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Abstract: We review classical studies of the oscillatory-precessional motion of an electron in the field
of an electric dipole (the latter representing the polar molecule) with or without external magnetic or
electric fields. The focus is on the most recent studies. In one study (at zero external field), it was
shown that, generally, the oscillations being in the meridional direction and the precession being
along parallels of latitude can take place on the same time scale—contrary to the statement from the
previous literature. In another study, it was shown that a magnetic field enables new ranges of the
bound oscillatory-precessional motion of the Rydberg electron and that in one of the new ranges, the
period of the θ-oscillations has the non-monotonic dependence on primary parameter of the system.
This is a counterintuitive result. In yet another study, it was shown that under the electric field there
are two equilibrium circular states of a positive energy and one equilibrium state of a negative energy.
The existence of the equilibrium state of the negative energy is a counterintuitive result since at the
absence of the field, the bound state was possible only for the zero energy. Thus, it is a counterintuitive
result that in this case the electric field can play the role of a stabilizing factor.

Keywords: polar molecule; Rydberg electron; axial symmetry; magnetic field; stabilization by electric field;
classical motion

1. Introduction

The motion of an electron in the field of a polar molecule is one of the most fundamen-
tal problems in atomic and molecular physics—on par with the problem of a hydrogen
atom. If the dimension of the molecule is much smaller than its separation from the electron,
the molecule can be considered as the point-like dipole. Obviously, such system possesses
the axial symmetry—just from the geometrical considerations. Fermi and Teller [1] were the
first to study a mathematically an equivalent problem in 1947: the motion of a low-energy
muon in the vicinity of a hydrogen atom. In the subsequent years, there were lots of other
relevant studies—see, e.g., paper [2] and references therein.

When the electron is only weakly bound to the dipole, i.e., the electron is in the
Rydberg state, the classical treatment is appropriate. For the case of the finite electric
dipole, the following two works have been published. In paper [3], the authors provided
an analytical treatment of this problem by using the elliptical coordinates (ξ, η, φ). They
demonstrated that the bound motion is possible in some finite region in terms of the
coordinates ξ and η for any finite dipole. The region has the shape of a torus of the
revolution with respect to the axis of the dipole.

In paper [4], the authors analyzed the motion of a negative charge around a finite
dipole by using the cylindrical coordinates. First, they investigated circular orbits where
the negative charge revolves in a plane orthogonal to the dipole. (A particular application
described in detail in paper [4] was for the motion of a muon in the field of a finite dipole
consisting of a stationary proton and electron, but their mathematical results are also
valid for the motion of an electron around any finite dipole.) The authors of paper [4]
demonstrated the existence of stable circular orbits under the condition that the dipole size
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exceeds some threshold value, which coincided with the corresponding threshold value
obtained in quantum-mechanics-based investigations of this system—see, e.g., paper [2]
and references therein. Then, they removed the assumption of circular orbits and showed
the existence of stable conic-helical orbits of the negative charge in such systems. The orbit
is located on the surface of a cone (specifically, on a right frustum of the cone), the cone
axis coinciding with the dipole axis.

It is important to emphasize the following. An electron around a finite dipole is a
particular case of the general problem: a charge moving around two stationary Coulomb
centers. This general problem possesses a higher than geometrical symmetry—the algebraic
symmetry. The manifestation of this algebraic symmetry is the existence of an additional
integral of the motion: the projection of the super-generalized Runge–Lenz vector on the
geometrical axis of symmetry, the super-generalized Runge–Lenz vector being derived in
paper [5].

For the situation where the dipole can be considered point-like (i.e., where the separa-
tion of the electron from the dipole is much greater than the dipole size, the corresponding
classical motion was first studied in paper [6] in 1968. The author of paper [6] demonstrated
that only for the zero total energy of the electron the bound motion can happen, and it
occurs on the surface of a sphere. Specific analytical results were developed in paper [6] to
the form of integrals, but no integration has been performed and no qualitative description
of the classical motion was given (see some details below).

Later, in paper [7], the author considered on semicircular meridional orbits on a sphere.
He assumed the light particle to be charged positively and noted that in this limiting case,
the situation is mathematically identical to a pendulum.

Then, in paper [8], the author concentrated on the following two types of orbits. One of
them was the same as considered in paper [7]. Another one was a circular orbit coinciding
with some specific parallel of latitude. The author of paper [8] noted that in the general
case, the motion is a combination of relatively large oscillations in terms of the polar angle
θ and a relatively slow precession along the azimuthal angle ϕ.

The most detailed classical analytical solution for the motion of an electron in the field
of a point-like dipole was presented in paper [9]. The author of paper [9] showed that, in
the general case, the oscillations in the θ-direction and the precession in the ϕ-precessions
can actually happen on the same time scale—consequently, the opposite statement from
paper [8] was erroneous.

The author of paper [9] obtained numerous specific analytical results for a variety of
particular cases. He also deduced a condition, under which the electron motion (being in
general conditionally periodic) can turn out to be periodic, manifested by a closed trajectory
of the electron. Details are presented in Section 2.

In Section 3, we present a more complicated problem where the system is subjected
to a magnetic field B parallel or antiparallel to the dipole. This configuration retains the
axial symmetry. Analytical results are obtained for an arbitrary strength of the magnetic
field. The magnetic field enables additional ranges of the bound motion of the electron.
In one of the additional ranges of the oscillatory-precessional motion, it turns out that the
dependence of the period of the meridional oscillations on the primary parameter of the
system is non-monotonic, which is a counterintuitive result.

In Section 4, we present the study of the situation where instead of the magnetic field,
there is an electric field F parallel or antiparallel to the electric dipole. This configuration
also retains the axial symmetry. Again, analytical results are obtained for an arbitrary
strength of the electric field. The electric field makes possible one equilibrium state of a
negative energy and two equilibrium states of a positive energy. While at the absence of
the electric field the bound state existed only for the zero energy, the possibility of the
equilibrium state of the negative energy constitutes a counterintuitive result. Indeed, in this
case, the electric field is a stabilizing factor, while, usually, the electric field promotes the
ionization of atomic systems. We provide analytical expressions for the equilibrium radius
of the electron orbit, the polar angle of the orbit, and the electron revolution frequency.
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Since the frequency of spectral lines emitted by the Rydberg electron coincides with the
revolution frequency, then these analytical results make the experimental determination of
the energy of the equilibrium states possible.

2. Classical Non-Circular Orbits at the Absence of External Fields

Following paper [9], the energy of the electron in the field of the point-like electric
dipole (of the dipole moment D) located at the origin of the spherical polar coordinate
reference frame (the z-axis being along the dipole) can be expressed as:

E = m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dφ/dt)2]/2 − eDcosθ/r2, (1)

where e and m are the absolute value of the electron charge and the electron mass, respec-
tively. The energy does not depend onϕ, so that the corresponding generalized momentum
pϕ (which is the z-projection of the angular momentum Mz of the electron) is conserved:

pφ = mr2sin2θ (dφ/dt) = const. (2)

Of course, this is the consequence of the axial symmetry of the configuration under the
consideration, and it enables the separation of the θ- and φ-motions.

In paper [6], it was demonstrated that the bound motion can occur only if E = 0 and
r = const. In other words, the electron is confined to a sphere: only θ and φ remain the
dynamical variables.

The differential equation for the θ-motion derived in paper [6] is as follows:

(dx/dt)2 = [2eD/(mr4)](-x3 + x − K). (3)

Here:
x = cosθ, K = pϕ2/(2meD). (4)

From Equation (2) follows the differential equation for the φ-motion:

dφ/dt = pφ/(mr2sin2θ) = pφ/[mr2(1 − x2)]. (5)

So, the sequence of tasks can be to find x(t) from Equation (3) and then obtain φ (t)
from Equation (5).

For the bound motion to be possible, the following polynomial

y(x) = −x3 + x − K (6)

in Equation (3) should be positive in some segment of the variable x within the interval
from −1 to 1, as noted in paper [6]. The polynomial has a maximum equal to −K + 2/33/2

at x = 1/31/2 and a negative minimum equal to −K − 2/33/2 at x = −1/31/2. The necessary
condition for the existence of the bound motion is for the maximum to be positive. This
condition translates into the following requirement [6]:

K < 2/33/2 = Kmax (7)

or equivalently (according to Equation (4)):

D > 33/2 pφ2/(4me). (8)

Under condition (7), the x-motion (i.e., the θ-motion) could be confined between two
positive turning points. In other words, the bound motion can happen only in the upper
hemisphere [6].
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The results below have been obtained in paper [9]. The positive turning points x2 and
x3 (x3 > x2) of the motion in the x-coordinate are the real roots of the cubic equation:

x3 − x + K = 0. (9)

The explicit expressions for these roots are the following:

x2(K) = (−1)2/321/3/[(729K2 − 108)1/2 − 27K]1/3 − (−1)1/3[(729K2 − 108)1/2 − 27K]1/3/(21/33). (10)

x3(K) = 21/3/[(729K2 − 108)1/2 − 27K]1/3 − [(729K2 − 108)1/2 − 27K]1/3/(21/33). (11)

In Figure 1, there are plots of both x2(K) and x3(K). Specifically, x2(K) is the lower part
of the double-valued curve, and x3(K) is the upper part of the double-valued curve. These
two parts intersect at K = Kmax = 2/33/2, where x2(2/33/2) = x3(2/33/2) = 1/31/2.

Figure 1. Positive roots x2 and x3 of the cubic Equation (9) versus K = pφ2/(2meD): (K) and x3(K)
are the lower part and the upper part of the double-valued curve, respectively [9].

After introducing a scaled dimensionless time τ as follows:

τ = t[2eD/(mr4)]1/2, (12)

Equation (3) can be rewritten as:

dτ = ±dx/(−x3 + x − K)1/2. (13)

Both the plus and minus signs should be considered in Equation (13)—contrary to the
choice of only the minus sign in Equation (12) of paper [6].

Now we present important particular cases. For K = Kmax = 2/33/2, the electron exe-
cutes a circular orbit representing the parallel of latitude that corresponds to cosθ = 1/31/2,
so that θ = 0.9553 and rad = 54.74 degrees. The angular velocity of the electron is constant
(see Equation (5)):

dφ/dt = pφ/(2mr2), (14)

so that the period is:
T = 4πmr2/(3pφ). (15)
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According to Equation (4), pφ = (2KmeD)1/2, meaning that for K = Kmax = 2/33/2,
one has pφ = 2(meD)1/2/33/4. Then, Equations (13) and (14) can be represented in the
following forms:

dφ/dt = 31/4[eD/(mr4] 1/2, T = (2π/31/4) [mr4/(eD)] 1/2. (16)

Next, in the case of K << 1, Equations (9) and (10) can be rewritten as follows:

x2(K) ≈ K, x3(K) ≈ 1 − K/2. (17)

In the particular case of K = 0 (that is, pφ = 0), the electron oscillates along a semicircle.
The semicircle is positioned in a meridional plane in the upper hemisphere. In this particu-
lar case, Equation (13) can be integrated analytically. The result is the explicit dependence
of the scaled time τ on x (i.e., on cosθ):

τ = − {±2i F[arcsin(−x)1/2, −1]}, (18)

F(α, q) being the incomplete elliptic integral of the first kind. The motion occurs in
the range of x from 0 to 1. In this range, the right side of Equation (18) is real—despite the
presence of the imaginary unit i in Equation (18). For x << 1, Equation (18) yields:

τ ≈ ±2x1/2. (19)

(We note that there was a misprint in the corresponding Equation (19) from paper [9].)
Figure 2 shows the time evolution of the electron as it moves from a point on the

equator (x = 0 at τ = 0) to the north pole (x = 1 at τ = 2.622), then changes its geographical
longitude of in the upper hemisphere by 180 degrees and moves to the equator (x = 0
at τ = 5.244), then back to the north pole (x = 1 at τ = 7.866), then changes again its
geographical longitude of in the upper hemisphere by 180 degrees and moves to the
equator (x = 0 at τ = 10.488). (We note that in paper [9], the corresponding time evolution
was not described accurately.)

Figure 2. The time evolution of the electron as it oscillates along a semicircle through the north pole
of the upper hemisphere (K = 0).

The full period of oscillations is equal to:

τ0 = 4τ(1) = 10.488 (20)
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or:
T = 10.488 [mr4/(2eD)]1/2 (21)

in the usual units.
For the general case of an arbitrary K from the segment [0, Kmax = 2/33/2], the scaled

time depends on x as follows:

τ(x, K) = ±
∫ x

x2(K)
dz/(– z3 + z − K)1/2, (22)

the lower limit of the integration being the smaller of the two turning points. In Figure 3,
the time evolution versus x during one period of the θ-motion, as x changes from x2(K) to
x3(K) and back to x2(K) is presented for K = 0.3 (dotted line), K = 0.2 (dashed line), and
K = 0.1 (solid line).

Figure 3. The scaled time τ versus x = cosθ during one period of the θ-motion for K = 0.3 (dotted
line), K = 0.2 (dashed line), and K = 0.1 (solid line) [9].

The integral in Equation (22) can be calculated analytically for K << 1 by expanding it
in Taylor series up to the terms ~ K:

τ(x, K) ≈ ±{f (x) − f [x2(K)] + Kg(x) − Kg[x2(K)]}, (23)

where:
f(x) = − 2i F[arcsin(−x)1/2, −1], (24)

g(x) = [3x2− 2 − x2(1 − x2)1/2
2F1(3/4, 1/2, 7/4, x2)]/[2(x − x3)1/2]. (25)

In Equation (25), 2F1(a, b, c, z) is the hypergeometric function. The accuracy of this
approximate analytical result for τ(x, K) is demonstrated in Figure 4 for K = 0.01 (solid
line), where it is compared to the corresponding exact result obtained by the numerical
integration in Equation (22) (dashed line). The accuracy of the analytical result is very
good, as shown in Figure 4.
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Figure 4. Comparison of the exact result for τ(x, K) obtained by the numerical integration in
Equation (22) (dashed line) with the corresponding approximate analytical result from Equation (23)
for K = 0.01 (solid line) [9].

The scaled period Tθ of the θ-motion can be represented as follows (in units of
mr4/(2eD)):

Tθ(K) = 2
∫ x3(K)

x2(K)
dz/(– z3 + z − K)1/2. (26)

The scaled period Tθ versus K is displayed in Figure 5.

Figure 5. The scaled period Tθ of the θ-motion versus the parameter K = pϕ2/(2meD): The period
Tθ is in units of mr4/(2eD) [9].

An explicit analytical result for the scaled period of the θ-motion can be obtained for
K << 1, as follows:

Tθ(K) ≈ 2 {f (1−K/2) − f (K) + Kg(1−K/2) − Kg(K)}, (27)

where functions f and g are defined by Equations (24) and (25), respectively.
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Next is the analysis of the φ-motion. Equation (5) can be represented as follows:

dφ = pφdt/[mr2(1 − x2)]. (28)

Then, the dependence of the angular variable ϕ on the angular variable x = cosθ can
be derived by using the relation between dt and dx from Equation (3):

φ(K, x) = K1/2
∫ x

x2(K)
dz/[(1 − z2)

[
(– z3 + z − K)1/2]. (29)

Figure 6 shows φ versus x during one half-period of the θ-motion for K = 0.1 (solid
line), K = 0.2 (dashed line), and K = 0.3 (dotted line). One can see that the curve φ(x)
becomes steeper and the change ofφ over one half-period of the θ-motion slightly increases
with the growth of the parameter K.

Figure 6. The angular variable φ versus x = cosθ during one half-period of the θ-motion for K = 0.1
(solid line), K = 0.2 (dashed line), and K = 0.3 (dotted line).

The following explicit analytical result for φ(K, x) can be derived for K << 1:

φ(K, x) ≈ K1/2[j(x) − j(K)], (30)

where:
j(x) = [x/(1 − x2)]1/2 {1 − (x − 1/x)1/2 F [arccsc(x1/2), −1]}. (31)

In Equation (31), F(α, q) is the incomplete elliptic integral of the first kind. In
Equation (30), the fact that x2(K) ≈ K for K << 1 has been used.

The accuracy of the approximate analytical result for φ(K, x) from Equation (30) is
demonstrated in Figure 7 for K = 0.02 (solid line), where it is compared to the corresponding
exact result from Equation (29) (dashed line). The accuracy of the analytical result is very
good, as shown.
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Figure 7. Comparison of the exact result for φ(K, x) from Equation (29), shown by the dashed line,
with the corresponding approximate analytical result from Equation (30), shown by the solid line, for
K = 0.02 [9].

During one half-period of the θ-motion, the angular variable φ changes by the follow-
ing amount:

∆φ(K) = K1/2
∫ x3(K)

x2(K)
dz/[(1 − z2)[(– z3 + z − K)1/2]. (32)

In the case where K is close to zero, one has ∆φ ≈ π/2, while for the case where K is
close to Kmax = 2/33/2, one has ∆ϕ ≈ π/21/2, so that:

1/2 < ∆φ/π < 1/21/2. (33)

The quantity ∆φmonotonically increases between these two limits as K increases.
In the general case, the precession of the electron along parallels of latitude is combined

with the oscillations in the upper hemisphere in the meridional direction. In general, the
amount ∆ϕ(K), by which the angle φ advances during one period of the θ-oscillation, is not
equal to nπ/m, where n and m are relatively small integers. Therefore, in the general case,
the electron trajectory is not a closed curve: The motion is conditionally periodic. However,
in some special cases, where

∆φ(K) = nπ/m, (34)

the motion becomes periodic. Here are examples corresponding to the three lowest pairs of
integers n and m in Equation (34): (n = 2, m = 3), (n = 3, m = 5), and (n = 4, m = 7). Figure 8
shows the intersections of the curve ∆φ(K)/πwith the horizontal lines, corresponding to
n/m, for the above three pairs.

Below are the details for all three cases. For n = 2, m = 3, the angle φ completes 2 full
circles during 3 periods of the θ-oscillations. This occurs for K = 0.2103. The corresponding
frequency of the θ-oscillations is 1.2703 in units of 2eD/(mr4). In this case, the intensity
of the spectral line emitted at the frequency of 2.5406 in units of 2eD/(mr4), which is the
double-frequency of the θ-oscillations, would be enhanced (compared to the intensity of
the spectral line at the primary frequency of the θ-oscillations) due to the resonance with
the triple-frequency of the ϕ-precession.
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Figure 8. Intersections of the curve ∆φ(K)/π (thick line) with the tree horizontal lines corresponding
to 2/3 (the top thin line), 3/5 (the middle thin line), and 4/7 (the bottom thin line) [9].

For n = 3, m = 5, the angleφ completes 3 full circles during 5 periods of the θ-oscillations.
This occurs for K = 0.0632. The corresponding frequency of the θ-oscillations is 1.2223
in units of 2eD/(mr4). In this case, the intensity of the spectral line emitted at the fre-
quency 3.6669 in units of 2eD/(mr4), which is the triple-frequency of the θ-oscillations,
would be enhanced (compared to the intensity of the second harmonic of the frequency
of the θ-oscillations) due to the resonance with the fifth harmonic of the frequency of
the ϕ-precession.

For n = 4, m = 7, the angle φ completes 4 full circles during 7 periods of the θ-oscillations.
This occurs for K = 0.0310. The corresponding frequency of the θ-oscillations is 1.2105 in
units of 2eD/(mr4). In this case, the intensity of the spectral line emitted at the frequency
4.8420 in units of 2eD/(mr4), which is the quadruple-frequency of the θ-oscillations, would
be enhanced (compared to the intensity of the third harmonic of the frequency of the
θ-oscillations) due to the resonance with the seventh harmonic of the frequency of the
ϕ-precession.

Observing the enhanced intensity of the spectral lines at the frequencies indicated
above would be the manifestation of the states of the truly periodic motion of the electron
around the polar molecule.

Thus, it is seen that the φ-precessions can actually occur on the same time scale as the
θ-oscillations. It is true also in the general case. Therefore, the statement from [8] that “in
general the motion should consist of large oscillations with respect to the polar angle θ
combined with a slow precession about the z-axis” does not seem to be correct.

3. Effects of a Magnetic Field of an Arbitrary Strength

In this section, we consider the same system as in Section 2 but under a uniform
magnetic field B along the z-axis. Thus, the axial symmetry is preserved. The analytical
results presented below were obtained for the arbitrary strength of the magnetic field.

Following paper [10], the Lagrangian can be written in the following form:

L = m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dϕ/dt)2]/2 + eDcosθ/r2 − (mr2/2)(dϕ/dt)Ω. (35)

In Equation (35):
Ω = eB/(mc) (36)

is the scaled magnetic field: Ω > 0 or Ω < 0 if B is parallel or antiparallel to D, respectively.
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The first equation of the motion is as follows:

d[∂L/∂(dϕ/dt)]/dt = ∂L/∂ϕ = 0, (37)

so that:
∂L/∂(dϕ/dt) = mr2 [(dϕ/dt) sin2θ − Ω/2] = pϕ = const. (38)

From Equation (38), we find:

dφ/dt = [Ω/2 + pφ/(mr2)]/sin2θ, (39)

so that:
φ(t) =

∫
dt {Ω/2 + pϕ/[mr2(t)]}/sin2θ(t). (40)

Equation (40) allows determining the time evolution of the φ-coordinate if the time-
evolution of r- and θ-coordinates are known.

From the other Lagrange equations of the following motion:

d[∂L/∂(dr/dt)]/dt = ∂L/∂r (41)

we find:

m(d2r/dt2) − [mr(dθ/dt)2 + mrsin2θ (dϕ/dt)2 − 2eDcosθ/r3 + mrΩ(dϕ/dt)/2] = 0 (42)

From the Lagrangian in Equation (35) follows the expression for the total energy E:

E = m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dϕ/dt)2]/2 - eDcosθ/r2 + (mr2/2)(dϕ/dt)Ω. (43)

From the combination of Equations (42) and (43), the following relation can be obtained:

2E = mr(d2r/dt2) + m(dr/dt)2 = md[r(dr/dt)]/dt. (44)

By integrating Equation (44), we obtain:

r(dr/dt) = 2Et/m + const. (45)

From Equation (45), it is easy to find out that the bound motion is possible only for
the energy E = 0 and const = 0, leading to dr/dt = 0, so that r = 0: the motion on the sphere.
Then, Equation (43) takes the following form:

m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dφ/dt)2]/2 − eDcosθ/r2 + (mr2/2)(dφ/dt)Ω = 0. (46)

On substituting dφ/dt from Equation (39) in Equation (46), we obtain:

(dθ/dt)2 + pφ 2/(m2r4sin2θ) + 2 pφ Ω/(mr2sin2θ) + 3Ω2/(4sin2θ) − 2eDcosθ/(mr4) = 0. (47)

So, the two angular variables become separated.
After denoting x = cosθ, Equation (47) becomes:

(dx/dt)2 = [2eD/(mr4)] y(x, K), y(x, K) = (−x3 + x − K), (48)

where:
K = [3mr4/(8eD)][Ω + 2pϕ/(mr2)][Ω + 2pϕ/(3mr2)]. (49)

The polynomial y(x, K) in Equation (48) has three roots with respect to x, as follows:

x1(K) = {-(-2)1/3 + [(-2)2/3/6][(729K2 − 108)1/2 − 27K]2/3}/[(729K2 − 108)1/2 − 27K]1/3, (50)

x2(K) (presented in Equation (10)), and x3(K) (presented in Equation (11)).
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Obviously, the left side of the first formula in Equation (48) is non-negatively defined,
so that the polynomial y(x, K) should be positive or zero. On denoting the following:

u = mr4Ω/pφ, (51)

Equation (49) becomes:

K = [pφ/(2meD)](3u2/4 + 2u + 1). (52)

From Equation (52), it is easy to find out that the parameter K can be negative for
the values of u from the interval (−2, −2/3). (The negative values of u correspond to the
antiparallel configuration of vectors B and D.) This is a new range of motion (with respect
to the coordinate θ) that was impossible at the zero field.

There are three cases for the x-motion (we remind the x = cosθ):

A. In the case of 0 < K < 2/33/2, the x-motion is in the segment [x2(K), x3(K)];
B. In the case of −2/33/2 < K < 0, the x-motion is either in the segment [x2(K), 1], or in

the segment [−1, x1(K)]. (Reminder: −1 < x1(K) < 1/31/2.);
C. In the case of K < −2/33/2, the x-motion is in the segment [−1, 1].

Obviously, now there are additional ranges of the x-motion compared to the no-field
situation where the x-motion was allowed only in the segment [x2(K), x3(K)].

Let us now obtain results for some particular cases.

1. K = Kmax = 2/33/2. The electron rotates along the parallel of latitude, corresponding
to θ = arccos(1/31/2), with the following angular frequency:

dφ/dt = (3/4)[Ω + 2pφ/(mr2)], (53)

so that the period is:
T = (8π/3)/[Ω + 2 pφ/(mr2)]. (54)

For K = 2/33/2, Equation (49) can be rewritten as follows:

[Ω + 2pφ/(mr2)] [Ω + 2pφ/(3mr2)] = 16eD/(35/2mr4). (55)

Using Equation (55), we can represent the period from Equation (20) in the following
alternative form:

T = [33/2πmr4/(2eD)] [Ω + 2pφ/(3mr2)]. (56)

From Equation (55), it is seen that neither [Ω + 2pφ/(mr2)] nor [Ω + 2pφ/(3mr2)]
can vanish. So, from Equation (54), it follows that T cannot become infinite, and from
Equation (56), it follows that T cannot vanish.

On introducing the following notations:

w = pφ/(meD)1/2, b = 3mr2Ω/(meD)1/2, (57)

Equation (55) takes the form:

b2 + 8wb + 12 w2 − 16/31/2 = 0. (58)

Equation (58) has the following two solutions:

b± = −4w ± (4w2 +16/31/2)1/2. (59)

Equation (59) demonstrates that for any value of scaled projection w of the angular
momentum, there exist two values of b (i.e., of the scaled magnetic field according to
Equation (57), for which the electron moves at the fixed value of θ = arccos(1/31/2) along
the parallel of latitude. This is a clear distinction from the zero field situation, where such
motion could occur only for w = ±2/33/4 = ±0.8774. Moreover, there are two values of
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b = 4/31/4 = 3.039 and b = −4/31/4 = −3.039 (i.e., two corresponding values of B according
to the definition of b in Equation (57) enabling such electron motion even for pφ = 0).

2. K = 0. From Equation (49), it follows that K = 0 for the following two values of the
scaled (to the frequency dimension) magnetic field:

Ω1 = −2pφ/(mr2), Ω2 = −2pφ/(3mr2). (60)

Here, the most interesting situation is the one where Ω = Ω1. The electron moves in a
semicircular path in a meridional plane in the northern hemisphere for any pφ, while
in the no-field case, this trajectory was valid only for the zero value of pφ.

For K = 0, in Section 2, the explicit dependence of the scaled time τ on x = cosθwas
obtained, given by Equation (18). For the range 0 < x < 1 where the motion occurs, the right
side of Equation (18) yields real values. We remind the reader that for the subcase of x << 1,
Equation (18) is simplified to Equation (19).

Now, we provide some further details (in addition to those given by Equations (22),
(26) and (29)) for the general situation where K is arbitrary. Figure 9 displays the angular
variable φ versus x (during the half-period of the x-motion) for K = 0.15 (solid line) and
K = 0.3 (dashed line).

Figure 9. Angular variable φ versus x (during the half-period of the x-motion) for K = 0.15 (solid
line) and K = 0.3 (dashed line).

Table 1 presents the scaled period Tθ (in units of mr4/(2eD)) of the x-motion versus
the parameter K in the negative range of K. It is a counterintuitive result that the period of
the x-motion depends on K non-monotonically.

Table 1. Scaled period Tθ of the θ-motion in units of mr4/(2eD) versus parameter K for the range of
negative values of K.

K –0.35 –0.25 –0.15 –0.1 –0.05 0

Tθ 6.07 5.17 4.91 4.88 4.91 5.24

Figure 10 displays the angular variable φ versus x (during the half-period of the
x-motion) for K = −0.15 (solid line) and K = −0.3 (dashed line).



Symmetry 2021, 13, 2171 14 of 21

Figure 10. Angular variable φ versus x (during the half-period of the x-motion) for K = −0.15 (solid
line) and K = −0.3 (dashed line).

Further details on the effects of the magnetic field on this system can be found in
paper [10].

4. Effects of an Electric Field of an Arbitrary Strength

In this Section we consider the same system as in Section 2, but under a uniform
magnetic field F parallel or antiparallel to the dipole. Thus, again the axial symmetry is
preserved. The analytical results presented below are obtained for the arbitrary strength of
the electric field.

The Lagrangian has the form

L = m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dφ/dt)2]/2 + eDcosθ/r2 − eFr cosθ, (61)

where m and e are the mass and the absolute value of the electron charge, respectively. The
quantity F can be positive or negative depending on whether the electric field is parallel or
antiparallel to the dipole.

From one of the Lagrange equations of the following motion:

d[∂L/∂(dφ/dt)]/dt = ∂L/∂φ = 0 (62)

it follows that
∂L/∂(dφ/dt) = mr2 sin2θ (dφ/dt) = pφ = const, (63)

where pφ is the projection of the angular momentum on the dipole
From Equation (63), we find the following:

dϕ/dt = pφ/(mr2sin2θ). (64)

so that:
φ(t) =

∫
dt pφ/[mr2(t) sin2θ(t)]. (65)
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From Equation (65), one can determine the time evolution of the φ-coordinate if the
time-evolution of the r- and θ-coordinates are known.

From the other Lagrange equations of the motion

d[∂L/∂(dr/dt)]/dt = ∂L/∂r (66)

we obtain:

m(d2r/dt2) − [mr(dθ/dt)2 + mrsin2θ (dφ/dt)2 − 2eDcosθ/r3 − eFr cosθ] = 0. (67)

The formula for the total energy E, following from the Lagrangian in Equation (61), is:

E = m[(dr/dt)2 + r2(dθ/dt)2 + r2sin2θ (dφ/dt)2]/2 + (eFr − eD/r2)cosθ. (68)

Now, we multiply both sides of Equation (67) by r and add to it Equation (68) multi-
plied by 2 to obtain the following:

2E = mr(d2r/dt2) + m(dr/dt)2 + 3eFr cosθ = md[r(dr/dt)]/dt + 3eFr cosθ, (69)

so that:
d[r(dr/dt)]/dt = 2E/m − (3eFr/m)cosθ. (70)

From the last remaining Lagrange equations of the motion

d[∂L/∂(dθ/dt)]/dt = ∂L/∂θ (71)

we find the following:

mr2(d2θ/dt2) + 2mr(dr/dt)(dθ/dt) = mr2 sinθ cosθ (dφ/dt)2 + (eFr − eD/r2)sinθ. (72)

After substituting dφ/dt from Equation (64) in Equation (72), the latter equation
would depend only on r and θ. Together with Equation (70), it would constitute the system
of two equations for the two unknowns (r and θ) in the general case.

For obtaining explicit analytical results, from now on we consider the situation where
the electron revolves around the dipole in a circular orbit (concentric with the dipole)
perpendicular to the dipole axis, so that r = const and θ = const. Then, from Equation (70)
follows the interrelation between these two constant values:

cosθ = 2E/(3eFr). (73)

From Equation (64), it follows that:

dφ/dt = pφ/(mr2sin2θ) = const =ω, (74)

where the constant angular velocity is denoted byω. From Equation (67) one obtains:

mrω2 sin2θ − (2eD/r3 + eFr) cosθ = 0. (75)

From Equation (72) we obtain:

[mr2ω2 cosθ + eFr − eD/r2] sinθ = 0. (76)

Since sinθ = 0 (i.e., θ = 0 or θ = π) is the unphysical solution, then from Equation (76) follows:

mr2ω2 cosθ + eFr − eD/r2 = 0. (77)

On substituting cosθ from Equation (73) in Equation (77), we find:

ω2 = [3e2F/(2mE)](D/r3 − F). (78)
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On substituting cosθ from Equation (73) in Equation (76), we obtain:

ω2 = [2E/(3mF)] (2D/r3 + F)/[r2 − 4E2/(9e2F2)]. (79)

After equating to each other the right sides of Equations (78) and (79) and doing
simple transformations, we obtain the following equation containing only one unknown
quantity—the quantity r

r5 − br2 + 3ab = 0, (80)

where we introduced the following notations:

a = 4E2/(9e2F2) b = D/F. (81)

It is important to note that while the quantity a from Equation (81) is always non-
negative, the quantity b can be positive (if F > 0) or negative (if F < 0). Equation (80) can be
also represented as follows:

r5 − br2 + 4sign(b)|b|5/3Es
2/3 = 0, (82)

where we denoted the following:

Es = |E|/(eD1/3|F|2/3). (83)

Physically, Es is the scaled dimensionless absolute value of the energy. While in
Equation (80), the left side has a slightly simpler form than in Equation (82), the latter
equation explicitly contains the scaled dimensionless absolute value of the energy Es, which
turns out to be the physical parameter controlling (together with the parameter b) various
solutions of Equation (82), as will be shown below.

We seek the solution of Equation (82) in the following form:

r = c|b|1/3, c = const > 0. (84)

On substituting Equation (84) in Equation (82), we obtain:

P(c) = c5 − c2sign(b) + (4/3) Es
2sign(b) = 0. (85)

Let us first consider the situation where b > 0, i.e., F > 0, meaning that the electric field
points in the same direction as the dipole. Then, Equation (85) takes the following form:

P(c) = c5 − c2 + 4Es
2/3 = 0. (86)

According to one of the theorems of algebra—namely, Descartes’s rule of signs—for
b > 0, the polynomial P(c) from Equation (86) has either two or zero positive roots (we are
not interested in negative roots—they are unphysical since it should be r > 0). By equating
the derivative of P(c) to zero, it is easy to find after a simple analysis that at c = 0 the
polynomial has a local maximum Pmax = (4/3) Es

2 and that it has the absolute minimum at
c = (2/5)1/3:

Pmin = (2/5)5/3 − (2/5)2/3 + 4Es
2/3 = 4Es

2/3 − 0.326. (87)

Obviously, for the existence of two different positive roots, there should be Pmin < 0,
leading to the following requirement:

Es < Es,max = 0.494. (88)

At Es < Es,max, the two positive roots merge together at c = (2/5)1/3 = 0.737—see
Figure 11.
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Figure 11. Plot of the polynomial P(c) from Equation (86) for the three values of the scaled dimensionless absolute value of
the energy Es: 0.2 (solid line), 0.5 (dashed line), and 0.8 (dotted line).

It is well known that there are no exact analytical solutions for the roots of polynomials
of the 5th (or higher) degree. However, we can find approximate analytical solutions for
the case where Es << 1, as follows.

One of the positive roots corresponds to the situation where in Equation (86) the
first term is much smaller than the other two terms. The truncated equation has the
following form:

−c2 + 4Es
2/3 ≈ 0, (89)

yielding the root:
c1 ≈ 2Es/31/, (90)

so that:
r1 ≈ 2Es|b|1/3/31/2 = 2|E|/(31/2e|F|. (91)

It is easy to verify that at r = r1, the first term in Equation (86) is indeed much smaller
than the two other terms, given that Es << 1.

On substituting r1 from Equation (91) in Equation (78), we find the following expres-
sion for the square of the electron revolution frequency (we remind that we still consider
the situation where F > 0):

ω1
2 = [3e2F/(2mE)](D/r1

3 − F) ≈ [35/2DF4/(16mE4)] sign(E). (92)

Obviously, ω1
2 should be positive. Consequently, this solution has the physical

meaning only for E > 0. Then, by substituting r1 from Equation (91) in Equation (73), we
obtain the corresponding value of cosθ:

cosθ1 = 2E/(3eFr) ≈ (1/31/2)sign(E) = 1/31/2. (93)

The second positive root corresponds to the situation where, in Equation (86), the
third term is much smaller than the two other terms. The truncated equation has the form

c5 − c2 ≈ 0, (94)
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yielding c2 ≈ 1. It is seen that the third term in Equation (86) is indeed much smaller than
the two other terms since Es << 1. For obtaining a non-vanishing result for the square of
the electron revolution frequency, one has to go to the next approximation. By substituting
c = (1 + α), where |α| << 1, in Equation (86), we find the following:

c2 ≈ 1 − 4Es
2/9, (95)

so that:
r2 ≈ (1 − 4Es

2/9)(D/F)1/3. (96)

On substituting r2 from Equation (96) in Equation (78), we obtain:

ω2
2 ≈ 2EF2/3/(mD2/3). (97)

Sinceω2
2 should be positive, this second solution also has the physical meaning only

for E > 0. Then, by substituting r2 from Equation (96) in Equation (73), we obtain the
corresponding value of cosθ:

cosθ2 ≈ (2/3)Es sign(E) = 2Es/3 = 2E/(eD1/3F2/3) (98)

Now, we proceed to the situation where b < 0, i.e., F < 0. Then, Equation (85) takes the
following form:

P(c) = c5 + c2 − 4Es
2/3 = 0. (99)

According to Descartes’s rule of signs, this equation has one and only one positive
root for any Es. This is illustrated in Figure 12.

Figure 12. Plot of the polynomial P(c) from Equation (99) for the three values of the scaled dimensionless absolute value of
the energy Es: 0.2 (solid line), 0.5 (dashed line), and 0.8 (dotted line).

For Es >> 1 or Es << 1, we can find an approximate analytical result for the root of
Equation (99), as follows. We start from the case of Es >> 1. In this case, the second term



Symmetry 2021, 13, 2171 19 of 21

in Equation (99) is much smaller than the two other terms (see the proof below). The
truncated equation has the following form:

c5 − 4Es
2/3 ≈ 0, (100)

yielding:
c3 ≈ (4Es

2/3)1/5. (101)

For this value of c3, the ratio of the second term in Equation (99) to, e.g., the first term
is 1/c3

3 ~ 1/Es
6/5 << 1, so that the neglect of the second term is justified.

With the c3 from Equation (101), we obtain:

r3 ≈ (4Es
2/3)1/5(D/|F|)1/3 = (2|E|)2/5D1/5/(31/5e2/5|F|3/5). (102)

On substituting r3 from Equation (102) in Equation (73), we obtain:

cosθ3 ≈ − (23/5/34/5)Es
3/5 sign(E). (103)

Obviously, in Equation (103) |cosθ3| >> 1 (since, in this this case, Es >> 1), so that this
formal mathematical solution does not have a physical meaning.

The last remaining case is Es << 1 (while F < 0). In this case, the first term in
Equation (99) is much smaller than the other two terms (see the proof below). The truncated
equation has the following form:

c2 − 4Es
2/3 ≈ 0, (104)

yielding:
c4 ≈ 2Es/31/2, (105)

so that:
r4 ≈ 2Es|b|1/3/31/2 = 2|E|/(31/2e|F|). (106)

(The values of c4 and r4 coincide with the values of c1 and r1, respectively). It is again easy
to verify that at r = r4, the first term in Equation (99) is indeed much smaller than the two
other terms, given that Es << 1.

The expression for the square of the electron revolution frequency ω4
2 in this case

differs by the sign fromω1
2 in Equation (92) because now F < 0:

ω4
2 = [3e2F/(2mE)](D/r4

3 − F) ≈ −[35/2DF4/(16mE4)] sign(E). (107)

Sinceω4
2 should be positive, this solution has the physical meaning only for E < 0. Then,

by substituting r4 from Equation (106) in Equation (73), we obtain the corresponding value
of cosθ:

cosθ4 = 2E/(3eFr) ≈ −(1/31/2)sign(E) = 1/31/2. (108)

It should be emphasized that the results given by Equations (106)–(108) for F < 0 are
quite remarkable. They correspond to the bound states of negative energies (E < 0). We
remind readers that in the absence of the electric field (the situation studied in papers [6–9]),
as well as in the presence of the magnetic field along the electric dipole (the situation
presented in Section 3 of the current review), the only possible bound states were of zero
energy. Thus, the electric field can stabilize the system into bound states of negative energies.

This is a counterintuitive result. Indeed, while a magnetic field typically inhibits the
ionization of atomic systems, the electric field promotes the ionization and is thus consid-
ered as a destabilizing factor. However, the solution presented by Equations (106)–(108)
for F < 0 (i.e., for the electric field antiparallel to the dipole) demonstrates that the electric
field can work as the stabilizing factor for the Rydberg electron in the field of a point-like
electric dipole.



Symmetry 2021, 13, 2171 20 of 21

We note that the frequency of the electron revolution found above would manifest as
the frequency of spectral lines emitted by the system. By measuring the frequency of the
spectral lines and knowing the electric dipole moment D and the field strength F, one can
deduce the energy E—see, e.g., Equation (107).

5. Conclusions

In Section 2 of this review, we followed paper [9] to present the analysis of the classical
bound motion of a Rydberg electron around a polar molecule. It was demonstrated that,
generally, both the θ-oscillations and the φ-precessions can actually occur on the same time
scale, so that the statement to the contrary from work [8] seems to be incorrect.

Furthermore, the relation between the dynamical variable φ and the dynamical vari-
able θwas derived in the form of a one-fold integral in the general situation. In addition,
an explicit analytical result for φ(θ) was obtained for the situation where the parameter K,
which is the scaled square of the projection pφ of the angular momentum on the axis of the
electric dipole, is relatively small.

For the case of K = 0, corresponding to the motion of the electron along a meridional
semicircle crossing the North pole, an explicit analytical result for the dependence of time t
on θwas obtained. For the case of K = Kmax = 2/33/2, where the electron goes in a circle,
the circle being the parallel of latitude corresponding to θ = 0.9553 rad = 54.74 degrees, an
explicit analytical result was derived for the period of the revolution.

Furthermore, in the general case, the time evolution of the dynamical variable θ and
the period Tθ of the θ-oscillations was derived in the form of a one-fold integral. This was
complemented by the corresponding explicit analytical expressions for the case of K << 1.

In addition, in the general case, the change of the angular variable ϕ during one
half-period of the θ-motion was derived in the form of a one-fold integral.

Finally, it was shown in detail at what values of the parameter K, the conditionally
periodic motion of the electron would become truly periodic. A general condition for the
truly periodic motion of the electron was obtained and three examples were provided of
the corresponding values of the parameter K.

From the fundamental point of view, deriving all of the above analytical results was
possible due to the axial symmetry of the system.

In Section 3, the same system from Section 2 was analyzed under a magnetic field
parallel or antiparallel to the electric dipole, so that the axial symmetry was preserved. The
analytical results were derived in paper [10] for the arbitrary strength of the magnetic field.

It was demonstrated that under the magnetic field, new ranges of the bound motion
of the Rydberg electron open up. Especially important is that, as the magnetic field opened
up several new ranges of the parameter K, in the range 0 < K < 2/33/2, the period of the
θ-oscillations has the non-monotonic dependence on K. This is a counterintuitive result.

Next, while at B = 0, the oscillations of the electron along a semicircle located in a
meridional plane in the Northern hemisphere were possible only for the zero projection of
the angular momentum pφ on the electric dipole; the magnetic field makes this motion
possible for any value of pφ—provided that Ω = −2pϕ/(mr2), where Ω = eB/(mc) is the
scaled magnetic field.

In addition, while at B = 0, the circular trajectory of the electron along the parallel of
latitude at cosθ = 1/31/2 was possible only for two values of the projection of the angular
momentum corresponding to pφ/(meD)1/2 = ±2/33/4 = ±0.8774, a proper choice of the
magnetic field strength enables this kind of motion for any value of pφ—see Equation (59).

In Section 4, the same system from Section 2 was analyzed under an electric field F
parallel or antiparallel to the electric dipole, so that the axial symmetry was preserved. The
analytical results were derived for the arbitrary strength of the electric field.

First, some results were obtained for the general case. Then, the focus was on the
circular orbits of the electron, the orbits being concentric with the dipole axis and the
orbital plane being perpendicular to the dipole axis. Analytical results were obtained for
the revolution frequency, as well as for the polar angle and the radius of the orbit—for
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three different equilibrium states of the system: two states of a positive energy (i.e., when
the electric field and the dipole are parallel) and one state of the negative energy (i.e., when
the electric field and the dipole are antiparallel).

The existence of the equilibrium state of the negative energy is a counterintuitive result.
Indeed, at F = 0, the equilibrium state was possible only for the zero energy. This result is
counterintuitive because it defies the usual expectation is that an electric field promotes the
ionization: In the above situation, the electric field was found to be the stabilizing factor.

By observing the spectral lines emitted by the system and measuring their frequency, it is
possible to deduce the energy by using our analytical results for the electron revolution frequency.

All of the above classical analytical results, obtained for the arbitrary strength of the
magnetic and electric fields, provide a physical insight in the complicated dynamics of a
Rydberg electron around a polar molecule. These analytical results, being valid for the
arbitrarily large strength of the magnetic and electric fields, cannot be obtained analytically
by the perturbation theory. The statement that the analytical results are obtained for the
arbitrary strength of the magnetic and electric fields refers to the system “an electron plus
an electric dipole”. When the dipole is represented by a polar molecule, the following
clarification is in order. The external electric field induces an additional dipole moment
in the molecule. In this case, in the corresponding formulas from Section 4, the dipole
moment D should include the contributions from both the built-in dipole moment and the
induced one.
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