealed astrocytes as the cellular source of TGFβ-R2 in remyelinating
lesions [15]. Deep sequencing and deconvolution studies showed an unexpected microglial
transformation between normal white matter and active lesions. The marker CD26/DPP4
was expressed by microglia in the normal white matter and by mononuclear cells in active
lesions, indicating that a unique subset of microglia transforms to mononuclear cells in
the context of active multiple sclerosis lesions [15]. The authors emphasize the critical
contribution of transcriptomics and deconvolution in endophenotyping and accentuate
that gene expression should be interpreted in the context of different lesion types [15].

Despite recent controversies [16], Genome-Wide Association Studies (GWAS) [17]
and Epigenome Wide Association studies (EWAS) [18] are established robust tools to infer
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genotype-phenotype associations and create risk-genome-clusters for diseases of interest,
such as bipolar disorder [19]. The statistical methods of GWAS [20,21] and EWAS have
massively profited by informatics developments, including the recent establishment of
the EWAS2.0 software [22]. Deep learning expands the mining depth into big data and
integrates regulatory effect predictions of single variants into a multivariate GWAS setting.
Publicly available software resources, such as the DeepWAS [23] and the GenoWAP [24],
are worth mentioning. Integration of single nucleotide polymorphisms (SNP), expression-
and methylation-Quantitative Trait Loci (eQTL and meQTL) improved the identification
of disease- or trait-relevant, transcriptionally active genomic loci for multiple sclerosis and
major depressive disorder compared to GWAS alone [23]. Genetical polymorphism of the
tumor necrosis factor alpha receptor 1 (TNFRSF1A gene) was associated with multiple
sclerosis in genome-wide association studies. The same group linked the polymorphism
of a negative regulator of NFkB (TNFAIP3 gene) to multiple sclerosis as well as other
autoimmune diseases [25].

Next-generation sequencing, wide-genome-association, and epigenome-association,
as well as whole-brain transcriptome studies assisted by informatics and deep learning
applications, have constructed a robust scaffold to elucidate the biological complexity and
re-classify the “reactive” profiles of brain macrophages, the MG cells, as comprehensively
reviewed by Wes et al. [8]. The “omics-based” MG analysis, referred to as “microglial
sensome” is a fundamental neuroimmunology achievement powered by deep learning
technologies, discussed in detail in the dedicated Section 4.

3.2. Single-Cell Studies

Massively parallel RNA sequencing (RNA-seq) is a standard gene expression assay
that interrogates relative transcript abundance and diversity. Deep learning and informatics
approaches that enable the administration of RNA-seq big data, as well as online platforms
and tutorials for RNA-seq, have been meticulously reviewed by Griffith et al. [5]. The
Tuxedo suite is a cloud computing RNA-seq software available at rnaseq.wiki [5]. RNA-seq
modalities include reference genome databases, quality control modalities, and detection
of alternative splicing and splice variants with Cufflinks [5,26], or differential usage of
exons using DEXSeq [27].

Single-cell genomics and single-cell RNA-seq (scRNA-seq) is a crucial study tool of
the immunological repertoire. ScRNA-seq provides high-throughput and high-resolution
data that enable an understanding of the single-cell fine-tuning, metabolic changes, lineage
trajectories of lymphocytes via B-cell Receptor (BCR) and T-cell Receptor (TCR) characteri-
zation, and other details that are likely masked under the data volume of wide genome
studies [7]. In a prototype study, Zhang et al. [28] purified eight different cell types from
the mouse cortex, including microglia, other glial cells, neurons, and vascular elements,
to construct scRNA-seq transcriptome databases and interrogate for cell-type enriched
genes as well as splicing isoforms. Besides characterizing crucial metabolic and alternative
spicing differences between the included cell populations, studies such as Zhang et al. [28]
set a new trajectory in neuroimmunology and signalized the necessary shift from the
classical morphological and immunohistochemical “low throughput” approaches towards
high-throughput, informatics-assisted-omics.

Single-cell RNA-seq can be combined with Cytometry by Time of Flight (CyTOF).
CyTOF is a hybrid method of mass spectrometry and flow cytometry, based on isotope
reporters. Compared to conventional flow cytometry, CyTOF can offer a significantly
increased cell marker number (up to 40 markers/cell), simultaneously analyzed. Cells
are stained with antibodies conjugated to transition element isotopes and vaporized to
ionization. Time of flight mass spectrometry reads the resulting elemental ions and can
separate cells based on the targets’ expression. CyTOF requires tedious analysis using
biaxial plots and Spearman associations (SPADE software, http://pengqiu.gatech.edu/
software/SPADE/, accessed on 1 July 2021).

http://pengqiu.gatech.edu/software/SPADE/
http://pengqiu.gatech.edu/software/SPADE/
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An extensive repertoire of informatics databases, such as ImMunoGeneTics (Table 1),
which includes applications dedicated to RNA-seq acquisition, data processing, visu-
alization, and pitfall rectification, has been adeptly summarized by Neu et al. and
Kidd et al. [6,7].

3.3. Expression Quantitative Trait Loci

Expression quantitative trait loci (eQTL) are chromosomal loci that explain the vari-
ance in expression traits of mRNA or a protein; eQTL analysis requires massively parallel
RNA sequencing in the same sample, allowing for a real-time linking of the transcriptional
profile and DNA–RNA interactions. Matrix-eQTL is an algorithm for eQTL analysis [6,29]
compatible with R [30] and MATLAB (The Mathworks, Natick, CA, USA), which has
been broadly applied in cancer research [31]. Combined genome-wide association studies
(GWAS) with eQTL and SNP were used for defining the downstream regulatory effect of
expression-modifying SNPs. Mirza et al. characterized epilepsy-associated hippocampal
cis-eQTLs and associated them with samples of epileptic patients and febrile seizures,
but not with other hippocampal pathologies such as Alzheimer’s disease and schizophre-
nia [32,33]. QTL studies have promoted research on human MG by enabling the characteri-
zation of sophisticated models such as the human monocyte-derived microglia-like cells
for in vitro studies of degenerative diseases [34].

3.4. Epigenetics, ChIP-Seq, and ATAC-Seq

Epigenetic studies emphasize the sequencing of transcriptionally active DNA. Chro-
matin Immunoprecipitation and massively parallel DNA-seq constitute the ChIP-seq
method, which precipitates histones and sequences the co-precipitated DNA. The Assay
for Transposase-Accessible Chromatin using sequencing (ATAC-seq) method reveals the
chromatin accessibility landscape in epigenetic studies [4]. Gene enhancers were classified
according to the ChIP-seq method as “active”, “poised”, or “latent”/“repressed” [35],
allowing for differential chromatin accessibility in homeostasis, development, and cancer.
The ChIP-seq method has received particular interest in investigating immune memory
in MG and macrophages (MΦ). Immune memory was determined to be an epigenetic
event, defined by alterations at the expression levels of gene enhancers, i.e., latent gene
enhancer activation and co-aggregating with MG lineage determining factors such as PU.1,
SALL1, etc. [4]. Moreover, ChIP-seq studies have significantly contributed to isolating and
studying T-helper cell subtypes, such as Th17 [36–38] and follicular T-helper cells [24,39].

Wheeler et al. implemented RNA-seq, ATAC-seq, and ChIP-seq to study the en-
vironmental effects in neurologic disorders. The herbicide “linuron” is an astrocytic
pro-inflammatory stimulus that activates the signaling pathway of the sigma receptor
1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). RNA-seq,
ATAC-seq, and ChIP-seq analysis strongly associated IRE1α-XBP1 signaling with the
murine model for multiple sclerosis [40].

A thorough synopsis of ChIP and ATACseq compatible software has been published
by Kidd et al. [6].

4. Microglial “Next-Generation” Classification: From “Resting” to “Active”, to
“Polarized”, to “De Novo Classified”

MG are antigen-presenting, macrophage-like cells of myeloid origin [41] that or-
chestrate the innate immunity core response on the “brain” side of the blood-brain bar-
rier [42–44]. Due to their central role in immune CNS responses and their well-studied
nature, MG are a significant attraction pole to neuroimmunologists [45]. Based on previous
MΦ knowledge, pertaining attempts aim to associate morphology with function and cor-
relate anatomical variants with immune activity under the established terms “resting” or
“scavenging”, ramified cells, and “activated” or “ameboid” MG [46,47]. Sequencing and
flow cytometry, as well as protein expression, allowed for a further sub-classification of
“activated” MG to M1-inflammatory and M2-cytoprotective polarization [48], analogous to
previous findings from the field of peripheral MΦ [49,50]. Recent technological advances
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in sequencing, including next-generation sequencing and other high-throughput methods,
revealed new dimensions of the MG genome. Transcription and expression mechanisms
could be studied both in-depth by scRNA-seq and in-width as part of a cell population in a
tissue, in health and disease through GWAS [8]. Extensive sequencing data and dedicated
computational approaches for meaningful analysis and visualization [6,7] have established
a new era of data-driven experimental approaches and theory formulation, magnifying
the efficacy of the conventional hypothesis-driven, wet-lab experimental designs. Hence,
the current immunological field grows beyond the “resting”, “active”, and “polarized” mi-
croglial phenotypes to introduce the “de-novo classified” microglia. The new-established
terms “sensome” and “sensotypes” have emerged to describe microglia-enriched genes
as detected by the technologically expanding scRNA-seq [7]. The current deep cellular
understanding abandons the theory of microglia-specific markers and moves towards
microglia-enriched genome constellations, with a specificity dependent on the study tissue
and its rest molecular signature [51]. Ongoing studies on microglial sensotypes can be
registered in a central repository, the Glia Open Access Database [52]. Outstanding field
reviews summarizing original breakthrough works are cited below [4,8,51,53,54].

Examples of Microglial Sensotypes

De-novo MG classification based on the transcriptional profile (RNA-seq) is a sig-
nificant NII achievement. In contrast to the classical names “resting”, “surveying”, and
“activated”, new emerging terms provide a more detailed functional description. Some of
them are listed below:

1. Homeostatic/resting sensotype or “sensing” MG: is the sensotype that differentiates
MG from MΦ in the healthy brain, based on gene expression. Such differentiation is
morphologically not possible. Transcripts such as Hexb, Tmem119, Siglech, P2ry12,
and Olfm13 are unique to mice MG, distinguishing them from brain MΦ [4,28,55,56].
Cx3cr1 is a gene with strong MG expression, suggested as a signature gene for MG,
despite controversies [57]. Micro-RNAs (miRNA) such as miRNA99a, miRNA125b-
5p, and miRNA342-3p are expressed only in MG and not in other myeloid cells in
murine models [57], whereas the fingerprint of human versus murine MG is still a
challenging research terrain [58]. Evidence converges towards Tyrobp as an important
sensing factor [56], PU.1 as the most decisive transcription factor, and TGFβ as the
most robust lineage upstream stimulator of human MG [4,51].

2. Aging MG [59] and Disease-Associated Microglia (DAM) in neurodegenerative dis-
eases [60] share a similar gene expression signature [61] with ApoE upregulation and
dystrophic TGBβ responses [4], while classical MG-signature genes such as P2yr12,
Siglech, Tmem119, and Cx3cr1 are downregulated [51,56].

3. Inflammatory MG or “acute activated” MG share similarities with peripheral MΦ.
Current nomenclature classifies acute activated MG according to the induction stim-
ulus, e.g., MG(IL4) for interleukin 4 and MG(LPS) for lipopolysaccharide stimula-
tion [8,53].

4. Induced human MG (iMG): informatics has supported stem-cell technology and
provided tools to characterize iMG in vitro, either in an austere environment or in co-
culture with h-iPSC organoids. Besides co-culture induced changes such as SIGLECH
upregulation and Tmem119/Tyrobp downregulation, scRNA-seq technology allowed
for spotting iMG sensome differences between ventral and dorsal h-iPSC organoids,
with significant overexpression of inflammatory genes such as TNFa, IL6, and TREM2
in the ventral organoid iMG [62].

5. Xenografted human MG (xMG) in mouse brain chimeras; Xu et al. applied scRNA-
seq to sensotype xenografted human brain microglia in MG-depleted mouse brain
chimeras [63]. The xMG sensome was evidenced to retain microglial (TMEM119,
P2Ry12, SALL1, and OLFML3) and hominid (SPP1, A2M, and C3) traits as xenograft [58].
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5. Machine Learning for Prediction of Protein, Cellular, and Network Interactions

Studying protein–protein interactions (PPI) is an essential research strategy in molecu-
lar biology, including neurobiology. However, screening for PPIs is a time- and resource-
consuming process only performed by labs with the required capacity and equipment.
Deep learning is a game-changer in PPI research because it allows for the assembling of
molecular databanks, which can be screened for interactive domains in a cost-effective
and less time-consuming way [64]. Despite the still low coverage and the low signal-to-
noise ratio, computational methods conquer the position of the gold standard in screening,
discovering new PPIs, and benchmarking experimental methods.

PPI deep learning methods profit from high-throughput sequencing to reconstruct the
primary protein structure. Secondary and tertiary units in possible interaction are predicted
based on amino-acid interaction databases [65–69]. Deep learning models, such as the
suggested network by Hashemifar et al., predict protein-protein interactions, including
homodimerizations, based on the amino-acid sequence alone [64].

5.1. Protein-Epitope Affinity Prediction, Cytokine-Receptor Interactions, and Epitope Prediction

Within the large field of PPIs and sequence-based neuroinformatics, the subfield
of protein-epitope interactions is particularly attractive to CNS research. Within this
large subcategory, cytokine-receptor interactions (CRI) epitomize a growing field in brain
physiology, immunity, and immune-oncology. Numerous examples, such as the role of
the CX3CL1-CX3CR1 axis in aging [70,71], synaptic pruning and social behavior [72,73],
the role of inflammatory cytokines in depression [74], CCL5-CCR5 in the neurobiology of
the glioblastoma multiforme [75], the SDF-1/CXCR4 axis in metastatic brain disease [76],
as reviewed by Ransohoff et al. [77,78], should be mentioned. Neural networks can
predict CRIs using deep autoencoders; classifiers such as the random forest and K-means
have performed satisfactorily in previous research [79]. Deep learning approaches in CRI
perpetuate the significance of public repositories. The classifier can be supplied with
large databases for high-throughput and data-driven research, which would have been
impossible with the available wet lab methods. An indicative list of public repositories that
can be engaged in CRI research is provided in Table 1.

Besides exploring deep sequencing data for possible PPI/CRI, informatics can provide
virtual benchmarks, exploiting the negative sample space in protein interactions. Nath et al.
created a database of non-interacting protein pairs, to be used as a gold standard for
benchmarking and standardizing the training of CRI-classifiers [80].

Deep learning as a PPI tool is increasingly implemented in epitope prediction after
protein folding in secondary and tertiary structures. Liu et al. used deep learning to predict
B-cell epitopes and developed a tool (http://ccb1.bmi.ac.cn:81/dlbepitope/) (accessed
on 1 July 2021) to be used in adjunction with the IEDB database (Table 1) [81]. The
authors used a four-layered network (DLBEpitope) to define the optimal peptide length
necessary for accurate epitope prediction of the folded protein, hence offering an epitope-
prediction solution and computational economy to the user. Similar developments were
noted in the field of epitope-HLA interaction prediction. The SYFPEITHI tool (http://www.
syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm, accessed on 1 July 2021) predicts
the ligation strength of an amino-acid sequence to a defined HLA type [82]. Another
promising recurrent neural network was published under the abbreviation “MARIA” by
Chen et al. MARIA predicts an epitope’s probability to elicit a strong CD4+ T-cell response
with an AUC of approximately 0.9 [83]. Similar software solutions for the prediction of
HLA-class-I and HLA-class-II B- and T-cell repertoires are of particular relevance in the
field of vaccine design and have been extensively reviewed elsewhere [84–86].

5.2. Cell-Cell Interactions and Multiscale Network Modeling

Besides the classical computational neuroscience models integrating pure neuronal
circuits [87], machine learning applications are increasingly implemented in studying
neuron-glia interactions. Nakae et al. [88] introduce a paradigm of linear modeling to pre-

http://ccb1.bmi.ac.cn:81/dlbepitope/
http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm
http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm
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dict neuron-astrocyte interactions using calcium signaling. Transferring this model to the
context of NII, a challenging approach would integrate MG to build a three-compartment
network model based on the two-compartment Nakae et al. model. Hampered by the
lack of excitable membranes [89,90], MG is not accessible by fast signaling methodolo-
gies, field-potential electrophysiology, or calcium imaging. While it is known that MG
membranes are rich in voltage-, stretch-, or ligand-gated ion channels that tune homeo-
static and reactive functions, this type of channel activity is only measurable by single-cell
low-throughput methods, such as patch-clamp recording. Therefore, the lack of elec-
trophysiological high-throughput data hampers MG integration into multiscale network
modeling [89]. Alternative methodological approaches such as tomato-lectin staining and
two-photon in vivo imaging [91–93] can infer functional changes and provide material for
data-driven hypotheses, especially when combined with deep sequencing methods. Simul-
taneous gene regulatory network reconstruction from scRNA-seq data such as SCENIC [94]
could provide a scaffold for multiscale network models and open new research paths.
To our current knowledge, integrating microglial activity in a multimodal gene network
context [95] remains an open challenge in neuroimmunoinformatics.

5.3. Probabilistic and Causal Gene Regulatory Networks

Integration of large-scale public datasets with large-scale -omics (e.g., genomic data
from whole-genome sequencing and transcriptional data) and implementation of Bayesian
statistics can conclude causal inferences on the immunological basis of diseases [6]. As a
widely recognized contribution, the association of TYROBP as a key driver gene to sporadic
Alzheimer’s disease was discovered by probabilistic causal network models [96,97]. Despite
the broad dynamic of gene regulatory networks in illuminating gene-disease associations,
possible pitfalls call for critical interpretation. Regulatory networks are usually cross-
sectional studies with a considerable variety of different time points of the disease of
interest, which might be a significant confounding factor. Large sample sizes and critical
result interpretation should compensate for misconceptions, and cohort studies should opt
for different time points of the disease.

6. Machine Learning in Neuropathology and Immunoprofiling

Artificial intelligence applications are gaining popularity in pathology because they
bear the attractive potential to overwhelm the rate-limiting step of human processing:
the low throughput. Deep learning-based immunopathology takes advantage of high-
throughput data from digital pathology [98–101]. Both supervised and unsupervised
machine learning applications are implemented in immunoneuropathology for differ-
ent purposes [102] and claim improvements in the reading time as well as solutions to
subjectivity problems such as the inter-reader variability.

Cell classification from peripheral blood samples is an established computational
field with many competing applications. Kutlu et al. compared recurrent convolutional
neuronal networks for the white blood cell classification from peripheral blood samples,
finding a superior performance of Res-Net [103]. Beyond peripheral blood samples, deep
learning algorithms can cope with the complexity of tissues and challenge not only the
manual histological semiquantitative imaging, but also older methods of unbiased cell
counting [104].

6.1. Microglial Segmentation and Counting

In contrast to peripheral blood cells, MG should be segmented from a noisy back-
ground [105]. The highly ramified MG structure [90], described as lacunarity and fractal
dimension in the technical language of applied mathematics and image analysis, is at the
same time a good indicator of the microglial activation status and a technical challenge for
computer vision in immunopathology [106,107]. Previous attempts to automatically seg-
ment MG have reached a detection accuracy from 80–90%, facing, however, the problem of
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false negatives due to cell overlapping, texture variabilities, noisy background, and staining
inhomogeneities that prohibit the success of standard thresholding models [105,108,109].

Liu et al. circumvented the bottleneck of manual histological image analysis of
arborized cells by an unsupervised machine learning pipeline for the high throughput
counting of MG and astrocytes [110]. The pipeline improved the analysis time 200 times
using an Opera Phenix High Content Screening (PerkinElmer Inc., Hamburg, Germany)
high-throughput imaging input. PhenoLOGIC (Phenologic, MI, USA) computer vision
is a training image set utilizing supervised machine learning to differentiate background
from tissue, integrated by the Harmony High Content Imaging and Analysis software
(PerkinElmer), which segmented MG by intensity thresholding. The suggested pipeline for
automated image analysis provides the total Iba1 brain coverage and extends the analysis
to other cellular compartments, such as astrocytes (GFAP and AQP4). Most false-negative
results were derived due to inhomogeneities in staining intensity, thus confirming previous
observations from independent groups that staining intensity fluctuations are a significant
burden for artificial intelligence methods in cell counting [105,109].

Unbiased stereology is an established statistical model for predicting the density of
geometrical structures in space (e.g., cells, cellular processes or arbors, synapses, particles)
based on randomized cell counting from thick tissue slices. Stereology has contributed to
significant advances in the field of neuroimmunology, bridging immune reactions with cog-
nition [111], dementia [112], and epilepsy [47], among others. Mouton et al. [113] performed
a longitudinal scientific work towards the automation of the software Stereologer® (SRC
Biosciences, Tampa FL, USA), and suggested an Automated Segmentation Algorithm
(ASA) for the deep learning stereology of immunostained neurons and MG in mouse neo-
cortex. ASA is intended to work in a human-in-the-loop interactive pipeline to perform cell
segmentation without a priori shape assumptions. Despite the increased shape-complexity
of MG, ASA performed a better detection of MG than NeuN-stained neurons [113]. The
primary software drawback was the spatial cell overlapping. ASA was subjected to im-
provements by the same group; Alahmari et al. introduced a next-generation unbiased
stereology approach, the FAST-Stereology (Fully Automated Stereology Technology), in
a model that improves ASA reading time and reliability for neuronal detection with less
than 2% error [114]. The deep learning convolutional neuronal network U-net [115] is
trained on a supervised mask for automated cell counts in the dissector field, thus boosting
unbiased stereology with the multiplication power of deep learning. FAST was successfully
tested for NeuN measurements in mouse neocortex slices and opened new frontiers for the
measurement of more complex and challenging cell appearances, such as densely packed,
ramified cells and fragmented branches of astroglia and MG.

Horvath et al. brought about improvements in the detection of ramified cells, in-
fluenced by the innovative work of Suleymanova et al. [116]. A deep convolutional
neural network approach for astrocyte detection (made available in the software platform
FindMyCells©, www.findmycells.org, accessed on 1 July 2021) outperformed classical
methods such as ilastik© (https://www.ilastik.org/, accessed on 1 July 2021) and Im-
ageJ© (https://imagej.nih.gov/ij/, accessed on 1 July 2021) in both accuracy and time
performance. Compared to manual counts, FindMyCells did not underperform human
intelligence in astrocyte counting. Challenging FindMyCells with MG counts and one-by-
one by comparing FindMyCells with ASA- or FAST Stereology are open challenges in the
field of automated quantitative neuroimmunopathology.

Beyond the field of cell detection and segmentation in statical images, immunoinfor-
matics shapes the field of cell detection and cell tracking in video microscopy. Gregorio da
Silva et al. [117] trained a network to detect leukocyte recruitment using intravital video
microscopy in different contexts, including inflammatory models of the CNS. By setting
their available code, the authors provide a valuable immunoinformatic tool to the field of
inflammation research in models such as the experimental autoimmune encephalomyeli-
tis [118].

www.findmycells.org
https://www.ilastik.org/
https://imagej.nih.gov/ij/
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6.2. Cell Arborization Analysis

Dendritic arborization, also known as dendritic branching, is the property of MG, neu-
rons, astrocytes, and other cells, to form new dendritic trees and branches, which anatomi-
cally support the establishment of new contact points to their environment. While manual
reconstructions of the cell bodies and arbors using standard tools such as Neurolucida®

(MBF Bioscience, Williston, VT, USA) can provide clues on the brain immune status [47],
they are extremely time-consuming. The urge for an errorless and time-effective automated
arborization analysis of cell traces has two constituents: (i) automated cell tracing and
(ii) systematic, unbiased quantitative arborization analysis.

Ascoli et al. extensively addressed the problem of a time-effective and objective
arborization analysis. Introduced by Scorcioni et al. as the LM-tool and improved by
Luisi et al. in the FARSIGHT tool, this standalone freeware platform offers a multi-
parametric quantitative arborization analysis using unsupervised co-clustering [119,120].
Lu et al. [121] developed the Scorcioni L-Measure by adding diffusion distance measure
and harmonic analysis. Lu et al. identified hierarchical arborization in reconstructed
cells and offered a valuable tool for creating hypothesis-free assumptions on microglia
morphology and function. Available as the FARSIGHT standalone tool or packaged for
MATLAB (MathWorks, Natick, MA, USA), Lu’s quantitative analysis is a powerful analysis
tool, limited only by the availability of computational resources.

6.3. Automated Cell Arbor Tracing

Automated deep learning-based trace analysis copes with the demand for high-speed
processing of reconstructed cells. Even though most automated trace analysis methods were
inspired by and dedicated to neuronal arbors, there is an obvious shift towards glia research.
MG arborization is associated with functionality. Glia populations are, compared to
neurons, more numerous and densely packed, and the deduction of dynamical population
trajectories requires the tracing and arborization analysis of large cell datasets, which is
hugely time-consuming [47]. This scientific problem drives the design of automated tracing
analysis algorithms. Megjhani et al. [122] performed large-scale automated microglial
arborization analysis from confocal images. The algorithm is based on a sparse over-
complete dictionary learning method and 3D-seeding. The authors feed automated traced
cells to a harmonic co-clustering L-measure data analysis pipeline [120] to create cell
clusters similar to the benchmark manual reconstructions. Megjhani’s results override
the accuracy scores of previous methods [123,124], offering a 73% specificity and 95%
sensitivity compared to the human benchmark.

6.4. End-to-End Solutions for Microglia Characterization: Interfaces for Implementation by
Biologists and Non-Computer Scientists

The penetration of innovative tools depends on the simplicity and ease of use by
non-informatic professionals, such as biologists, immunologists, and clinicians. Various
study groups have promoted the necessity of automated end-to-end solutions with closed-
loop intermediate states, available as standalone software independent of the ground
programming language (Java, Python, C++, etc.).

Roysam et al. [125] compiled an end-to-end cell arborization analysis solution perform-
ing image registration, segmentation, tracing, and feature extraction in a single, PythonTM

(https://www.python.org/, accessed on 1 July 2021) orchestrated pipeline. The Python-
based tool integrates building blocks from different programming languages, including
FARSIGHT (C++) and Fiji (Java). It incorporates a self-developed automated tracer based
on seed points, with satisfactory results compared to the benchmark. The pipeline receives
as input confocal microscope images and provides a detailed analysis of MG arborization
in a region of interest as a final product.

The term “pattern prediction” describes cell function prediction based on cell mor-
phology using mathematical modeling. Kyriazis et al. [126] suggest an end-to-end system
for automatic characterization of Iba1 immunopositive MG using whole-slide imaging

https://www.python.org/
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as input. The model focuses on analyzing MG in white matter and integrates a Support
Vector Machine (SVM)-based white matter classifier. MG is reconstructed with Otsu’s
multi-thresholding method, tackling the problem of varying staining intensity, which has
been a drawback of previous models [105]. The leading indicators of microglial shape in
the algorithm of Kyriazis et al. [126] are the box-fractal dimension and lacunarity, offering
a sensitivity and specificity of 76% and 84% over the human standard of an experienced
neuroscientist.

Both algorithms of Rey-Villamizar et al. [125] and Kyriazis et al. [126] are open for
improvements. However, they already deflect the sense of a new era in quantitative mi-
croscopy, where informatics overwhelm the hurdle of the human speed rate-limiting factor.

7. Conclusions

This interdisciplinary overview of informatic approaches in the current neuroimmuno-
logical research highlights the dominating trajectories and field-shaping achievements and
elaborates on future directions. Computation, varying from linear modeling to multiplexed
deep learning approaches, fuels neuroimmunology through three core directions: (i) provid-
ing analysis software for high-throughput methods and big-data such as next-generation
sequencing and genome-wide association studies; (ii) designing deep learning models
for automated analysis and prediction of symmetrical or asymmetrical protein morphol-
ogy, functions, interactions, and molecular mechanisms; and (iii) boosting the output of
quantitative neuroimmunopathology in terms of automated cell counting, tracing, and
arbor analysis applications. Significant field achievements are set to intrigue the interest of
both computer scientists and wet-lab scientists. Neuroimmunoinformatics is a promising
environment in terms of individualized treatment strategies, personalization of disease
prognosis, and treatment response, with a high potential to analyze the high throughput
of asymmetrical processes and reveal higher-order symmetries and associations in the
brain–immune interface.
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