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Abstract: Most existing Siamese trackers mainly use a pre-trained convolutional neural network
to extract target features. However, due to the weak discrimination of the target and background
information of pre-trained depth features, the performance of the Siamese tracker can be significantly
degraded when facing similar targets or changes in target appearance. This paper proposes a multi-
channel-aware and adaptive hierarchical deep features module to enhance the discriminative ability
of the tracker. Firstly, through the multi-channel-aware deep features module, the importance values
of feature channels are obtained from both the target details and overall information, to identify more
important feature channels. Secondly, by introducing the adaptive hierarchical deep features module,
the importance of each feature layer can be determined according to the response value of each frame,
so that the hierarchical features can be integrated to represent the target, which can better adapt
to changes in the appearance of the target. Finally, the proposed two modules are integrated into
the Siamese framework for target tracking. The Siamese network used in this paper is a two-input
branch symmetric neural network with two input branches, and they share the same weights, which
are widely used in the field of target tracking. Experiments on some Benchmarks show that the
proposed Siamese tracker has several points of improvement compared to the baseline tracker.

Keywords: target features; siamese trackers; multi-channel aware; adaptive hierarchical features;
visual tracking

1. Introduction

Object tracking is a basic research hotspot in the field of computer vision, and has
many applications in daily life, such as autonomous driving [1], video surveillance [2], and
human–computer interaction [3]. Usually, the information of the tracked object is given in
the first frame, and the new position of the target in the subsequent frames is predicted
by the designed tracker. Since only the first frame of the target information is given, prior
knowledge is seriously insufficient. Therefore, when facing some complex scenes, such
as background clutter, lighting changes, fast motion, and partial occlusion, the tracking
effect will sharply drop. A number of models were proposed to extract target features
in target tracking, such as manual-features [4], correlation-filters [5–7], regressors [8,9],
and classifiers [10–12]. While most Siamese-based trackers use pre-trained deep models
to extract features for the tracking task, they pay less attention to how learning more
discriminative deep features.

Recent work in this area includes the design of loss functions to select appropriate
feature channels [13], using memory networks to preserve the latest appearance models [14],
attention mechanisms to enhance feature representation [15], and multi-layer feature
fusion to represent targets [16]. For example, MemDTC [14], an algorithm that uses
Memory networks to memorize the appearance of targets, achieves a good performance;
however, due to the presence of memory banks, it occupies a large amount of device
memory during tracking. This uses up the limited computational resources and leads
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to a decrease in tracking speed, which then does not meet the requirements of real-time
performance. TADT [13] designed regression loss and sequencing loss, used the first-frame
target information to train the network, and achieved a feature dimension reduction by
back-propagating the gradient. Unlike them, this paper starts from the structural aspect of
depth features, considers the contribution of different feature layers and different channels
of the same feature layer in target modeling, and designs two modules to learn a depth
feature with a stronger discriminative power to better represent the target and improve the
performance of the Siamese tracker.

Most deep-learning-based trackers [17–20] take the target as a positive sample, and
some randomly selected areas from around the target as negative samples, during training,
and then use CNN networks to extract features from these samples to train and learn a
classifier. Although some existing Siamese-based trackers achieved an excellent tracking
performance, we note that pre-trained deep features are more effective for target recognition
and do not perform well enough for target-tracking tasks. The use of pre-trained depth
features in target tracking may pose two rather obvious problems. First, CNN is generally
taken as an online classifier in the target recognition task, and only its last layer feature is
used to represent the target, which is effective in the target recognition task. This is because
the last layer of CNN contains the highest level of semantic information of the object and
contributes the most to object recognition, which satisfies the requirements of the target
recognition task. However, in the tracking task, where there is no need to classify the
tracked targets but only to precisely localize them, the last layer of features is not sensitive
to the intra-class distinction and position changes of the targets. Using only the last layer
to represent the targets is not the best choice. Second, the object being tracked is arbitrary,
and if the pre-trained deep features do not contain the class of the object being tracked, i.e.,
the model does not contain the feature information of the object being tracked; therefore,
there will be lower efficiency when distinguishing the target from the background.

This paper proposes a novel scheme to learn target deep features via the multi-channel
aware and the adaptive hierarchical deep features module to guide the generation of
the most significant features of the target. This work is based on the following methods.
With the use of two branches to learn the overall information and saliency information of
the target respectively, the weight vector generated by the two branches can determine
the importance of a channel for representing target objects. Instead of introducing new
spatial dimensions, The proposed method use feature recalibration to add the obtained
importance value to channels that are useful for target modeling. In addition, the semantic
features at higher levels are robust to changes in the appearance of the target, while
the detailed features at lower levels are more effective for localizing the target. The
proposed method identifies the importance of each feature layer according to the ratio of
the maximum response value, and the primary and secondary peak values, to integrate
features to represent the target. At the same time, features from hierarchical layers of CNNs
are used to represent targets, rather than only the last layer, and the fusion weights of
hierarchical layers are adaptively updated in real time. Figure 1 shows the tracking results
for our tracker compared with other similar trackers. As can be seen from the three video
sequences, our tracker has a better performance in the face of complex scenes, such as
deformation and background clutter.
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Ours MemTrack CF2 SiamFC

Figure 1. Comparison of our tracker with other trackers, including Siamese-based trackers
SiamFC [21] and CF2 [22], attention-based tracker MemTrack [23] for MotorRolling (top), Bird2
(middle), and Shaking (bottom).

The Siamese network is a symmetric network. It was originally applied to the field of
template matching. It contains two input branches that share the same network structure
and internal parameters. SiamFC was introduced to the field of target tracking and achieved
good results. We integrated the two methods with a Siamese network for an object-
tracking task, and evaluated the proposed tracker on several benchmarks, including OTB-
50 [24], OTB-100 [25], UAV123 [26], Temple Color-128 [27], and VOT2016 [28]. Extensive
experiments have shown that the proposed tracker is more effective in terms of success
rate and precision rate compared to trackers based on pre-trained deep features. The main
contributions of the proposed method can be summarized as:

1. The proposed method designed a multi-channel-aware, deep-feature module to
establish the interdependence between feature channels, which include two branches to
learn the overall information and saliency information of the target, and adopted feature re-
calibration to enhance the channel weights that play a positive role in target representation.

2. To effectively fuse the features of different layers, the proposed method uses
adaptive hierarchical deep features to guide the generation of the most significant fea-
tures of the target, which can obtain the contribution of different feature layers, then
fuses the two feature layers according to their contribution, and this contribution value is
adaptively updated.

3. We integrate the two methods with a Siamese network for object tracking and
evaluate the proposed method on some benchmarks. The experimental results have shown
that the proposed tracker is more effective than some other trackers.

2. Related Work

Visual object tracking has been developed for decades, and many tracking methods
have been proposed. This section provides short outlines for some representative trackers
related to our work, such as trackers using deep features, trackers based on the Siamese
network, and trackers based on the deep feature and attention mechanism.

2.1. Deep Features Based Tracker

Thanks to the powerful appearance modeling abilities of deep features, the perfor-
mance of the tracker can be significantly improved; therefore, the traditional manual
features are gradually replaced. The DCF-based trackers also use deep features to improve
performance, such as DeepSRDCF [29], C-COT [30], ECO [31]. To take advantage of deep
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features, CF2 [22] and FCNT [32] use shallow and deep features to fuse the representation
targets for efficiency.

Although these trackers have outstanding feature representation power, there is a
significant problem, as only limited training samples and the ground-truth visual appear-
ance of the target in the first frame are available. In addition, we found that the previously
mentioned tracker only utilizes the last layer of the CNN features; unlike their approach,
our tracker uses multiple convolutional layers to model the target and the weights between
multiple convolutional layers are adaptively updated.

2.2. Siamese Network Based Tracker

The Siamese network-based tracker [21,33–35] views tracking as a matching problem
and learns a similarity metric network. The input to the Siamese tracker consists of two
parts: the initial frame template of the tracked object and the search region of the current
frame. They both use the same full convolutional network to extract target features, and
finally use cross-correlation operations for template-matching to generate a response map.
The position of the maximum value in the response map is the corresponding position of the
target in the search area. SiamFC [21] is a tracking method based on an offline end-to-end
training of the Siamese network. This aims to learn a similarity function for target matching.
Since SiamFC mainly focuses on appearance features and ignores the high-level semantic
information of the target, SA-Siam [35] improves this. It uses a dual Siamese network
tracking scheme, in which one Siamese branch is responsible for apparent feature matching,
and the other branch is responsible for semantic information matching, which combines
the apparent features and semantic information to make the performance of the tracker
more stable. Differing from the detection network used in some methods, GOTURN [33]
uses a regression method based on the Siamese network to learn the relationship between
the appearance and movement of the target. After entering the search area of the template,
the Siamese network extract target feature, and then the regression network can compare
the two image returns to the position of the target. SiamMCF [36] and DSiam [37] solve the
similarity problem through multi-layer interconnection.

Although these Siamese networks have been pre-trained on some large datasets, they
are more suitable for classification tasks and do not take full advantage of the semantic and
object information associated with a particular target object. Therefore, there are certain
problems in the modeling of target feature expression.

2.3. Deep Feature and Attention Based Tracker

Attention mechanism has been widely used in the field of computer vision, such
as object detection [38], person search [39] and image segmentation [40]. Introducing
the attention mechanism into target tracking can help the tracker pay more attention to
the information of the target itself and reduce the influence of the unimportant parts
when positioning. This strategy is applicable in most scenarios. With the development of
attention mechanism in the field of tracking, some related trackers have been proposed.
To acquire spatial and semantic features of thermal infrared targets, HSSNet [41] design
a Siamese CNN with multiple hierarchical features. MLSSNet [42] proposes a multi-
level similarity network to learn the global semantic features and local structural features
of objects. RASNet [43] integrates three attention modules-channel attention, general
attention and residual attention into one layer of the Siamese network, which alleviates
the overfitting problem in deep network training and improves its discriminative ability
and adaptability. MemTrack [23] and MemDTC [14] introduce attention mechanisms for
spatial location and use a long short term memory-based (LSTM) controller to manage the
read and write operations of feature maps in memory. IMG-Siam [44] introduces channel
attention to better learn the matching models.

This paper proposes a multi-channel-aware deep-feature method, which includes two
branch attention mechanisms. This multi-channel aware deep feature method works on



Symmetry 2021, 13, 2329 5 of 21

two feature layers, and finally obtains a fusion of multi-layer and multi-channel atten-
tion features.

3. Proposed Method

By carefully designing feature extraction strategies, the matching accuracy can be
improved. However, the tracking target is arbitrary, and it is impractical to design fea-
tures that are suitable for any target. To deal with these problems, this paper proposes
a novel scheme to learn target deep features via the multi-channel-aware and adaptive
hierarchical deep features module to guide the generation of the most significant target
features. The proposed method uses the features extracted by existing methods to improve
the performance of the Siamese-based tracker.

In this section, we will introduce the details of the proposed tracking framework.
As shown in Figure 2, the proposed tracking framework consists of a Siamese network
for feature extraction and a feature-learning mechanism to enhance the target feature
representation. Specifically, the feature-learning mechanism consists of two modules: one is
responsible for learning the multi-channel-aware deep features and the other is responsible
for fusing adaptive hierarchical deep features. The learning multi channel-aware deep-
feature module has two branches with the same structure, which are responsible for the
recalibration of the corresponding characteristic channels. The adaptive hierarchical deep-
feature fusion module determines the weight of feature layers by combining the peak side
lobe ratio (PSLR) with the peak point constraint. The whole system is trained end-to-end
by inputting the image block containing the target into the framework. Our tracker is based
on the SiamFC [21] framework. We will describe the proposed method in detail.
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Figure 2. Overview of our network architecture for visual tracking.

3.1. Basic Siamese Network for Visual Tracking

As mentioned above, Siamese network are widely used to solve the problem of
template matching, and their input contains two parts: the template image z and the search
image x of the current frame. The template image for visual tracking is usually given in
the first frame, while the search image of the current frame is cropped in a certain region
around the target location estimated in the previous frame. Both parts of the input use the
same CNNφθ network to extract the depth features and then obtain the target response
using cross-correlation. This can be represented as:

fθ(z, x) = φθ(z) ? φθ(x) + d (1)
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where ? in the formula represents the cross-correlation operation of two features. The
parameter d represents the bias; φθ() denotes the method of extracting deep features. The
position of the maximum response value of fθ(z, x) represents the target position.

3.2. Multi-Channel Aware Deep Features

Each channel in the feature layer contains different target information. In template-
matching process, the contribution from each channel is different. The proposed method
designs two branches to focus on multi-channel-aware deep features. At first, the two
branches are global average pooling and global maximum pooling. This is because global
average pooling preserves the overall information about the target, and global maximum
pooling preserves the salience information about the target, so the proposed method
uses two pooling operations to obtain a cropped feature map that preserves the overall
and detailed knowledge of the target. After the pooling operation, two feature vectors
of 1× 1× 512 are obtained, and 1× 1 convolution operation is used to reduce them to
1× 1× 256, then restore them to 1× 1× 512. The non-linear expression ability of feature
vectors can be increased by adding the ReLU function between the two lifting dimension
operations. The traditional attention network uses the full-connection layer operation, but
the full-connection layer is mainly put forward for the classification task. Before tracking,
the target information is known from the first frame, so there is no need to carry out object
classification. Moreover, the full-connection layer will destroy the spatial structure of the
image. As the convolution operation will not destroy the spatial structure of the image, it
helps to retain the local features of the image, which is more conducive to target positioning.
The Sigmoid function is used to normalize the previously obtained 512 dimension feature
vectors to between 0 and 1.

Hence, the proposed method obtains two pooling feature vectors f 1∗1∗c
max and f 1∗1∗c

avg for
max and average branch, respectively, from CONV2 and CONV5. Finally, the two pooling
feature vectors from two feature layers are respectively fused together to obtain vector
φθ2(·)1∗1∗c and φθ5(·)1∗1∗c that can represent the weight of the channel. This two-weight
vector is multiplied by the original feature to obtain a feature map weighted to the channel
CH∗W∗C

M2 and CH∗W∗C
M5 . This process is called feature recalibration. The calculation process

can be expressed as:

f 1∗1∗c
max2 = CONV2

(
ReLU

(
CONV1

(
Poolmax

(
FH∗W∗C

M2

))))
(2)

f 1∗1∗c
avg2 = CONV2

(
ReLU

(
CONV1

(
Poolavg

(
FH∗W∗C

M2

))))
(3)

f 1∗1∗c
max5 = CONV2

(
ReLU

(
CONV1

(
Poolmax

(
FH∗W∗C

M5

))))
(4)

f 1∗1∗c
avg5 = CONV2

(
ReLU

(
CONV1

(
Poolavg

(
FH∗W∗C

M5

))))
(5)

φθ2(·)1∗1∗c = ε( f 1∗1∗c
max2 ⊕ f 1∗1∗c

avg2 ) (6)

φθ5(·)1∗1∗c = ε( f 1∗1∗c
max5 ⊕ f 1∗1∗c

avg5 ) (7)

Finally, the multi-channel-aware deep features that are obtained can be expressed as:

CH∗W∗C
M2 = φθ2(·)1∗1∗c ⊗ FH∗W∗C

M2 (8)

CH∗W∗C
M5 = φθ5(·)1∗1∗c ⊗ FH∗W∗C

M5 (9)

where ε represents the sigmoid function f (x) = 1
1−e−x , poolmax and poolavg are global max

pooling and global average pooling, respectively; FH∗W∗C
M2 and FH∗W∗C

M5 are features from
CONV2 and CONV5, CH∗W∗C

M2 ; CH∗W∗C
M5 are the weighted features.
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Figure 3 clearly show that, after the use of multi-channel aware methods, the obtained
target features are more concentrated and the target can be more effectively distinguished
from the background.

Search region a b

Figure 3. Comparison diagram of feature extraction before and after adding multi-channel aware
features. (a) is before the addition and (b) is after the addition.

3.3. Adaptive Hierarchical Deep Features

Due to the characteristics of depth features, low-level features contain more target
details due to their higher resolution, while high-level features encode more high-level
semantic information despite their lower resolution. In the tracking stage, the fusion
of high- and low-level features becomes an effective method to solve the problem of
positioning accuracy. Therefore, the fusion of high and low-level features has become a
research problem. Figure 4 contains two video sequences, showing the response values
of different feature layers on the same video frame. Obviously, different feature layers
contribute differently to the target response.

Search region Conv2 response Conv5 response

Figure 4. Response map at different feature layers.

The CNNs used in this paper total have five feature layers; after each convolution, the
resolution will be lower. To ensure that the template features have a wealth of detailed
information and high-level semantic information, the proposed method adopts the adaptive
weighted fusion method to enhance the performance. The proposed method gives the
CONV2 and CONV5 layer different reliability weights and the response of the reliability
weight from the features of the layer itself, and the reliability weights are updated in
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real-time. In our method, the reliability weight estimation of the feature layer consists
of two parts: (1) The layer max response learning reliability weight wmax

d , namely, the
response peak in the feature layer and the template area. The larger the response value, the
higher the reliability. (2) The layer interference detection reliability weight wratio

d , that is,
the ratio of main lobe peak intensity to the peak intensity of the strongest side lobe. The
lower the ratio, the higher the reliability. In the tracking stage, the two parts work together
to determine the reliability of the feature layer, which can be expressed as:

wd = wmax
d ∗ wratio

d (10)

and normalized s.t.∑dWd = 1. The reliability measures are described in the following
paragraphs.

3.3.1. Layer Response Learning Reliability

The ideal response peak should be the unique peak obtained by cross-correlation
between the template and the search area, and its size should be close to 1. However, in the
actual tracking process, due to the existence of a high level of background interference, the
response map is high-noise in some frames with a low discrimination ability. Therefore,
the feature layer’s response weight can be obtained as follows:

wmax
d2 = max

(
CH∗W∗C

M2 ? F2
)

(11)

wmax
d5 = max

(
CH∗W∗C

M5 ? F5
)

(12)

where ? is the cross-correlation, wmax
d2 is the max response of CONV2 and wmax

d5 is the max
response of CONV5, F2 and F5 are the features of CONV2 and CONV5 in the search area.

Figure 5 shows the influence of the hierarchical deep features on the response map. It
can be seen that the response map with hierarchical deep features has a higher peak value
and a more concentrated response point.

(a) (b) (c)sequence

Figure 5. The response map of different feature layers in the same frame. (a) is the response map of Conv2, (b) is the response
map of Conv5, and (c) is the response map after the weighted fusion of two feature layers using the layer reliability module.

3.3.2. Layer Interference Detection Reliability

The second part of the feature layer reliability reflects the ratio of the contribution
of different feature layers to target localization. Unlike the similar method proposed by
Bolme et al. [45] to detect target loss, our method detects the primary and secondary peaks
in the response map and determines the interference strength of different feature layers
by the ratio of these two peak points, 1− ρmax2

d /ρmax1
d . The smaller the ratio, the lower the

interference. In this way, the influence of nearby, strong interfering objects on the target
modeling can be reduced, and the final ratio can be lower than 0.5. PSLR weight can be
expressed as:
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wratio
d2 = max

(
1−

ρmax2
d2

ρmax1
d2

, 0.5

)
(13)

wratio
d5 = max

(
1−

ρmax2
d5

ρmax1
d5

, 0.5

)
(14)

Therefore, the adaptive hierarchical feature weight can be expressed as:

CH∗W∗C
M2 =

wmax
d2 ⊗ wratio

d2

wmax
d2 ⊗ wratio

d2 + wmax
d5 ⊗ wratio

d5
(15)

CH∗W∗C
M5 =

wmax
d5 ⊗ wratio

d5

wmax
d2 ⊗ wratio

d2 + wmax
d5 ⊗ wratio

d5
(16)

Figure 6 compares the responses of the same video sequence with different frames
before and after using adaptive hierarchical deep features. We can clearly see that, in the
video, when the appearance and position of the biker significantly changed, the tracking
failed without the use of adaptive hierarchical deep features; at this time, the tracking box
appeared in the same position and the response value was approximately the same. When
using adaptive hierarchical deep features, although the response value drops sharply as
the biker’s appearance and position changes, the tracking can still be completed, and it
gradually returns to normal and remains in the subsequent frames.

(a)

(b)

Figure 6. The line chart of different response values for each frame. Blue line is the response value of
each frame before adding the layer reliability, and red line is the response value of each frame after
adding. (a) it reflects the tracking result of the response value of the blue line, and (b) it reflects the
tracking result of the response value of the red line.
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4. Experimental Details
4.1. Training Detail

The proposed method used a GOT10K dataset [46] and ImageNet Large Scale Visual
Recognition Challenge 2015 VID dataset [47] to train the model. In the training process,
the SiamFC cropping strategy was used to crop the template image z and the search image
x, respectively, and the target position was taken as the center position. Image pairs (z, x)
were randomly selected from the training set and a logistic loss function was used in the
following form:

L( f (z, x), g) =
1
|N| ∑

n∈N
log(1 + exp(− f (z, x)[n] · g[n])) (17)

where N is the possible locations of the target on the response map, f (z, x)[n] is the response
map score, and g[n] ∈ {1,−1} is the ground truth coordinate. To ensure that more training
samples were obtained, we randomly selected 10 image pairs from each video sequence
and set the maximum interval between the template and the search images to 100 images;
the batch size was set to 32. The Stochastic Gradient Descent(SGD) method was used to
optimize the objective function. In the test stage, the same strategy as SiamFC was used for
target positioning.

argminθ
1
M

M

∑
i=1

L( f (zi,xi), gi) (18)

Based on experience, the momentum was set to 0.9, learning rate decay from 1× 10−2 to
1× 10−5, weight decay rate 5× 10−4, and a total of 35 generations were used for training.

We implemented the proposed tracker with Python and PyTorch framework, on a PC
with 16G memory, an Intel(R) Core i7-9700 CPU @3.0 GHz, and a NVIDIA GeForce RTX
2060 GPU.

4.2. Evaluation on OTB Benchmark

The OTB dataset is a public dataset to test the effectiveness of target-tracking algo-
rithms, which is divided into OTB50 [24] and OTB100 [25], containing 50 and 100 video
sequences, respectively.

On the OTB100, we compared several different categories of algorithms, including
Siamese trackers SiamFC [21], attentional Siamese trackers MemTrack [23] and MemDTC [14],
correlation-filter based trackers including KCF [6], Staple [48], DSST [49] and SRDCF [50],
CNN and correlation-filter based trackers including CF2 [22], CREST [51], CSR-DCF [52].

As shown in Figure 7, on the OTB100 dataset, our tracker achieved excellent results
in terms of both success rate and precision rate, with a success rate of 63.1% and an
precision rate of 84.2%, which are 4.8% and 7.0% better than the baseline algorithm SiamFC,
respectively. Compared with the attention Siamese tracker MemTrack, our tracker was
0.4% and 3.1% ahead in success rate and precision rate, respectively. However, compared
to the attention memory tracker MemDTC, our tracker lagged behind in success rate and
precision rate by 0.7% and 0.5%, which we speculate is due to the dynamic memory network
introduced by MenDTC, which enables the target template to adapt to changes in target
appearance during tracking. We also compared some CNN- and correlation-filter-based
trackers such as SRDCF, CREST, CSR-DCF. The proposed tracker achieved a 3.1%, 1.1%,
and 5.2% improvement in success rate and 5.0%, 0.8%, and 4.3% improvement in precision
rate compared to these methods.
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Figure 7. Success and precision rates on the OTB100 dataset.

Figure 8 shows the overall performance of the proposed tracker on OTB50. It can be
seen that the proposed tracker had the best OTB50. Compared with the baseline algorithm
SiamFC, the proposed tracker leads in two metrics, success rate and precision rate, by 8.7%
and 13.8%, respectively. The proposed tracker also achieved a 4%, 3.2%, 6.4% and 8.4%
improvement n success rate and an 8%, 3.6%, 9.7% and 10.8% improvement in precision
compared tot the MemTrack, CREST, SRDCF, and CSR-DCF trackers, respectively. Unlike
the OTB100 performance, our tracker has a better performance in terms of success rate and
accuracy compared to MemDTC. Experiments on both datasets show that our tracker has
excellent performance, proving the effectiveness of the proposed approach.
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Figure 8. Success and precision rates on the OTB50 dataset.

Qualitative Analysis on OTB Benchmark

In order to analyze the proposed tracker in more depth, we performed another qualita-
tive analysis. Figure 9 shows the effect comparison of different trackers on six typical video
sequences. These trackers include a CF-based tracker DSST, attention-based tracker Mem-
Track, Siamese-based tracker SiamRPN and SiamFC, CNN’s and CF-based tracker CF2.
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Ours MemTrack SiamRPN SiamFCDSST CF2

Figure 9. The qualitative results for six challenging sequences from the OTB100 benchmark, including tiger1, soccer,
lemming, girl2, biker, and dragonbaby.

The following types of video sequence contain several common challenges that would
be faced in visual target tracking, such as: scale variation (in Biker, Girl2), being obscured
(in Biker, DragonBaby, Girl2, Lemming), being out of view (in Soccer), and background
clutter (in DragonBaby). Figure 9 shows the tracking effectiveness of our tracker when
facing these challenges. Due to the introduction of the multi-channel-aware module and
the adaptive hierarchical depth feature module, our proposed tracker can adapt well to
these challenges compared to other algorithms.

In addition, to validate the performance of our proposed tracker in more depth, we
conducted experiments in the 11 challenges of the OTB100 dataset. Tables 1 and 2 present
the results of the proposed tracker compared with other trackers in the 11 challenges.
It can be seen that the proposed tracker is able to consistently maintain an excellent
performance in challenging situations due to the introduction of learning multi-channel-
aware and adaptive hierarchical depth feature modules. In Tables 1 and 2, SV represents
scale variation, LR represents low resolution, OC represents occlusion, DF represents
deformation, MB represents motion blur, FM represents fast motion, IR represents in-plane
rotation, OR represents out-of-plane rotation, OV represents out-of-view, BC represents
background clutter, and IV represents illumination variation.

As shown in Tables 1 and 2, some more details about the proposed algorithm can be
seen in this paper. In general, the proposed algorithm performs well on all 11 challenges.
In all 11 challenges, the algorithm in this paper performs better than the baseline algorithm
SiamFC, which directly uses pre-trained deep features to model the target, while we learn
multi-channel-aware deep feature and adaptive hierarchical deep features to obtain a
more discriminative feature. CF2 also uses hierarchical deep features to model the target;
however, the weight of each layer expressed on the target is directly given. In contrast, the
hierarchical deep features of the proposed algorithm are derived from the performance of
each frame, and this weight is adaptively updated. MemTrack and MemDTC preserve the
most recent appearance information of the target by introducing a memory network, and
these are similar to the proposed algorithms in LR, OC, and OV scenarios; however, there
are still some gaps. It can be seen that the proposed algorithm performs slightly worse in
both IR and IV scenes, which indicates that the algorithm has room for improvement in
planar rotation and strong illumination change scenes.
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Table 1. Precision score comparison of 11 challenges in the OPE experiment on the OTB100 dataset. The top three trackers
are marked with red, green and blue, respectively.

Tracker SV LR OC DF MB FM IR OR OV BC IV

Ours 0.857 0.872 0.783 0.732 0.872 0.840 0.794 0.803 0.829 0.837 0.823

CF2 0.790 0.831 0.749 0.721 0.801 0.798 0.813 0.741 0.671 0.766 0.794

MemDTC 0.772 0.866 0.754 0.692 0.749 0.765 0.756 0.765 0.808 0.710 0.759

MemTrack 0.768 0.807 0.705 0.588 0.748 0.751 0.726 0.723 0.744 0.717 0.762

CREST 0.749 0.819 0.715 0.720 0.777 0.749 0.807 0.763 0.681 0.795 0.867

SRDCF 0.688 0.655 0.680 0.640 0.722 0.745 0.651 0.655 0.573 0.723 0.718

CSR-DCF 0.660 0.682 0.643 0.710 0.722 0.729 0.675 0.647 0.686 0.661 0.669

SiamFC 0.682 0.847 0.655 0.571 0.662 0.692 0.614 0.646 0.672 0.635 0.652

Staple 0.611 0.631 0.654 0.653 0.638 0.613 0.622 0.614 0.658 0.648 0.681

KCF 0.553 0.560 0.591 0.565 0.540 0.540 0.572 0.585 0.441 0.623 0.657

DSST 0.544 0.567 0.569 0.502 0.480 0.448 0.579 0.538 0.411 0.659 0.656

Table 2. Success score comparison of 11 challenges in the OPE experiment on the OTB100 dataset. The top three trackers are
marked with red, green and blue, respectively.

Tracker SV LR OC DF MB FM IR OR OV BC IV

Ours 0.624 0.637 0.563 0.509 0.650 0.630 0.576 0.571 0.603 0.602 0.590

CF2 0.478 0.439 0.484 0.465 0.561 0.542 0.529 0.485 0.443 0.512 0.512

MemDTC 0.570 0.605 0.550 0.493 0.570 0.573 0.557 0.552 0.572 0.544 0.564

MemTrack 0.573 0.574 0.518 0.452 0.561 0.575 0.537 0.529 0.534 0.533 0.556

CREST 0.534 0.527 0.518 0.509 0.598 0.576 0.589 0.555 0.504 0.579 0.614

SRDCF 0.510 0.494 0.487 0.451 0.525 0.562 0.475 0.475 0.430 0.530 0.521

CSR-DCF 0.479 0.439 0.462 0.500 0.546 0.556 0.483 0.459 0.497 0.472 0.476

SiamFC 0.515 0.592 0.483 0.425 0.504 0.531 0.473 0.475 0.495 0.476 0.484

Staple 0.453 0.418 0.481 0.497 0.472 0.479 0.455 0.455 0.463 0.495 0.511

KCF 0.348 0.307 0.392 0.395 0.401 0.389 0.384 0.391 0.327 0.417 0.431

DSST 0.400 0.383 0.411 0.380 0.384 0.366 0.427 0.390 0.323 0.491 0.497

4.3. Evaluation on TC-128 Benchmark

The TC-128 [27] is a dataset for color information, which contains 128 video sequences
to test the performance of the tracker. We compared this dataset with some other excellent
trackers, including: ECO [31], CREST [51], HCFTstar [53], CF2 [22], CACF [54], KCF [6],
DSST [49], LOT [55], CSK [56]. The results show that our tracker is in second place in both
precision rate and success rate metrics. Figure 10 shows the performance of all algorithms.

As shown in Figure 10, the success rate and precision rate of the proposed tracker
reach 54.5% and 73.8%, respectively, which are inferior to the 55.2% and 74% reached
by ECO. The reason for this may be that ECO uses a combination of depth features and
color features, while the TC-128 dataset is designed to obtain the color information of
objects, so the extraction of color features is beneficial for target modeling. However, the
complex feature extraction method of ECO leads to its tracking speed of only 8 FPS, which
cannot meet the requirements of real-time tracking, while our tracker can reach a speed of
29FPS. Moreover, our tracker has a 5% and 4.6% higher success rate and precision rate than
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CF2, which also uses multi-layer depth features. Meanwhile, trackers based on manual
features, such as KCF,CSK and DSST, are much less effective than other trackers that use
deep features.
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Figure 10. Success and precision rates on the TC-128 dataset.

Qualitative Analysis on TC-128 Benchmark

Similar to the OTB dataset, we also compared the results of 11 challenges on the TC-128
dataset, including Scale Variation (SV), Low Resolution (LR), Occlusion (OC), Deformation
(DF), Motion Blur (MB), Fast Motion (FM), In-plane Rotation (IR), Out-of-plane Rotation
(OR), Out-of-View (OV), Background Clutter (BC), and Illumination Variation (IV). The
results are shown in Tables 3 and 4.

Table 3. Precision score comparison of 11 challenges in the OPE experiment on the TC-128 dataset. The top three trackers
are marked with red, green and blue, respectively.

Tracker SV LR OC DF MB FM IR OR OV BC IV

Eco 0.712 0.752 0.706 0.779 0.612 0.625 0.670 0.680 0.618 0.795 0.675

Ours 0.782 0.686 0.684 0.745 0.603 0.647 0.712 0.713 0.568 0.791 0.738

CREST 0.660 0.678 0.662 0.781 0.638 0.630 0.663 0.680 0.571 0.763 0.733

HCFTstar 0.681 0.577 0.608 0.773 0.618 0.627 0.623 0.681 0.511 0.756 0.733

CF2 0.688 0.583 0.622 0.802 0.635 0.634 0.635 0.673 0.492 0.744 0.721

CACF 0.567 0.499 0.524 0.664 0.530 0.506 0.552 0.549 0.388 0.677 0.632

KCF 0.529 0.449 0.478 0.652 0.486 0.490 0.510 0.524 0.374 0.625 0.581

DSST 0.538 0.405 0.488 0.502 0.449 0.431 0.501 0.512 0.384 0.552 0.583

LOT 0.451 0.448 0.443 0.542 0.381 0.426 0.431 0.458 0.361 0.514 0.400

CSK 0.380 0.348 0.343 0.351 0.299 0.282 0.358 0.366 0.217 0.427 0.370
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Table 4. Success score comparison of 11 challenges in the OPE experiment on the TC-128 dataset. The top three trackers are
marked with red, green and blue, respectively.

Tracker SV LR OC DF MB FM IR OR OV BC IV

Eco 0.532 0.496 0.545 0.552 0.451 0.507 0.520 0.523 0.470 0.562 0.526

Ours 0.569 0.466 0.508 0.544 0.458 0.501 0.533 0.532 0.427 0.561 0.549

CREST 0.509 0.406 0.506 0.565 0.484 0.521 0.524 0.540 0.453 0.544 0.573

HCFTstar 0.457 0.342 0.449 0.533 0.431 0.479 0.461 0.490 0.398 0.516 0.522

CF2 0.486 0.323 0.473 0.557 0.446 0.499 0.481 0.503 0.382 0.501 0.526

CACF 0.379 0.278 0.389 0.481 0.391 0.407 0.403 0.417 0.317 0.458 0.465

KCF 0.340 0.238 0.344 0.457 0.342 0.376 0.350 0.375 0.297 0.422 0.414

DSST 0.402 0.269 0.371 0.370 0.345 0.363 0.387 0.394 0.297 0.396 0.454

LOT 0.333 0.230 0.320 0.360 0.294 0.330 0.334 0.340 0.282 0.346 0.318

CSK 0.281 0.205 0.270 0.248 0.240 0.269 0.283 0.289 0.205 0.294 0.301

From Tables 3 and 4, it is clear that the algorithm proposed in this paper performs well
on these challenges. It also outperforms CF2, which also uses hierarchical depth features,
in terms of overall performance. The CREST algorithm, which uses only one layer of deep
features, performs worse than our algorithm, illustrating the benefits of using adaptive
hierarchical depth features. However, it can be seen that the proposed algorithm generally
performs well in the two challenges of Deformation and Motion Blur. The reason for this
may be that the rapid deformation causes blurring in the object’s appearance, meaning
that the most significant features of the target may be affected. Therefore, the model does
not learn more discriminative features and the ability to distinguish the background is
reduced. In the follow-up, we will continue to study this problem and try to achieve
an improvement.

4.4. Evaluation on UAV123 Benchmark

The UAV-123 [26] is a dataset consisting of low-altitude UAV capture videos, which is
fundamentally different from the videos in mainstream tracking datasets, such as OTB50,
VOT2014. It contains a total of 123 video sequences and over 110k frames. Unmanned
aerial vehicles (UAVs) are increasingly used in daily life, so it is of practical significance
to test the proposed algorithm on this dataset. We tested our algorithm on UAV123,
using the same evaluation method as the OTB dataset, against nine other algorithms,
including: SRDCF [50], CREST [51], CF2 [22], SiamRPN [34], DSST [4], Struck [57], ECO [31],
TADT [13], KCF [6], and CSK [56], the comparison results are shown in Figure 11.

As shown in Figure 11, thanks to the proposed method, our tracker achieved a 53.9%
success rate and 76.1% precision rate on UAV-123, higher than CF2 and SRDCF, which also
used depth features, and similarly improved the performance ECO, TADT and CREST
by 1.4% and 2.0%, 2.6% and 3.7%, 5.8% and 8.3%. As the UAV123 dataset contains many
UAV aerial images, the targets being tracked in the images are generally small, so it is
especially important to learn a more discriminative target feature. Compared with ECO,
which uses a complex computational strategy for feature selection, the proposed algorithm
in this paper can more accurately identify these small targets. Similar to ECO, TADT also
works on feature reduction by designing a regression loss and ranking loss to learn more
effective target features, respectively; however, the learned features are not as accurate as
the features of the proposed algorithm when facing smaller targets, so the tracking effect
is average.
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Figure 11. Success and precision rates on the UAV-123 dataset.

Using end-to-end training on a large-scale image dataset while introducing a region
proposal network, SiamRPN achieves a higher precision rate than our tracker. However, as
it uses ordinary depth features, its performance is weaker than the proposed tracker with a
similar target interference.This can also be verified in the lemming and girl2 sequences in
Figure 9. Similarly, trackers using manual features, e.g., KCF, Struck, and DSST, all perform
worse than trackers using depth features.

4.5. Evaluation on VOT2016 Benchmark

The VOT2016 [28] is a very popular dataset in the field of target tracking, which
automatically labels samples to annotate sample coordinates. It uses two metrics, accuracy
and robustness, to evaluate the performance of the tracker, as these two have the weakest
relationship of the several evaluation metrics used for target tracking to avoid interference.
The Expect Average Overlap Rate (EAO) was introduced to rank the algorithms, which
better reflects some issues when compared to the OTB dataset. We used VOT-2016 to
evaluate our tracker, and compared this with some other trackers.

We selected 11 trackers, including TADT [13], Staple [48], SA-Siam [35], DeepSRDCF [29],
MDNet [10], SRDCF [50], CF2 [22], DAT [58], SAMF [59], DSST [49], KCF [6]. To ensure a
fair comparison, the results of the other algorithms were downloaded from the VOT-2016
official website. Figure 12 shows the EAO ranking results, and it can be seen that our tracker
outperforms TADT, which is innovative in feature modeling, and is in the first position.
Table 3 shows more detailed comparison information, including EAO score, OP score and
Failures score, and our tracker is in the leading position in all three metrics.

From Table 5, we can see that the proposed algorithm achieves the highest perfor-
mance for EAO, which indicates the robustness of the proposed algorithm. The proposed
algorithm performs better than our baseline algorithm SiamFC on EAO, Overlap and Fail-
ure, which can reflect the effectiveness of the proposed multi-channel-aware, deep-feature
and adaptive hierarchical deep features in this paper. The last column of Table 4 shows that
the proposed algorithm has the lowest tracking failure rate, which means the prediction
results have the smallest deviation from the groundtruth. The experimental results further
demonstrate the effectiveness of the proposed method.
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Figure 12. EAO score ranking of the compared trackers VOT2016 dataset.

Table 5. Overall performance on VOT2016 dataset; the top three trackers are marked with red, green
and blue, respectively.

Tracker EAO Overlap Failures

Ours 0.303 0.560 18.514

TADT 0.300 0.546 19.973

Staple 0.294 0.540 23.895

SA-Siam 0.292 0.539 19.560

DeepSRDCF 0.275 0.522 20.346

MDNet 0.257 0.538 21.081

SRDCF 0.245 0.525 28.316

CF2 0.219 0.436 23.856

DAT 0.216 0.458 28.353

SAMF 0.185 0.496 37.793

DSST 0.180 0.524 44.813

KCF 0.153 0.469 52.031

4.6. Ablation Studies

The baseline algorithm of the proposed method is SiamFC, to which we introduce
a multi-channel-aware, deep-feature module and an adaptive hierarchical deep-feature
module. To test the effectiveness of the proposed modules, we conducted ablation experi-
ments to compare the performance of individual modules and the overall algorithm with
the baseline tracker SiamFC.

We separately tested two modules on OTB100, and the results are shown in the figure
below. It is easy to see that the effect of a single module is not as good as that of two
modules acting at the same time. Figure 13 compares success rate and precision rate
for these variations in the OTB100 benchmark, where WLR and WCR modules achieved
a 63.0% and 83.3%, and 63.0% and 83.4% success rate and precision rate, respectively.
Therefore, combining the two reliability modules can achieve the best performance. This is
also a significant improvement compared to the baseline tracker SiamFC.
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Figure 13. Comparison of the two modules when they act separately. Ours shows the effect when the two modules work
together. Ours-WCR representative without multi-channel aware deep feature. Ours-WLR representative without using
adaptive hierarchical deep features. SiamFC is our baseline algorithm.

5. Conclusions

This paper proposes a novel scheme to learn target deep aware features, including
the learning of multi-channel-aware deep-feature and adaptive hierarchical deep features.
The modified mechanism can focus on the modeling of the target appearance, effectively
deal with changes in the target appearance, and suppress the interference of background
information. The proposed learning multi-channel-aware deep-feature module can focus on
important information in the channel, and the proposed adaptive hierarchical deep features
module can obtain adaptive feature layer fusion weights. Finally, the two modules work
together to enhance the discriminative abality of the tracker. We combine the proposed
model with the Siamese framework and prove its effectiveness. In conclusion, this paper
proposes a new approach to better utilize the feature modeling abilities of pre-trained
neural networks, and a large number of experimental results on several datasets show that
the proposed method has a good performance.

From a comparative analysis of different datasets, it can be seen that, compared
with the method that uses only single-layer features to model the target, using layered
depth features can yield a more discriminative target feature. Compared with the method
that uses complex computational strategies for feature dimensionality reduction, our
method will be much simpler computationally, and can achieve real-time performance.
Compared with the memory network-based method, the proposed method does not have
a complicated model update strategy and does not occupy too much memory, which is
also beneficial for the efficient use of hardware resources. However, the proposed method
performs poorly in some specific scenarios. In future research, we will analyze the reasons
for this and try to solve the problems.

In future research, we plan to investigate the use of meta-learning [60] methods to
generate an optimal set of initialization parameters, so that the network can be trained
online using reliable target information in the first frame, allowing the network to converge
faster and obtain a better set of weights for the feature layers and feature channels. A more
interesting plan is to enhance the feature representation using the multi-headed attention
mechanism proposed by transformer [61] to further improve the performance.
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