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Abstract: Due to the symmetry of the rolling bearing structure and the rotating operation mode,
it will cause the coupling modulation phenomenon when it is damaged in multiple places at the
same time, which makes it difficult to accurately identify all kinds of faults. For such problems,
a compound fault diagnosis method based on adaptive chirp mode decomposition (ACMD), Gini
index fusion and long short-term memory (LSTM) neural network optimized by Aquila Optimizer
(AO) is proposed. Firstly, a series of IMF components are obtained by decomposing the vibration
signal by means of ACMD, and the required components are selected by using the correlation
coefficient method. Then, the Gini index of the square envelope (GISE) and the Gini index of the
square envelope spectrum (GISES) of each component are calculated, respectively, and they are
fused to construct a highly dimensional feature matrix. Then, with the aim of solving the problem
of difficult selection of LSTM hyperparameters, the AO-LSTM model is constructed. Finally, the
feature matrix is divided into a training set and a test set. The training set is input into the model
for training, and then the training network is used to predict the test set, and outputs diagnostic
results. The simulation and experimental results show that the proposed method can achieve higher
accuracy and stronger robustness, compared with the existing intelligent diagnosis methods for
bearing compound faults.

Keywords: rolling bearing; compound fault diagnosis; ACMD; Gini index; AO-LSTM

1. Introduction

Rotating machinery is widely used in modern industry, and a rolling bearing is an
important part of most rotating machinery and electrical equipment. Its running state
directly affects the performance of the whole machine [1]. If the rolling bearing fails,
it may cause heavy economic losses and serious casualties. Therefore, the accurate and
automatic diagnosis of various bearing faults that may occur in rotating machinery is
of great significance [2]. However, in the actual operation process of rotating machinery
equipment, due to the action of external load and the degradation of bearing performance,
the fault often does not appear alone, and often appears as a compound fault of mutual
coupling and cross influence between signal components [3]. Compared with a single
fault, a compound fault is more harmful to mechanical equipment and is more difficult
to diagnose. The diagnosis method of a single fault is difficult to adapt to the diagnosis
problem under the condition of a compound fault [4,5]. Therefore, the research on the
intelligent diagnosis method of compound faults of rolling bearings is of great practical
significance to ensure the normal and stable operation of mechanical equipment.

In order to detect the compound fault characteristics of rolling bearings under complex
conditions such as high speed, heavy load and strong impact, advanced signal decom-
position and filtering methods can be used to enhance and extract the compound fault
signal. In recent years, more and more efficient and reliable signal processing algorithms
have emerged, providing more choices for the diagnosis methods of bearing compound
faults [6]. Cui et al. [7] effectively separated the compound faults of bearings by using a
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combination of the second-generation wavelet and EMD demodulation. Chen et al. [8]
proposed a method based on minimum entropy deconvolution and Teager energy oper-
ator to analyze the compound fault signal of a helicopter rolling bearing, and effectively
extracted weak compound fault features despite strong background noise. Qi et al. [9]
used adaptive signal sparse resonance decomposition (ARSD) and multipoint kurtosis
optimal minimum entropy deconvolution correction (MK-MOMEDA) to effectively extract
various fault features from compound faults. Wan Shuting et al. [10] used the combination
of variational modal decomposition (VMD) and maximum correlation kurtosis deconvolu-
tion (MCKD) to extract fault features, which effectively realized the diagnosis of bearing
compound faults. The above methods achieved certain results, providing a new idea for
the compound fault diagnosis of rolling bearings. However, these methods need to know a
lot of a priori information in advance, which is greatly hindered in practical engineering
practice. Chen et al. [11] introduced an easy-to-handle adaptive chirp mode decomposition
(ACMD) method. ACMD is a non-stationary signal decomposition method based on a vari-
ational modal decomposition (VMD) framework. It can estimate each signal component
independently, solve the problem of the poor effect of VMD in processing multi-component
signals with overlapping frequencies, and there is no need to set the number of signal
components in advance, so it is more flexible in practical applications.

In addition, the proposal and improvement of mechanical fault feature extraction
methods largely depend on the evaluation index of feature information. As an excellent
sparse index, the Gini index (GI) has strong robustness to the interference of random
impulse noise. Therefore, it is very appropriate to take it as the evaluation index of the
component decomposed by the ACMD method. In 2017, GI was first introduced for the
feature extraction of mechanical faults, and then GI was widely used in the field of fault
diagnosis of gears and bearings [12]. For example, Miao et al. [13] used GI instead of the
kurtosis coefficient to verify the robustness of GI to random impulse noise for the first
time. Albezzawy and Nassef et al. [14,15] believe that GI is a more effective estimator than
kurtosis, which is used in wavelet decomposition and variational modal decomposition to
extract the best modulus. These studies further strengthen the theoretical support for GI in
the field of feature extraction technology.

Since the vibration signals of various bearings are always nonlinear, non-stationary
and accompanied by high background noise, it is a complex task to determine the most
accurate diagnosis results from the characteristic signals only by manual experience [16,17].
Chen [18] used a combination of wavelet packet decomposition (WPD), overall average
empirical mode decomposition (EEMD) and information entropy to extract the multiple
features of the signal, and used the multi-classifier group composed of support vector
machine (SVM) sub-classifiers to identify the multiple features, so as to realize the diag-
nosis and recognition of compound faults of rolling bearings. Zhang et al. [19] used the
AdaBoost algorithm and the back propagation (BP) neural network to effectively identify
the compound fault mode of gearbox. However, SVM and the BP neural network used in
pattern recognition are shallow networks, the number of hidden layers and the ability of
feature learning and expression are limited, and the training can easily to fall into the local
extremum. In recent years, Han et al. [20] used multi-wavelet transform (MWT) to process
the bearing vibration signal, obtained multi-wavelet coefficient branches, constructed the
feature map, and realized the intelligent diagnosis of rolling bearing compound faults
by using a CNN classifier. Shi et al. [21] used the improved Hilbert–Huang transform
(IHHT) to extract the time-frequency characteristics of fault signals, and inputted the gen-
erated time-frequency map into a convolutional neural network (CNN) for the intelligent
identification of compound faults of rolling bearings.

As a typical deep learning network model, a CNN contains multiple hidden layers and
can realize feature learning and expression through feature transfer layer by layer. However,
in the application of fault identification, it needs a large number of two-dimensional data,
and the network structure is complex, which requires more training time. A recurrent
neural network (RNN) solves this kind of problem well. An RNN is a framework for
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processing sequential data. It remembers the previous information through the connection
structure of nodes between each layer, and uses this information to affect the output of
subsequent nodes, which can fully mine the temporal information in sequential data. This
method has more in-depth expression ability in processing complex feature data [22].
As a special RNN, a long short-term memory network (LSTM) can effectively avoid the
gradient explosion problem. At present, LSTM has been preliminarily applied in the
field of fault diagnosis, and has improved the level and efficiency of fault diagnosis. For
example, Cao et al. [23] used the improved 1d-CNN-LSTM model to classify and identify
six different working states of rolling bearings, and achieved high recognition accuracy.
Elsewhere, Zhang et al. [24] used MCKD to denoise the vibration signal, and then used
an LSTM network to train the calculated Teager energy sequence to realize bearing fault
diagnosis. These studies were aimed at completing the bearing fault diagnosis of a single
fault, but there is little research on applying LSTM to compound fault intelligent diagnosis.

In this paper, an LSTM network is used to identify the characteristic matrix obtained by
ACMD and the GI fusion method, and the Aquila optimizer (AO) [25] is used to optimize
the super parameters of the LSTM network for the intelligent diagnosis of compound faults
of rolling bearings. As a new population-based optimization method, AO can make better
use of the global solution to break away from the local minimum, and can converge to the
optimal solution only by several iterations of the objective function. Compared with the ant
colony algorithm and the particle swarm optimization algorithm, it does not easily fall into
local optimization, and the convergence accuracy is higher. The design method proposed in
this paper describes three main steps: firstly, the best feature vector is obtained by ACMD
and the GI fusion method, and it is divided into training set and test set. Secondly, the
characteristic matrix is divided into a training set and a test set, the LSTM network suitable
for characteristic data is constructed, and the parameters of the LSTM network are adjusted
by the AO algorithm. Finally, the training set is input into the AO-LSTM model for training,
and the training network is used to classify and predict the test set. Compared with the
existing intelligent diagnosis methods of bearing compound faults, this method avoids the
need for diagnosis experience and can achieve higher fault identification accuracy.

2. Theoretical Basis of the Proposed Method
2.1. Adaptive Chirp Mode Decomposition (ACMD)

ACMD is a more easily processed form of VNCMD, and VNCMD is a new method to
decompose chirp signals. A chirp signal consisting of a K chirp modulus can be modeled as:

s(t) =
K

∑
i=1

si(t) =
K

∑
i=1

Ai(t) cos
(

2π
∫ t

0
fi(τ)dτ + θi

)
(1)

where Ai(t) > 0, fi(t) > 0 and θi represent the instantaneous amplitude (IA), instanta-
neous frequency (IF) and initial phase of ith component si(t), respectively.

Using demodulation technology, Equation (1) can be rewritten as:

s(t) =
K

∑
i=1

ai(t) cos
(

2π
∫ t

0
f̃i(τ)

)
+ bi(t) sin

(
2π
∫ t

0
f̃i(τ)dτ

)
(2)

in which
ai(t) = −Ai(t) cos

(
2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + θi

)
,

bi(t) = −Ai(t) sin
(

2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + θi

)
.

(3)

where f̃i(t) is the frequency function of cos(2π
∫ t

0 f̃i(τ)dτ) and sin(2π
∫ t

0 f̃i(τ)dτ); ai(t)
and bi(t) are demodulated signals, their IF is f i(t) − f̃i(t), and IA is:

Ai(t) =
√

a2
i (t) + b2

i (t) (4)
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From the above analysis, it can be seen that when VNCMD estimates the signal
components, the number K of components should be known. However, it is difficult to
obtain this information. The difference between ACMD and VNCMD is that it is inspired
by the matching pursuit method and uses the greedy algorithm to estimate the signal
components one by one [11]. For example, for the ith signal component, the following
problems shall be solved:

min
ai(t),bi(t), f̃i(t)

(
‖a′′ i(t)‖2

2 + ‖b′′ i(t)‖
2
2 + α‖s(t)− si(t)‖2

2

)
,

si(t) = ai(t) cos
(

2π
∫ t

0 f̃i(τ)dτ
)
+ bi(t) sin

(
2π
∫ t

0 f̃i(τ)dτ
)

.
(5)

where ‖s(t)− si(t)‖2
2 represents the residual energy after removing the current estimated

component and a > 0 represents the weighting coefficient.
As with matching tracking, ACMD finds the signal component that can take the most

energy from the input signal. Assuming that the signal is discretized at t = t0, · · · , tN−1,
the discrete form of Equation (4) can be expressed as:

min
ui ,fi

{
‖Θui‖2

2 + α‖s−Giui‖2
2

}
(6)

where Θ =

[
Ω

Ω

]
, Ω is a second-order difference matrix; ui= [a T

i , bT
i

]T
,

ai= [a i(t 0), · · · , ai(t N−1)]
T , bi= [b i(t 0), · · · , bi(t N−1)]

T ; s = [s(t 0), · · · , s(t N−1)]
T ;

Gi = [Ci, Si] (7)

Ci = diag[cos(ϕi(t0)), · · · , cos(ϕi(tN−1))] (8)

Si = diag[sin(ϕi(t0)), · · · , sin(ϕi(tN−1))] (9)

where ϕi(t) = 2π
∫ t

0 f̃i(τ)dτ.
Equation (5) shows that given f̃i(τ) or Gi, the optimization problem can be solved by

using an iterative algorithm that alternately updates the demodulated signal and frequency
function. For the jth iteration, the vector ui can be updated to:

uj
i =

[
aj

i
bj

i

]
= argmin

ui

{
‖Θui‖2

2 + α‖s−Gj
iui‖

2

2

}
=

(
1
α

ΘTΘ +
(

Gj
i

)T
Gj

i

)−1(
Gj

i

)T
s (10)

where Gi
j is composed of f̃ j

i (t), j represents the iteration counter, and the parameters α
can adjust the smoothness of the output signal. The signal component can be estimated as:

sj
i = Gj

iu
j
i (11)

According to Equation (3) and using the demodulated signal in Equation (10), the
frequency increment can be calculated as:

∆ f̃
j
i(t) = −

1
2π

d
dt

(
arctan

(
bj

i(t)

aj
i(t)

))
=

bj
i(t)×

(
aj

i(t)
)′
− aj

i(t)×
(

bj
i(t)
)′

2π
(

aj
i(t)
)2

+ 2π
(

bj
i(t)
)2 (12)

In practical application, a low-pass filter is needed to preprocess the frequency incre-
ment to reduce noise interference. IF can eventually be updated to:

fj+1
i = fj

i +

(
1
β

ΩTΩ + I
)−1

∆f̃
j
i (13)
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where fj
i = [ f̃ j

i (t0) , · · · , f̃ j
i (t N−1

)
]
T

; I is the identity matrix;
(

1
βΩTΩ + I

)−1
is used

as low-pass filter, ∆f̃
j
i =

[
∆ f̃ j

i (t0) , · · · , ∆ f̃ j
i (t N−1

)]T
, the parameter β can adjust the

smoothness of IF.
Next, we can use fj+1

i to update matrix Gj+1
i and repeat Equations (10)–(13) in the next

iteration. The algorithm can not only estimate the signal component s̃i(t), but also estimate
the IA and IF of the signal (i.e., Ãi(t) and f̃i(t)). In order to find other signal components,
the first estimate s̃1(t) shall be removed from the original signal as follows:

R1(t) = s(t)− s̃1(t) (14)

where R1(t) represents the residual signal after removing the first estimated component.
Then, the second signal component s̃2(t) is subtracted from R1(t). After K iterations,

the decomposition of the signal s(t) is as follows:

s(t) =
K

∑
i=1

s̃i(t) + RK(t) (15)

In fact, if the energy of the remaining RK(t) is less than a certain threshold, the
algorithm is stopped.

2.2. Gini Index (GI)

As a new concept in mechanical fault diagnosis, the Gini index (GI) has the most stable
gradient characteristics and is an effective evaluation index compared with traditional
indexes. Equation (16) is the GI of data x with length N. x =

[
x(1)x(2) · · · x(n) · · · x(N)

]
is

a sequence sorted in ascending order (i.e.,x(1) ≤ x(2) · · · ≤ x(n) · · · ≤ x(N)). This sorting
process imposes some limitations on the application of GI.

GI = 1− 2
N

∑
n=1

x(n)
‖x‖1

(
N − n + 0.5

N

)
(16)

Miao et al. [26] proposed a new index based on GI, which can be directly applied. For
example, the Gini index of the square envelope (GISE) of the signal s = (s 1 s2 · · · sN) is
defined as:

GISE = 1− 2
N

∑
n=1

SE(n)

‖SE‖1

(
N − n + 0.5

N

)
(17)

where ‖·‖1 denotes the l1 norm operation, and square envelope of signal s is SE =|s|2 and

its order SEorder =
[
SE(1) SE(2) · · · SE(n) · · · SE(N)

]
, SE(1) ≤ SE(2) · · · ≤ SE(n) · · · ≤ SE(N).

The Gini index of the square envelope spectrum (GISES) of the signal s is defined as:

GISES = 1− 2
N

∑
n=1

SES(n)
‖SES‖1

(
N − n + 0.5

N

)
(18)

where the square envelope spectrum of signal s is SES = abs(FFT( |s|2)), and FFT is fast
Fourier transform.

2.3. Aquila Optimizer (AO)

The optimization rule of the AO algorithm starts from the population of the candidate
solution (X) in Equation (19), which is randomly generated between the upper bound
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(UB) and the lower bound (LB) of a given problem. The best-obtained solution, so far,
is determined as the optimal solution approximately in each iteration.

X =



x1,1 · · · x1,j x1,Dim−1 x1,Dim
x2,1 · · · x2,j · · · x2,Dim
· · · · · · xi,j · · · · · ·

...
...

...
...

...
xN−1,1 · · · xN−1,j · · · xN−1,Dim

xN,1 · · · xN,j xN,Dim−1 xN,Dim


(19)

where X denotes a set of current candidate solutions, which are generated randomly by
using Equation (20), Xi denotes the decision values (positions) of the ith solution, N is the
total number of candidate solutions (population), and Dim denotes the dimension size of
the problem.

Xij = rand× (UB j − LBj

)
+ LBj, i = 1, 2, . . . , Nj = 1, 2, . . . , Dim. (20)

where rand is a random number, LBj denotes the jth lower bound, and UBj denotes the jth
upper bound of the given problem.

AO algorithm simulates Aquila’s behavior during hunting [25]. Aquila’s behavior is
modeled as a mathematical optimization paradigm, and the optimal solution is determined
under specific constraints. Aquila’s behavior in the first method (X1) is mathematically
shown in Equation (21).

X1(t + 1) = Xbest(t)×
1− t

T
+ (XM(t)− Xbest(t) ∗ rand) (21)

where X1(t + 1) is the solution of the next iteration of t, which is generated by the first
search method (X1). Xbest(t) is the best-obtained solution until the tth iteration; this reflects
the approximate location of the prey. 1−t

T is used to control the extended exploration by
the number of iterations. XM(t) denotes the mean location value of the current solutions
connected at the tth iteration, which is calculated using Equation (22).

XM(t) =
1
N

N

∑
i=1

Xi(t), ∀j = 1, 2, . . . , Dim. (22)

where Dim is the dimension size of the problem and N is the number of candidate solutions.
The AO algorithm starts to improve the optimization process by generating a set of

randomly predefined candidate solutions. According to the optimal solution obtained in the
optimization process, the individual position is updated, and four strategies (i.e., expanding
exploration, narrowing exploration scope, expanding development and narrowing develop-
ment scope) are used to highlight the balance between exploration and development. See
reference [25] for the detailed process of the other three strategies. When the end conditions
are met, the exploration process of AO is terminated.

2.4. Long Short-Term Memory (LSTM) Network

A long short-term memory (LSTM) network is a special recurrent neural network
(RNN). In order to solve the problems of gradient disappearance or gradient explosion of
RNN, LSTM adds a forget gate and input gate to selectively retain and update information,
which strengthens the learning ability of the network [27]. The structure of a LSTM network
is shown in Figure 1. It is composed of multiple neural network cells.
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Figure 1. Structure diagram of LSTM neural network unit.

In Figure 1, ct−1 denotes the state of the previous cell, ht−1 denotes the output of the
previous cell layer, and xt denotes the input of the current cell; σf, σi and σo denote the forget
gate, input gate and output gate, respectively; tanh1 is used to generate updated content, and
tanh2 is mainly used to update the cell state of the neural network at that moment [28].

The general form of gate control is defined as:

g(x) = σ(Wx + b) (23)

where σ(x) = 1/(1 + exp(−x)); W and b denote the weight matrix and bias vector of the
network, respectively.

The forward calculation process of LSTM can be expressed by Equations (24)–(28).

it = σ(Wxixt + Whiht−1 + bi) (24)

ft = σ(Wx f xt + Wh f ht−1 + b f ) (25)

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (26)

ot = σ(Wxoxt + Whoht−1 + bo) (27)

ht = ot � tanh(ct) (28)

where σ(x) is the sigmoid function. It can map a real value to the interval 0~1 to describe
how much information passes through. W and b represent the weight matrix and bias
vector of the network. � represents the scalar product of two vectors. it, ft, and ot represent
the input gate, forget gate and output gate, respectively. xt and ht represent the input and
output of the hidden layer of LSTM, respectively. ct denotes the memory unit.

When the time step is t, the input and output vectors of the hidden layer are xt and
ht, respectively, and the memory unit is ct. The input gate is used to control how much xt
flows into the memory unit—that is, how much can be saved to ct. A forget gate is a key
component of an LSTM unit, which can control which information should be retained and
which should be forgotten, and avoid the gradient disappearance and explosion caused by
gradient back propagation over time in some way. The output gate controls the influence
of the memory unit on the current output value—that is, which part of the memory unit
will be output in the time step.

3. Compound Fault Diagnosis Method of Rolling Bearings Based on ACMD, Gini
Index Fusion and AO-LSTM

This paper proposes using ACMD to decompose the original vibration signal of a
rolling bearing into several intrinsic mode functions (IMF), selecting four IMF compo-
nents with large correlation coefficient, calculating the Gini index of the square envelope
(GISE) and the Gini index of the square envelope spectrum (GISES) of each component,
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respectively, and fusing them into a high-dimensional characteristic matrix to evaluate
the characteristics of signal components more accurately. Then, the LSTM network is
introduced to identify the compound fault from the characteristic matrix, and the Aquila
optimizer (AO) [25] is used to optimize the super parameters of the LSTM network, so as
to improve the accuracy of the intelligent diagnosis of compound faults of rolling bearings.

The specific implementation steps of the proposed method are as follows:
Step 1: Data preprocessing. The mathematical models of bearing inner ring and

outer ring fault signals are established, and they are combined to form compound fault
signals. The corresponding Gaussian white noise is added to these three types to form
the simulation signals of three types of bearing faults. Using the public bearing dataset of
Xi’an Jiaotong University, five typical bearing vibration signals are extracted from the life
cycle data as experimental signals;

Step 2: Feature extraction. All kinds of fault signals are decomposed by the ACMD
algorithm to obtain K IMF components, n IMF components with large correlation coefficient
are selected, their GISE and GISES are calculated, respectively, and a 2N dimensional
characteristic matrix is constructed by fusion;

Step 3: Initializing the LSTM network. The feature matrix is divided into training
set and test set, and the corresponding labels are given, respectively. The sample data in
line with the LSTM network input format are constructed to eliminate the influence of
differences between features. The training environment, training function and gradient
descent optimization algorithm are set. In addition, the input layer dimension, the number
of output layer nodes, the number of hidden layer neuron nodes and other parameters are
also set.

Step 4: Selection and definition of AO optimization parameters. The LSTM is taken as
the fitness function, the reconstruction error of the network is taken as the fitness value,
the number of hidden layer nodes and initial learning rate are taken as the optimization
objectives, and the optimization range is set. The selection of population number and
maximum optimization times is based on experience.

Step 5: AO optimizing the process of the LSTM network. According to the set super
parameter range, the initial parameter value is randomly generated, the LSTM network is
trained, the reconstruction error output by the fitness function is used to correct the optimiza-
tion objective of AO, and the LSTM network is trained again with the corrected parameters to
minimize the error value. It is judged whether the maximum optimization times are reached. If
so, the execution is stopped and the currently selected optimal parameter combination and
the corresponding optimal fitness value are output; if not, the target parameters are updated
and training continues until the maximum optimization times are reached.

Step 6: Classification and identification of signals. The optimal solution of the opti-
mized output is used to update the parameters of the LSTM network, input the training set
into the network for retraining, then use the training network to predict the training set
and test set, and output the final classification diagnosis result of the bearing signal.

The detailed diagnosis flow of the method proposed in this paper is shown in Figure 2.
Based on the above research, compared with the commonly used decomposition

methods such as EMD and VMD, the ACMD method has stronger robustness, simpler
parameter setting, and a better effect in processing complex multi-component signals.
Compared with the deconvolution method used frequently at present, the methods of
ACMD and GI fusion do not need to know a lot of prior information regarding the vibration
signal in advance, which will be more conducive to practical engineering application. GI,
as a new sparse index, is more effective than the traditional kurtosis and correlation
coefficients. In addition, the AO-LSTM model is introduced for the first time to identify
the characteristics of compound faults of rolling bearing. Compared with shallow neural
networks and existing deep learning network models, this method can achieve higher
identification accuracy and stronger stability.
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4. Simulation and Experimental Results of Rolling Bearing Fault Diagnosis
4.1. Simulation Verification

According to the characteristics of the failure of rolling bearings on inner rings and
outer rings, the fault simulation signal x(t) is constructed, and its expression is:

x(t) = s(t) + n(t) =
N
∑

i=1
Aih(t− iT − τi) + n(t),

Ai = A0 cos(2π frt + ϕA) + CA,

h(t) = e−βt sin(2π fnt + ϕω).

(29)

where s(t) is the periodic impact component, n(t) is the Gaussian white noise, Ai is the
modulation amplitude, and T is the impact period; fr is the frequency conversion and CA is
the amplitude random constant; β is the attenuation index, fn is the resonance frequency of
the system, and the random variable τi is the small fluctuation of the ith impact relative to
T, which follows the zero mean normal distribution, and the standard deviation is 0.5% of
the conversion frequency.

The parameters of the inner ring fault simulation signal xi(t) are set as follows: the
initial value of amplitude is A0 = 0.2, the amplitude random constant CA = 2, attenuation
index β = 700, the natural frequency of the system fn = 4000 Hz, the conversion frequency
fr = 30 Hz, the sampling frequency fs = 16,000 Hz, and the characteristic frequency fi = 120 Hz.
The parameters of the outer ring fault simulation signal xo(t) are set as follows: the value of
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amplitude is Ai = 2, β = 700, fs = 16,000 Hz, fn = 4000 Hz, and the characteristic frequency
fo = 100 Hz. In order to simulate the real compound fault signal of rolling bearing, the inner
ring and outer ring simulation signals are superimposed, and then the Gaussian white noise
n(t) with a signal-to-noise ratio of 3 dB is added to form the compound fault simulation
signal. The simulated fault signal and compound fault signal of the inner and outer ring of
the bearing are shown in Figure 3.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 21 

 

).2sin()(

,)2cos(

,)()()()()(

0

1

ωn
tβ

AAri

N

i
ii

φtfπeth

CφtfπAA

tniTthAtntstx

+=

++=

+−−=+=

−

=
 τ

 (29) 

where s(t) is the periodic impact component, n(t) is the Gaussian white noise, Ai is the 
modulation amplitude, and T is the impact period; fr is the frequency conversion and CA 
is the amplitude random constant; β is the attenuation index, fn is the resonance frequency 
of the system, and the random variable τi  is the small fluctuation of the ith impact rela-
tive to T, which follows the zero mean normal distribution, and the standard deviation is 
0.5% of the conversion frequency. 

The parameters of the inner ring fault simulation signal xi(t) are set as follows: the 
initial value of amplitude is A0 = 0.2, the amplitude random constant CA = 2, attenuation 
index β = 700, the natural frequency of the system fn = 4000 Hz, the conversion frequency 
fr = 30 Hz, the sampling frequency fs = 16,000 Hz, and the characteristic frequency fi = 120 
Hz. The parameters of the outer ring fault simulation signal xo(t) are set as follows: the 
value of amplitude is Ai = 2, β = 700, fs = 16,000 Hz, fn = 4000 Hz, and the characteristic 
frequency fo = 100 Hz. In order to simulate the real compound fault signal of rolling bear-
ing, the inner ring and outer ring simulation signals are superimposed, and then the 
Gaussian white noise n(t) with a signal-to-noise ratio of 3 dB is added to form the com-
pound fault simulation signal. The simulated fault signal and compound fault signal of 
the inner and outer ring of the bearing are shown in Figure 3. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Time domain waveform of simulation signals. (a) Outer ring fault simulation signal; (b) inner ring fault simula-
tion signal; (c) compound fault simulation signal; (d) compound fault simulation signal after adding 3 dB of noise. 
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states, in which each sample contains 4096 sampling points. Under the condition of setting 
the same parameters, 14 IMF components can be obtained by means of ACMD decompo-
sition of each signal. Taking the fault signal of rolling bearing inner ring as an example, 
the time domain waveform of the first eight IMF components is taken, as shown in Figure 
4. As can be seen from Figure 4, the IMF component still contains a large amount of noise 
interference. In this paper, the correlation coefficient method is used to reduce the error 

Figure 3. Time domain waveform of simulation signals. (a) Outer ring fault simulation signal; (b) inner ring fault simulation
signal; (c) compound fault simulation signal; (d) compound fault simulation signal after adding 3 dB of noise.

The simulation signals of the rolling bearing inner ring, outer ring and compound
fault are divided into 50 samples, respectively. A total of 150 samples are obtained in
three states, in which each sample contains 4096 sampling points. Under the condition
of setting the same parameters, 14 IMF components can be obtained by means of ACMD
decomposition of each signal. Taking the fault signal of rolling bearing inner ring as an
example, the time domain waveform of the first eight IMF components is taken, as shown
in Figure 4. As can be seen from Figure 4, the IMF component still contains a large amount
of noise interference. In this paper, the correlation coefficient method is used to reduce the
error caused by this interference. The calculation result of taking one sample for each type
of signal is shown in Figure 5.
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Then, we select four components with large correlation coefficients, IMF1, IMF2, IMF3
and IMF4, and calculate their GISE and GISES values, respectively. The results are shown
in Figure 6. It can be found that if only GISE is selected as the feature index, the features
are prone to overlapping in the component IMF4; if only GISES is selected as the feature
index, the features are prone to aliasing in the components IMF1 and IMF2.
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This paper selects the GISE and GISES of the four IMF components as the feature
index, which can effectively avoid the feature overlap of the four components, so as to
ensure the accuracy of the feature information. Therefore, the GISE and GISES of four
components are fused to form a vector of 1 × 8, and each signal can use a characteristic
matrix of 50 × 8.

From the feature information containing 150 samples, 60 samples are randomly se-
lected as the training set and 90 samples as the test set. The feature samples of the bearing
inner ring, outer ring and compound fault in the training set and test set are labeled with
1, 2 and 3, respectively, and standardized. The corresponding AO-LSTM model is built,
inputting the training set into the model for training, and generating the training network.
Finally, the training network is used to classify and predict the divided training set and test
set. The confusion matrix of the proposed method is shown in Figure 7.
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In the confusion matrix, there is no classification error in the training samples, and the
training accuracy of bearing fault signal is 100%. Only one test sample has classification
error. The compound fault is diagnosed as an outer ring fault, and the test accuracy is
98.89%, of which the diagnosis accuracy of compound fault is 96.67%, which reflects the
effectiveness of the proposed method to diagnose compound fault signal.

4.2. Experimental Verification

The bearing dataset of Xi’an Jiaotong University were selected to analyze and verify
the proposed method, and compared with other intelligent diagnosis methods to verify the
superiority of the proposed method.

4.2.1. Experimental Data Description

The test bench used to collect data is shown in Figure 8. The platform was mainly
composed of a hydraulic loading system, a support bearing, a test bearing, a motor and
a speed controller. The test bearing was a LDK UER204 rolling bearing, and its relevant
parameters are shown in Table 1. Three types of working conditions were designed in the
test, and their rotating speeds were 2100, 2250 and 2400 r/min, respectively [29]. There
were five bearings under each type of working condition, in which the sampling frequency
was set at 25.6 kHz, the sampling interval was 1 min, and the sampling time was 1.28 s.
More details of this dataset can be found in [30].

The vibration signals collected in the experiment comprised the data of rolling bearings
from a normal state to failure. In this paper, four groups of fault datasets were used to
analyze and verify the proposed method. The signals of these different bearing conditions
include different fault components, fault types and fault trends. Taking the compound
fault of inner ring and outer ring as an example, the time domain waveform of its life cycle
signal is shown in Figure 9. The fault signal of the dotted line part is intercepted. It can
be seen that the characteristic amplitude of this part shows an increasing trend with the
passage of operation time.
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Table 1. LDK UER204 bearing parameters.

Parameter Value Parameter Value

Inner race diameter 29.30 mm ball diameter 7.92 mm
Outer race diameter 39.80 mm Contact angle 0◦

Bearing mean diameter 34.55 mm Number of balls 8
Load rating 12.82 kN Load rating 6.65 kN
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Figure 9. Life cycle vibration signal of bearing in compound fault state.

By analyzing the vibration amplitude of each bearing, several typical bearing signals
such as outer ring faults, cage faults and inner ring faults could also be extracted. Fifty
samples were created for each type of signal, and each sample contained 2048 sampling
data points. One sample of each type of bearing state signal was taken, and their original
time signal was drawn. The waveform of the five intercepted samples is shown in Figure 10.
The health state signal is the health state data of the front part of the intercepted inner
ring fault life cycle dataset. It can be seen that these five kinds of signals under different
operating states show nonlinear and non-stationary characteristics, and the type of fault
cannot be distinguished only by observing the time domain waveform.
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4.2.2. Diagnostic Results of the Proposed Method

The accuracy of fault diagnosis is largely affected by the quality of fault features.
This paper extracts effective feature vectors before intelligent diagnosis. Firstly, under
the condition of setting the same parameters, ACMD is used to decompose each sample.
Taking the fault signal of the outer ring of a rolling bearing as an example, one sample is
taken and is decomposed to obtain 11 IMF components, and the first eight components are
shown in Figure 11.
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It can be seen that there are still many interference components in the IMF component
and taking these components as feature components will inevitably reduce the recognition
accuracy of classification algorithm. Therefore, it is necessary to select the component more
in line with the original signal. Here, the correlation coefficient method is used to filter the
components that are less related to the original signal.

The calculation results of the correlation coefficients of each component are shown
in Figure 12. Then, select four components with large correlation coefficient and calculate
the GISE and GISES of these four components, respectively. The results are shown in
Figure 13. It can be found that if only the GISE or GISES of each component is selected as
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the feature vector, almost every component will be prone to aliasing, which greatly hinders
the identification of fault features. However, if the GISE and GISES of four components are
fused to construct an eight-dimensional feature vector, it can effectively avoid the overlap
of more feature information and improve the accuracy of feature information. Each type of
bearing signal is composed of 50 samples. Therefore, this paper uses a matrix of 50 × 8 to
represent each type of bearing signal.

1 

 

 

Figure 12. Correlation coefficient of each component in different states.
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For each state, 20 feature samples are randomly selected for training and the remaining
30 are used for testing, and labels are attached to the corresponding sample data. More
details of the selected bearing signals are described in Table 2. The LSTM is selected as
the fitness function of AO, and the reconstruction error is taken as the fitness value. The
learning rate and the number of hidden layer nodes of LSTM network are continuously
iteratively optimized through AO algorithm, and the optimal parameters are output until
the termination conditions are met.
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Table 2. Description of training and test samples under five bearing conditions.

Bearing Operating Conditions Bearing
Dataset

Operating
Condition

Training Samples
and Testing Samples Condition Label

Outer race fault Bearing 1_1 35 Hz/12 kN 100/150 1
Cage fault Bearing 2_3 37.5 Hz/11 kN 100/150 2

Compound fault Bearing 1_5 35 Hz/12 kN 100/150 3
Inner race fault Bearing 2_1 37.5 Hz/11 kN 100/150 4
Healthy state Bearing 2_1 37.5 Hz/11 kN 100/150 5

The main parameters of AO-LSTM model are shown in Table 3. The divided datasets
are standardized, and then input into the model for training to generate a training network.
The training network is used to classify and predict the experimental dataset, and the
results are shown in Figure 14. The results show that all 100 training samples are classified
correctly, and the training accuracy is 100%. Among the test samples, only one cage fault
was misdiagnosed as an inner ring fault; 149 test samples were classified correctly, the test
accuracy was 99.33%, and the compound fault diagnosis accuracy was 100%. This shows
that the method based on the combination of ACMD and AO-LSTM can effectively identify
a variety of fault types including compound faults.

Table 3. Description of training and test samples under five bearing conditions.

AO LSTM

Maximum number of iterations 10 The number of fully connected layer 5
Number of optimization parameters 2 The dimension of input sample 8

Population 5 The node number of hidden layers 10
Lower and upper limits of learning rate [0.001, 0.1] Learning Rate Drop Factor 0.1

Range of hidden layer node number [5, 14] Learning rate 0.01
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In order to understand the separability of extracted features more intuitively, the
t-distributed stochastic neighbor embedding (t-SNE) method is used to visualize the feature
information of each type of bearing by reducing the dimensionality of highly dimensional
features. The feature information of each type of bearing extracted manually above is
compared with the feature information obtained after classification of the AO-LSTM model.
Figure 15 shows their two-dimensional visualization results, where t-SNE1 and t-SNE2
represent the first two main components of the five bearing status labels.
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It can be seen from the figure that in the feature information obtained by combining
ACMD and the Gini coefficient, the feature distribution of the same fault type is wider, and
there is feature overlap between the first and second fault types. However, after the training
of the AO-LSTM model, the characteristics of these five kinds of bearing signals are clearly
distinguished, and the feature aggregation of the same type is very compact. It further shows
the effectiveness of the proposed method in rolling bearing compound fault diagnosis.

4.2.3. Diagnosis Results of the Proposed Method and Different Intelligent Methods

In order to verify the superiority of the AO algorithm, particle swarm optimization
(PSO) and whale optimization algorithm (WOA) are used to test the LSTM network, re-
spectively. The parameter setting of LSTM network is the same as that of AO algorithm.
Figure 16 shows the comparison results of the test. It can be seen from the figure that
only the AO algorithm can achieve the lowest reconstruction error by using fewer itera-
tions, which is enough to illustrate the advantage of the AO algorithm in optimizing the
hyperparameters of the LSTM network.

Symmetry 2021, 13, x FOR PEER REVIEW 18 of 21 

 

  
(a) (b) 

Figure 15. (a) Two-dimensional feature distribution after ACMD. (b) Two-dimensional feature distribution after ACMD 
and AO-LSTM. 

It can be seen from the figure that in the feature information obtained by combining 
ACMD and the Gini coefficient, the feature distribution of the same fault type is wider, 
and there is feature overlap between the first and second fault types. However, after the 
training of the AO-LSTM model, the characteristics of these five kinds of bearing signals 
are clearly distinguished, and the feature aggregation of the same type is very compact. It 
further shows the effectiveness of the proposed method in rolling bearing compound fault 
diagnosis. 

4.2.3. Diagnosis Results of the Proposed Method and Different Intelligent Methods 
In order to verify the superiority of the AO algorithm, particle swarm optimization 

(PSO) and whale optimization algorithm (WOA) are used to test the LSTM network, re-
spectively. The parameter setting of LSTM network is the same as that of AO algorithm. 
Figure 16 shows the comparison results of the test. It can be seen from the figure that only 
the AO algorithm can achieve the lowest reconstruction error by using fewer iterations, 
which is enough to illustrate the advantage of the AO algorithm in optimizing the hy-
perparameters of the LSTM network. 

 
Figure 16. Convergence curves obtained by different optimization algorithms. Figure 16. Convergence curves obtained by different optimization algorithms.

This paper uses the same experimental data, and the superiority of the proposed
method is proved by comparing with five fault diagnosis methods. Firstly, ACMD is re-
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placed by the continuous variational modal decomposition (SVMD) method, and the effects
of the two decomposition methods on the classification results are compared. Secondly,
the traditional characteristic index of the kurtosis coefficient is used to replace the Gini
coefficient, and the classification accuracy is compared. Finally, different feature recognition
methods are compared. The robustness and stability of the proposed method are verified
ten times. Table 4 describes the classification results of different diagnostic methods.

Table 4. Description of classification results of various diagnostic models.

Diagnostic Model
Signal

Decomposition
Method

Characteristic
Evaluation

Index

Feature
Recognition

Method

Average Test Sample
Accuracy (%)

Standard
Deviation

The proposed model ACMD Gini index AO + LSTM 98.67 0.53
Model 1 SVMD Gini index AO + LSTM 88.39 2.13
Model 2 ACMD Kurtosis AO + LSTM 85.73 2.15
Model 3 ACMD Gini index LSTM 91.87 1.67
Model 4 ACMD Gini index PSO + LSTM 94.53 1.06
Model 5 ACMD Gini index AO + KELM 95.67 0.94

Figure 17 shows each test result of the proposed method and other methods. In the
diagnosis results, the average test accuracy is the standard to determine the fault diagnosis
performance. The average diagnosis accuracy of the proposed method is 98.67%, which is
significantly higher than other models. From the perspective of accuracy, it can be seen that
the combination of ACMD and the Gini coefficient can extract feature information with
high accuracy more effectively than the SVMD method and the kurtosis coefficient index.
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5. Conclusions

In this paper, a bearing compound fault diagnosis model based on the combination
of ACMD, Gini index fusion and AO-LSTM is proposed. It is applied to the compound
fault simulation signal and the bearing experimental dataset of Xi’an Jiaotong University,
respectively, to realize the intelligent identification of compound faults. Among a variety
of bearing signals including compound fault, the classification accuracy of simulation
signal and experimental signal test samples is 98.89% and 99.33%, respectively, of which
the accuracy of compound fault diagnosis is 96.67% and 100%, respectively. Thus, the
effectiveness and practicability of the proposed method are verified.

Through verification and comparative analysis, the reasons for the high accuracy of
the proposed method can be summarized as follows:
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1. The ACMD method uses a greedy algorithm to estimate the signal components one
by one, and reduces the interference of irrelevant components to the greatest extent
under the condition of ensuring that the useful feature information is not lost. In the
proposed model, as the premise of feature extraction, this method can decompose the
unstable vibration signal more stably and efficiently.

2. As a feature vector, the Gini coefficient is more robust to random impulse noise and
other interference components because of its stable gradient characteristics and the
ability to distinguish impulse and repetitive transients. It can effectively characterize
the feature information and make the difference between samples more obvious.

3. The AO algorithm avoids the time-consuming and parameter uncertainty of manual
parameter adjustment in optimizing the super parameters of LSTM model, ensures
the accuracy and accuracy of the model, and can better monitor the running state of
rolling bearing.

For the intelligent diagnosis of compound faults of rolling bearings, feature extraction
can be further strengthened and improved in the future. More powerful feature learning
models such as enhanced learning can be used to automatically extract the required com-
pound fault features, realize completely unsupervised compound fault feature learning,
and save feature extraction time while ensuring higher accuracy. In addition, more experi-
mental data of compound fault of rolling bearing can be collected to analyze and verify the
research method, so as to realize the universality and stability of the research method.
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