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Abstract: Time, cost, and quality have been known as the project iron triangles and substantial factors
in construction projects. Several studies have been conducted on time-cost-quality trade-off problems
so far, however, none of them has considered the time value of money. In this paper, a multi-objective
mathematical programming model is developed for time-cost-quality trade-off scheduling problems
in construction projects considering the time value of money, since the time value of money, which is
decreased during a long period of time, is a very important matter. Three objective functions of time,
cost, and quality are taken into consideration. The cost objective function includes holding cost and
negative cash flows. In this model, the net present value (NPV) of negative cash flow is calculated
considering the costs of non-renewable (consumable) and renewable resources in each time period
of executing activities, which can be mentioned as the other contribution of this study. Then, three
metaheuristic algorithms including multi-objective grey wolf optimizer (MOGWO), non-dominated
sorting genetic algorithm (NSGA-II), and multi-objective particle swarm optimization (MOPSO) are
applied, and their performance is evaluated using six metrics introduced in the literature. Finally, a
bridge construction project is considered as a real case study. The findings show that considering the
time value of money can prevent cost overrun in projects. Additionally, the results indicate that the
MOGWO algorithm outperforms the NSGA-II and MOPSO algorithms.

Keywords: project scheduling; time-cost-quality trade-off; discounted cash flow; MOGWO; NSGA-II;
MOPSO; metaheuristic algorithm

1. Introduction

Various methods are exploited by different organizations in implementing projects.
The optimal tool and technique is usually selected based on the project characteristics as
well as the capabilities of the organization [1]. Construction projects are often encompassed
by complicated circumstances that make project scheduling a challenging topic [2]. In
the real-world, decision makers are usually confronting with multiple conflicting or non-
conflicting objectives that should be optimized simultaneously. Time, cost, and quality
(TCQ) are three key factors in sustainable construction project scheduling. It is necessary to
have an efficient decision support system that could consider all above-said criteria and
closer to the real status of the project. Project success is usually measured based on the iron
triangle of time, cost, and quality. In other words, it requires systematic methodologies in
which quality is considered together with time and cost [3].

In the TCQ trade-off problem, the durations of activities are determined such that
the precedence relationships are met, and the time and cost of the project are minimized
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while the quality is maximized [4]. Traditional project scheduling methods are not ca-
pable of meeting today’s needs of the construction industry. Presenting an appropriate
mathematical programming model which simultaneously optimizes different conflicting
objectives, as well as efficient multi-objective optimization techniques, help to achieve the
defined goals [5].

If the required resources are not sufficient for completing activities, they will cause
delays in the implementation of projects. Hence, this study aims to properly assign
renewable resources to project activities in each time period of activity execution. On the
other hand, considering the indirect costs and time value of money is very important in
project planning and can affect long-term investments. In this study, the discounted cash
flow is considered by calculating the costs of resources in each period of time, while in
other studies the costs of resources are calculated after completing each activity.

The research questions are as follows:

1. What is the significance of considering time value money in time-cost-quality (TCQ)
project scheduling problems?

2. Which methods can be used to optimize the proposed multi-objective mathematical
programming model for scheduling construction projects?

3. Is it possible to implement the proposed model in a real case construction project?
4. Which method can find the best solution among the Pareto frontier?

In this paper, a mathematical programming model is developed for Time-Cost-Quality
(TCQ) trade-off multi-mode resource-constrained project scheduling problem (MRCPSP).
The first objective function minimizes the total costs of the project including negative
cash flows and holding cost of finished activities. The second objective function seeks to
minimize the project make-span, and the third objective function maximizes the quality of
activities. The cost objective function consists of two parts. The first part is the holding cost
of activities and the second part is the negative cash flows of the project. For calculating
the holding cost of activities, the total cost of the project is obtained cumulatively after
completing each activity and a percent of this cost is considered as holding cost. The
second part is obtained as a percentage of non-renewable and renewable resource costs in
each time of executing activities. A decision variable (uimt) is applied for considering the
execution of activity i in each time and the renewable resources are assigned to activities by
using this variable. In this model, two types of resources (renewable and non-renewable
resources) exist, and we have limiting for using both resources. The quality level of
activities must not be lower than a threshold. The objective functions (time, cost, and
quality) are in conflict and increasing the total cost of project leads to the better values of
the other objective functions.

The outstanding points can be concisely counted as follows; considering negative cash
flow per unit of time period, using three well-known and highly recognized multi-objective
optimization algorithms named NSGA-II, MOPSO, and MOGWO for solving a number
of problem instances with different sizes, and applying the proposed model to a real case
of a bridge construction project, finding the best solution using the Shannon’s entropy
technique and WASPAS method. The main contribution of this study is considering the
time value of money. In addition, other relevant research works have considered the
negative cash flow at the completion of each project activity, however, in this study, the
negative cash flow is calculated in each time period of executing activities in order to
prevent cost overrun. Additionally, in this paper, a bridge construction project including
88 activities and 17 renewable resources is taken into consideration as a real case study.

This paper is structured as follows. In Section 2, the literature review is briefly
presented. Section 3 describes the mathematical programming model and the methodology
of solving model. The model validation, the experimental results and the case study are
presented in Section 4, and finally the paper concludes in the Section 5.
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2. Literature Review

Time, cost, and quality are considered as important objectives in any project scheduling
problem [6,7]. Most of the studies on time-cost-quality (TCQ) trade-off problems considered
only one non-renewable resource. Afruzi et al. (2014) proposed a simple TCQ trade-
off model and defined the duration of activities in two execution modes (crashed and
normal durations). They employed the multi-objective imperialist competitive algorithm
(MOICA) to tackle this problem and compared the algorithm performance with other
frequently used algorithms [8]. Tavana et al. (2014) introduced a resource-constrained
TCQ trade-off problem considering the preemption of activities. They also applied the
ε-constraint method to solve the model [9]. Zareei and Hassan-Pour (2015) proposed a
resource-constrained project scheduling problem (RCPSP) to maximize the net present
value (NPV) [10]. Saif et al. (2015) used a meta-heuristic algorithm known as problem data-
based optimization (PDBO) to solve this problem [11]. Fu and Zhang (2016) proposed a non-
linear programming model with the objective of minimizing total quality costs for the multi-
mode resource-constrained project scheduling problem (MRCPSP). It should be noted that
RCPSP deals with finding the start times of project activities taking the activity precedence
relationships as well as the availability of resources into account. Additionally, they
developed a shuffled frog-leaping algorithm (SFLA) to solve the problem [12]. Hosseini
et al. (2017) proposed a multi-objective TCQ trade-off mathematical programming model
for an underground project and a sample project with 10 activities was solved by the
NSGA-II algorithm. These multi-objective methods obtain the Pareto optimal frontiers
with two significant challenges: The Pareto set may not be properly distributed and may
be very large which raises the question of how to select a specific solution [13].

Orm and Jeunet (2018) reviewed the literature on TCQ trade-off problems and found
out that the number of activities in the sample problems is quite small compared to the
ones in real-world projects [14]. Geshniani et al. (2020) presented a model for maxi-
mizing contractor net present value and solved it with metaheuristic algorithms [15].
Mehrdad (2020) developed a model for the multi-objective RCPSP in which the NPV and
the quality of executing activities are maximized, and the project completion time is mini-
mized [16]. Mahmoudi and Javed (2020) proposed a mathematical programming model
for the time-cost trade-off project scheduling problem [17]. Sharma and Trivedi (2020) pre-
sented a TCQ and safety trade-off model and used the NSGA-III algorithm for solving
it [18]. Moghadam et al. (2020) compared the performance of two metaheuristic algo-
rithms in solving the TCQ trade-off problem [19]. Jeunet and Bou Orm (2020) developed
an optimization model for the TCQ trade-off problem [20]. Keshavarz and Shoul (2020)
used a single-objective optimization approach to solve the TCQ trade-off problem [21].
Banihashemi and Khalilzadeh (2021) considered the multi-mode project scheduling prob-
lem and evaluated the efficiency of each mode in terms of time, cost, quality, and environ-
mental impacts [22]. Mao et al. (2020) Presented a mathematical model in shipbuilding
project scheduling problem. There are several projects (multi-projects) in order to execute
in their model. Decreasing the cost and increasing the quality was the objective func-
tions of shipbuilding project problem. The findings showed the distributed scheduling
process can be effectively connected by parameterizing the local optimization and the
interorganizational coordination process [23]. Panwar and Neeraj Jha (2021) used the
NSGA-II algorithm to deal with the TCQ trade-off problem considering safety issues [24].
Hosseinzadeh et al. (2021) presented a heuristic approach to solve the TCQ trade-off prob-
lem in an uncertain environment [25]. Luong et al. (2021) exploited Opposition-based
Multiple Objective Differential Evolution (OMODE) to tackle TCQ trade-off problem con-
sidering a high-way construction project [26]. Hamta et al. (2021) developed a goal
programming model for the TCQ trade-off problem and implemented the model on
a case study [27]. Nguyen et al. (2021) used the multiple objective whale optimiza-
tion (MOWO) approach to tackle the TCQ trade-off problem in reiterative construction
projects [28]. Huynh et al. (2021) compared the performance of four metaheuristic algo-
rithms in solving the TCQ trade-off problem considering carbon dioxide emission [29].
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Banihashemi et al. (2021) attempted to simultaneously minimize the project cost, time, and
environmental effects [30]. Liu et al. (2021) developed a model to deal with RCPSP taking
consumable resources into account, and solved the proposed model by using the constraint
programming (CP) method [31].

It should be noted that most of the papers on RCPSP used case studies with small and
medium sizes [32–34].

The holding cost of completed activity and value of money are very important in
large-scale projects. Dodin and Elimam (2001) paid attention to this subject and used
CPLEX, which is one of the solvers of GAMS optimization software, for many projects [35].
Seifi and Tavakkoli-Moghaddam (2008) presented a multi-mode RCPSP with the goal of
maximizing the NPV and minimizing the holding cost of completed activity by the projects’
completion time [36]. Khoshjahan et al. (2013) developed a model for RCPSP with the
objective of minimizing the NPV of the earliness–tardiness penalty costs [37]. A summary
of the relevant studies is presented in Table 1.

Table 1. Summary of the related studies.

Authors Year Multi-Objective MCDM Time Value of Money Holding Cost Case Study

Mahmoudi and Javed [17] 2020 √
Sharma and Trivedi [18] 2020 √ √

Moghadam et al. [19] 2020 √ √
Jeunet and Bou Orm [20] 2020 √ √
Keshavarz and Shoul [21] 2020 √

Banihashemi and
Khalilzadeh [22] 2021 √ √

Mao et al. [23] 2020 √ √
Panwar and Neeraj Jha [24] 2021 √

Hosseinzadeh et al. [25] 2021 √ √
Luong et al. [26] 2021 √ √
Hamta et al. [27] 2021 √ √

Nguyen et al. [28] 2021 √ √
Huynh et al. [29] 2021 √ √

Banihashemi et al. [30] 2021 √ √
Liu et al. [31] 2021 √ √

This paper 2021 √ √ √ √ √

In the related studies on project scheduling in which the NPV is considered as the
objective function, cash flows are converted to the NPV after completion of activities [36],
while cash flows should be converted to the NPV in each unit of time due to the long
implementation time of the large projects (mega projects). Therefore, in this paper, the
cash flows of the activities are calculated in each time unit. On the other hand, timely and
appropriate allocation of renewable resources to activities is extremely important in project
scheduling. In this study, a variable is defined which considers the execution of each activity
in each unit of time and appropriately allocated the renewable resources to the activities. In
addition, the holding cost of activities which is one of the main costs of the project is taken
into account in this paper, while it has received less attention in other studies. Additionally,
there are few studies that implemented mathematical programming model on a real case
study, solved it with three different multi-objective optimization algorithms, and found the
best Pareto solution using the multi-criteria decision-making methods.

The highlights of current research are enumerated as follows:

• Considering time value of money in the TCQ trade-off problem for construction projects;
• Applying three metaheuristic algorithms of MOGWO, NSGA-II, and MOPSO for

solving the proposed problem;
• Implementing the proposed model on a real case of bridge construction project with

88 activities;
• Using Shannon’s entropy technique and WASPAS method for finding the best

Pareto solution.
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3. Materials and Methods

The executing modes of activities affect time, cost and quality as well as resource usage.
Project managers schedule activities and allocate resources to activities regarding time, cost
and quality objectives. However, the net present values of negative cash flows should be
considered (that calculated basis on usage rate of resources per time) for optimal planning.
In this paper, a multi-objective multi-mode optimization model is proposed to schedule
activities and allocate constraint resources. The model objectives are: (i) minimizing project
costs, (ii) minimizing project make-span and (iii) maximizing activity quality. Cost objective
function include holding cost of completed activities and negative cash flows. Accurate cost
prediction during the project progress directs the project manager to determine whether
there is a need for revising the project schedule [38]. The resources include renewable and
non-renewable resources.

Holding cost of activities in construction projects is an essential part of project cost that
affects the project total cost [36]. This concept is close to the holding inventory costs [35].
Some studies considered holding cost of completed activities in project scheduling [35,36].

The value of money is very important in large scale project. It is a function of the time
of cash disbursement or payment. In this study, the NPV of negative cash flow is calculated
as a percentage of non-renewable and renewable resource costs in each time of executing
activities while in other studies negative cash flow is occurred by completing activities [36].

3.1. The Assumptions, Indices, Parameters and Decision Variables

The assumptions are as follows:

Activity-on-node (AON) is used for project network representation.
Finish-to-start precedence relationship is considered.
Both renewable and non-renewable resources are considered.
The parameters are deterministic.
The quality of each activity should be higher than a predefined minimum level.
The available renewable resources are limited in each time period.

i = {0, 1, . . . , n + 1} is the set of activities in which node 0 and n + 1 are dummy
activities. Each activity has a set of executive modes as mi = {1, 2, . . . , Mi}. Each executive
mode indicates the resource usage rate, duration, and quality. All indices, parameters, and
variables are shown as follows.

Sets
i: Set of activities where i = {0, 1, . . . , N, N + 1}
mi : Set of modes (executive mode for activity i where mi = {1, 2, . . . , Mi})
r: Set of renewable resources where r = {1, 2, . . . , R}
l: Set of nonrenewable resources where l = {1, 2, . . . , L}
t: The period of time

Parameters
esi : Earliest start time of activity i
lsi : Latest start time of activity i
E f sij: Precedence relationship between activity i and activity j.
f sij: Minimum delay for activities i and j with precedence relationship finish to start
Duimi : Duration of activity i in execution mode mi
Drimir : Amount of renewable resource r for executing activity i in mode mi in each time.
limi l : Amount of nonrenewable resource l for executing activity i in mode mi .
Nl : The availability of the nonrenewable resource l.
Ar : The availability of the nonrenewable resource r.
qimi : The quality level of activity i in mode mi .
Cr : The cost of one unit of renewable resource r in each time.
Cl : The cost of one unit of non-renewable resource l.
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Qmini : Minimum level quality of activity i.
H: Horizon time of project
wimi : Worth of activity i in mode mi over the duration of activity per time.
It is the actual cost of activity i including renewable and non-renewable resources.
S: Worth of completed activity representing the holding cost, % per time.
SSt: Single-payment present worth factor
α: return rate
SSt =

1
(1+α)t

Variables
Ltnsi : Lateness of activity i
Wt: Non-renewable and renewable resource costs in each time of executing activities
WPt: Project worth obtained by completing each activity

Binary variables
ximi t : 1 if activity i starts in mode mi at time t, 0 otherwise
uimi t : 1 if activity i execute in mode mi at time t, 0 otherwise
Fimi t : 1 if activity i finishes in mode mi at time t, 0 otherwise

3.2. Mathematical Programming Model

The proposed mathematical model as mixed integer programming (MIP) problem is
included three objective functions as follows:

Min Z1 =
H

∑
t=1

S.WPt +
H

∑
t=1

SSt.Wt (1)

Min Z2 = ∑t=1 ∑MN+1
m=1 t.x N+1,mN+1,t (2)

Max Z3 =
N

∑
i=1

Mi

∑
m=1

T

∑
t=1

qimi ximitVi (3)

Equation (1) represents the cost objective function which contains the holding cost and
NPV of cash flows as nonrenewable and renewable resource costs. Equation (2) represents
the time objective function which is calculated using the critical path method. Equation (3)
represents the quality objective function which is calculated through the multiplication of
activity quality and its weight [9].

s.t
Mi
∑

mi=1

li
∑

t=ei

ximit = 1 ∀i ∈ N (4)

Mi

∑
mi=1

li

∑
t=ei

(t + Duimi + FSij) ximit ≤
Mj

∑
mj=1

lj

∑
t=ej

t.xjmjt ∀(i, j) E f sij (5)

t−1+Duim

∑
k=t

uimik ≥ Duimi ximit ∀i ∈ N, mi ∈ Mi (6)

Fimik ≤ ximit ∀k = t + Duimi , mi ∈ Mi (7)

N

∑
i=1

Mi

∑
mi=1

Drimiruimit ≤ Ar ∀t ∈ T (8)

N

∑
i=1

Mi

∑
mi=1

li

∑
t=ei

lil ximit ≤ Nl ∀l ∈ L (9)

Mi

∑
mi=1

li

∑
t=ei

qimi ximit ≥ Qmini ∀i ∈ N (10)
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Wt ≥
N

∑
i=1

Mi

∑
mi=1

wimi uimit ∀t ∈ T (11)

WPt ≥WPt−1 +
N

∑
i=1

Mi

∑
mi=1

wimi .Fimit.Duimi ∀t ∈ T (12)

wimi = Cr × Drimir +

(
Cl ×

limi l

Duimi

)
(13)

Ltnsi ≥ 0, Wt ≥ 0, WPt ≥ 0, ximit, uimit, Fimit ∈ {0, 1} (14)

Equation (4) mandates that each activity must start in one mode only between its
earliest start time and latest start time. Equation (5) satisfies the precedence relationship.
Equation (6) represents the binary variable uimit is equal to 1 in executing time period.
Equation (7) indicates the binary variable Fimit is equal to 1 by finishing each activity.
Equations (8) and (9) dictate the total resource usage per unit of time cannot exceed
the total resource availability. Equation (10) shows that the quality of activities must be
upper than a predefined minimum level. Equation (11) is the costs of non-renewable and
renewable resources in each activity executing time. Equation (12) is the calculated project
worth by completing each activity. The parameter wimi is calculated through Equation (13).
Equation (14) guarantees that the decision variables are binary and positive.

3.3. Solution Methodology

Real-world project optimization problems usually consider multiple objectives to
obtain the most attractive solution [39,40]. In this paper, the e-constraint method along
with well-known metaheuristic methods including NSGA-II, MOPSO, and MOGWO
employed to solve the problem, which are briefly described as follows.

It should be noted that several other studies have applied metaheuristic methods to
solve the NP-Hard problems in hand [41,42].

3.3.1. Augmented ε-Constraint (AEC)

The ε-constraint method deals with multi-objective optimization problems using
a parameterization approach which rebuilds one of the objectives in constraints con-
trolled by a parameter ε. In this study, the augmented ε-constraint method introduced by
Mavrotas (2009) [43] is utilized to produce the Pareto solutions. This method is able to find
efficient and non-convex Pareto curve [44].

3.3.2. Solution Representation

The solution string is converted into a solution for the problem to determine the value
of the objective function, using the following mapping.

The length of the solution string is I ∗ 3, in which I is the number of activities.
As shown in Figure 1, the solution representation includes three parts. The first part

of length I deals with the order of activities, which should be a permutation without
repetition. The decimal solution representation string maps to a permutation by sorting it
in ascending order.

Figure 1. Solution representation.

This permutation shows where the activity is located. For example, activity 2, whose
number was the lowest in the solution, is in the first place.
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According to the precedence relationships, this order is repaired. If no activity is
planned, it will be shifted to the following activity.

The third part of the solution shows the mode determination. Each activity number is
mapped to the selected mode using the following equation:
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4 1 8 7 9 2 6 3 5 10
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where lsi is the latest time to perform an activity, and ei is the fastest time to perform it.

3.3.3. The NSGA-II Metaheuristic Algorithm

As a population-based approach, NSGA-II is one of the well-known and most widely
used metaheuristic algorithms solving multi-objective optimization problems. After the
introduction of the first version of this algorithm in 1995, the second version was released
in 2002 under the acronym NSGA-II [45,46].

Crossover Operator

According to Figure 2, first, two parents x1 and x2 are selected for reproduction. Each
parent is a string with a length of N. Then a string with a length of N is randomly generated
with numbers between zero and one called α. Two children y1 and y2 are generated from
the parents, which have a share of each parent’s characteristics according to α. Each gene
of each child is created as following equation using parental genes.

y1 = α ∗ x1 + (1− α) ∗ x2 (15)

y2 = α ∗ x2 + (1− α) ∗ x1 (16)

Figure 2. Fitness-based crossover example.

Mutation Operator

The mutation gives a chance to the algorithm to escape from convergence to local
optimality. As shown in Figure 3, after selecting a member for mutation, a number of the
genes are selected and randomly changed based on the mutation steps.

It should be noted that a solution representation method is used so that the solutions
are continuously displayed between zero and one and are converted to continuous numbers
through decoding. Hence, the algorithm only receives and processes numbers between
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zero and one so that the infeasible solutions are not generated. In addition, infeasible
solutions are avoided by using the penalty function.

Figure 3. Swap mutation.

3.3.4. The MOPSO Metaheuristic Algorithm

The PSO algorithm was developed by Eberhart and Kennedy (1995) [47] inspired
from the principles of the swarm intelligence. Each potential solution is considered as a
particle and its status is recognized by its position and velocity. The position of the particle
indicates a possible problem solution. Every particle moves towards the best position with
a velocity that comprises the peculiarity of that particle’s best location visited too [48]. The
MOPSO algorithm was introduced by Coello et al. (2004) [49]. MOPSO has been known by
its superb performance and convergence. MOPSO, which is used to solve multi-objective
optimization problems, is one of the most important intelligent optimization algorithms in
the field of Swarm Intelligence.

3.3.5. The MOGWO Metaheuristic Algorithm

Mirjalili et al. (2014) introduced the MOGWO algorithm, afterwards, this algorithm
was developed for solving multi-objective optimization problems [50,51]. MOGWO was
inspired from the social behavior of gray wolves such as their hierarchical leadership and
hunting mechanism in nature. According to Figure 4, the herd of gray wolves are grouped
as alpha (α), beta (β), delta (δ) and omega (ω).

Figure 4. The hierarchy of gray wolf society.

The first group, alpha (α), includes leaders who make decisions. The second group,
beta (β), assists the leaders as advisors. The third group, delta (δ), does the duties and
tasks such as hunting, scouting and guarding. The fourth group, omega (ω), takes the
commands of the higher groups.

The most appropriate sets of solutions to a single-objective model are alpha (α),
beta (β), delta (δ), and omega (ω), respectively.

3.4. Searching, Siege and Hunting Prey

Alpha set (the best group), beta set (the second group) and delta set (the third group)
are considered to simulate wolf hunting. The following equations are used to determine
the probability of prey locations:
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Figures 5 and 6 display how updating the hunting positions.

→
Dα =

∣∣∣→C1.
→
Xα −

→
X
∣∣∣

→
Dβ =

∣∣∣→C2.
→
Xβ −

→
X
∣∣∣

→
Dδ =

∣∣∣→C2.
→
Xδ −

→
X
∣∣∣

→
X1 =

→
Xα −

→
A1.
( →

Dα

)
→
X2 =

→
Xβ −

→
A2.
( →

Dβ

)
→
X3 =

→
Xδ −

→
A3.
(→

Dδ

)
→
X(t + 1) =

→
X1+

→
X2+

→
X3

3

(17)
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A and C are determined using the below equations: 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎  

𝐶 = 2. 𝑟2⃗⃗⃗   
(18) 

In which, a linearly decreases from 2 to 0 during each iteration, and r1 and r2 

randomly change between 0 and 1 [51]. 

δ 
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ω or any other hunters 
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Figure 5. Updating hunting position. Figure 5. Updating hunting position.

Figure 6. Changing hunting position based on various alpha values.

A and C are determined using the below equations:

→
A = 2

→
a .
→
r1 −

→
a

→
C = 2.

→
r2

(18)

In which, a linearly decreases from 2 to 0 during each iteration, and r1 and r2 randomly
change between 0 and 1 [51].

3.5. The Evaluation Metrics

It is important to evaluate the quality of a set of non-dominated solutions, since the
incomparable and conflicting characteristics of some criteria make this procedure more
complicated. Generally, the comparison of two Pareto approximations obtained by two
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unlike algorithms would not easy [52]. Nevertheless, the quality of the Pareto sets should
be quantitatively assessed. Therefore, six metrics are applied in this study as follows.

3.5.1. CPU Computational Time

The less CPU computational time shows that the performance of the algorithm
is better.

3.5.2. Mean Ideal Distance (MID)

The mean of closeness between the Pareto solutions and the ideal point (0,0,0) is
measured by MID criterion [52]. For computing MID of maximizing objective function, the
values of Pareto solutions are become inverse, and the ideal point is considered (0). The
value of MID is calculated through the Equation (19):

MID =
∑n

i=1 ci

n
(19)

where n is the number of non-dominated set and ci =
√

f 2
1i + f 2

2i. The lower value of MID,
shows the better of performance for an algorithm.

3.5.3. Spread of Non-Dominance Solutions (SNS)

The SNS criterion [53], which is also known as the indicator of diversity, is calculated
through the following equation:

SNS =

√
∑n

i=1(MID− ci)
2

n− 1
(20)

The higher values of SNS, show the better solution quality, in other words, more
diversity of solutions.

3.5.4. The Rate of Achievement to Two Objectives Simultaneously (RAS)

Another metric which is used for evaluation is known as RAS [53]. The value of this
criterion is calculated using the following (and after calculating the best values of each
target function):

RAS =
∑n

i=1

(
f1i−Fi

Fi

)
+
(

f2i−Fi
Fi

)
n

(21)

where Fi = min{ f1i, f2i}. The lower RAS value, the better solution quality assuming
positive objective values.

3.5.5. Spacing (S)

The S performance metric, which is calculated through following equation, gives an
indication of the evenness of solutions obtained from an algorithm [54,55]. A lower value
of S shows a more uniform distribution of the obtained non-dominated solutions.

S =

(
1

np f
∑

np f
i=1

(
di − d

)2
) 1

2

, where d =
1

np f
∑

np f
i=1 di (22)

3.5.6. Diversification Matrix (DM)

This performance metric, which is calculated through following equation, gives an
indication of diversity of solutions obtained from a given algorithm.

DM =

√
(max f1i −min f1i)

2 + (max f2i −min f2i)
2 (23)
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3.6. Parameter Tuning

The solution quality is influenced strongly by parameter setting. In this paper,
the ranges of the parameters of the algorithms were identified through the literature
survey [50,51,56–59]. Subsequently, the Taguchi method was applied to the sets of the
parameters. The Taguchi method classifies the factors affecting the experimental results into
uncontrollable (noise (N)) and controllable factors (signal (S)). Next, S/N is defined as the
signal-to-noise ratio. The Taguchi method tunes the levels of factors at the maximum of the
S/N ratio. Three different parameter levels were used in this study for the problems with
16, 40 and 75 activities, 2, 3 and 4 renewable resources and 2, 3 and 4 modes of executing
activities for small, medium and large sizes respectively. These results are obtained using
the Minitab software.

It is noteworthy that parameters of npop and NFE is considered equally for all algo-
rithms because they have impressive effects on the solution values.

The defined parameter levels for the algorithms are presented in Table 2. The parame-
ter levels of the NSGA-II, MOPSO, and MOGWO algorithms are obtained from the related
studies [50,51,56–59].

Table 2. Factors and factor levels of the algorithms.

Parameter Levels of the NSGA-II Algorithm

Factor Level
Levels

Low Medium High

Crossover Percentage (PC) 3 60% 70% 80%
Mutation Percentage (PM) 3 25% 35% 40%

Mutation Rate (MU) 3 2% 3% 4%

Parameter Levels of the MOPSO Algorithm

Factor Level
Levels

Low Medium High

Inertia weight (A) 3 0.5 1 1.5
Inertia weight damping rate (B) 3 0.85 0.9 0.95
Personal experience weight (C) 3 0.02 0.03 0.04

Leader weight (D) 3 1 2 3
Number of grids (E) 3 2 3 4

Inflation rate for grids (F) 3 9 10 11
Leader selection pressure (G) 3 1 0.15 0.2

Deletion selection pressure (H) 3 2 4 6
Mutation rate (J) 3 0.02 0.1 0.8

Parameter Levels of the MOGWO Algorithm

Factor Level
Levels

Low Medium High

alpha 3 0.1 0.15 0.2
beta 3 3 4 5

nGrid 3 9 10 11
A 3 1 0 2

Utility function includes three quantitative criteria and two qualitative criteria. The
weight of 2 is allocated to the quantitative criteria, and the weight of 1 is assigned to the
qualitative criteria, shown in the following equation [60]:

2
√
(Spacing)1 + (MID)2 + (RAS)2 + (DM)1 + (SNS)1 + (SNS)1 (24)
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Determining the Normalized Weight Vector

The Shannon’s entropy parameter for the jth objective, denoted by Ej, can be calculated
by [61]:

Ej =
∑n

i=1 Pij.lnPij

ln n
, Where j ∈ {1, 2, . . . , m} and i ∈ {1, 2, . . . , n} (25)

Pij =
fij

∑n
i=1 fij

(26)

ωj =

(
1− Ej

)
∑m

j=1
(
1− Ej

) (27)

fij denotes the jth objective function of the jth solution. Pij represents the linear
normalization of the jth objective for the jth solution, which is employed to determine the
value of the Shannon’s entropy (Ej) of the jth objective. The number of objectives and
solutions are displayed by m and n, respectively. Eventually, the corresponding relative
normalized weight for jth solution indicated by ωj, is then obtained using Equation (27).

3.7. The WASPAS Method

The WASPAS method was first proposed by Zavadskas et al. (2012) [62]. The pri-
oritization process of the solutions of the Pareto frontier is similar to the fuzzy WASPAS
method which was proposed by Turskis et al. (2015) [63].

4. Results and Discussion

First, the proposed model was validated by solving a sample problem. Then, 30
problem instances were generated for the performance evaluation. The parameter amounts
such as the earliest and latest start times were taken from the project scheduling library
(PSPLIB) and the other specific parameters were generated by random number generator
software based on a symmetry procedure (normal distribution). The parameters show in
Table 3. Finally, a bridge construction project is considered as a case study.

Table 3. The amounts of the parameters.

Parameters Random Distribution Functions

esi PSPLIB
lsi PSPLIB
H PSPLIB

DDi PSPLIB
Duim PSPLIB
Drimr PSPLIB
E f sij PSPLIB

Ar PSPLIB
liml ∼ U [0, 8]
qim ∼ U [0.7, 0.92], Ref. [64]
Cr ∼ U [100, 150]
Cl ∼ U [10, 15]
S 0.1, Ref. [35]

4.1. The Validation of the Proposed Model

In this step, one small size instance with 9 activities (including dummy start and finish
activities), three renewable resources, three nonrenewable resources, and three activity
execution modes are considered. The AON network, the earliest and latest start times and
the due date of each activity are shown in Figure 7. The required amount of each renewable
resource for each activity and activity duration in each mode and quality are represented



Symmetry 2021, 13, 2402 14 of 25

in Tables 4 and 5 respectively. The cost of one unit of renewable resource r and holding
cost is shown in Table 6.
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Table 4. Data of qim, Duim and Vi.

qim 1 2 3 Duim 1 2 3 Vi H

1 0.91 0.87 0.73 1 2 3 4 0.1 19
2 0.89 0.79 0.68 2 3 3 4 0.2
3 0.92 0.80 0.71 3 3 4 4 0.2
4 0.89 0.81 0.73 4 3 4 4 0.1
5 0.97 0.82 0.77 5 2 3 4 0.1
6 0.91 0.81 0.69 6 2 3 3 0.2
7 0.92 0.83 0.72 7 2 2 3 0.1

Table 5. The amounts of renewable resource.

Mode 1 Mode 2 Mode 3

1 2 3 1 2 3 1 2 3

1 4 3 3 3 2 2 2 1 1
2 5 4 4 4 3 3 4 2 2
3 3 3 3 2 2 2 2 1 2
4 3 3 3 2 2 2 2 1 1
5 4 4 4 3 3 3 2 2 2
6 5 5 5 4 4 4 3 3 3
7 4 4 4 4 4 3 3 3 3

Availability of resources 9 7 7 9 7 7 9 7 7

Table 6. The amounts of costs.

Cost of using one unit of renewable resource r
1 2 3

400 500 200

Holding cost factor (S) 0.1

This sample was solved with GAMS 24.1.2 software by augmented ε-constraint
method (AEC). The thirtieth point of this frontier (cost = 126,116.5, makespan of project = 16,
quality = 0.826) was selected, shown in Table 7, variables ximt and uimt take values properly
according to duration and due date of each activity. The chart of resource allocation is
shown in Figure 8.
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Table 7. ximt and uimt.

x1.3.2 = 1 du1.1 = 4

u1.3.2 = 1 u1.3.3 = 1 u1.3.4 = 1 u1.3.5 = 1

x2.2.1 = 1 du2.2 = 3

u2.2.1 = 1 u2.2.2 = 1 u2.2.3 = 1

x3.2.7 = 1 du3.2 = 4

u3.2.7 = 1 u3.2.8 = 1 u3.2.9 = 1 u3.2.10 = 1

x4.3.5 = 1 du4.3 = 4

u4.3.5 = 1 u4.3.6 = 1 u4.3.7 = 1 u4.3.8 = 1

x5.1.10 = 1 du5.1 = 2

u5.1.10 = 1 u5.1.11 = 1

x6.1.13 = 1 du6.1 = 2

u6.4.13 = 1 u6.4.14 = 1

x7.2.15 = 1 du7.2 = 2

u7.2.15 = 1 u7.2.16 = 1

Figure 8. Resource allocation chart.

The values of Wt are given in Table 8.

Table 8. Costs of renewable and non-renewable resources per unit of time.

Time Wt (Dollar) Time Wt (Dollar)

1 14,566 9 0
2 14,566 10 7900
3 6866 11 7900
4 3637 12 0
5 7637 13 11,750
6 7637 14 11,750
7 7637 15 7075
8 4000 16 7075

Furthermore, this sample was solved by three meta-heuristic algorithms and the
Pareto optimal frontiers are shown in Figure 9.
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Figure 9. Pareto frontiers of time-cost-quality by AEC and three metaheuristic solution methods.

Pareto frontier of time-cost objectives and cost-quality objectives are presented
in Figure 10.

Figure 10. Pareto frontier of time-cost objectives and cost-quality objectives.

As seen in Figure 10, the quality increases with cost. Additionally, project make-span
increases with cost decrease. It is clear that higher project quality and shorter make-span
will incur higher project costs.
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4.2. Performance Analysis of the Algorithms

Thirty problem instances with various parameters were randomly generated, as shown
in Table 9.

The evolutionary algorithms were implemented in MATLAB software 2014 on a PC
with corei30 USB and 10 GB of RAM. The results are presented in Tables 10 and 11.

As seen above, MOGWO outperforms the other algorithms based on the Diversity,
SNS, MID, and RAS indices. On the other hand, NSGA-II has a better performance than
the other algorithms in terms of Spacing. Finally, MOPSO is better than other algorithms
based on time.

It’s notable, if the outputs of algorithms (the value of metrics) don’t be normal, it
should be normalized through Box–Cox transforming and become symmetry.

Table 9. Data generation method.

Parameters Random Distribution Functions

H esN + DuNm
DDi esi + min{Duim}
Duim [1, 6]
Drimr [0, 8]
liml [0, 8]
f sij [0, 2]
Ar [9, 11]
qim [0.55, 0.95]
Cr [100, 150]
Cl [10, 15]

Qmini 0.6
S 0.1

Table 10. The data of three problem instances.
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1 8 2 2 11 30 3 3 21 55 4 4
2 10 2 2 12 32 3 3 22 60 4 4
3 12 2 2 13 34 3 3 23 65 4 4
4 14 2 2 14 36 3 3 24 70 4 4
5 16 2 2 15 38 3 3 25 75 4 4
6 18 2 2 16 40 3 3 26 80 4 4
7 20 2 2 17 42 3 3 27 85 4 4
8 22 2 2 18 44 3 3 28 90 4 4
9 24 2 2 19 46 3 3 29 95 4 4

10 26 2 2 20 48 3 3 30 100 4 4
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Table 11. The average of six metrics for three proposed algorithms in small, medium, and large sizes.

Example Size Solver Time Diversity Spacing MID SNS RAS

Small size
NSGA-II 27 9127 289 50266 2234 0.1194
MOPSO 18 10432 315 49621 2882 0.1198
MOGWO 26 13785 329 49248 4438 0.0443

Medium size
NSGA-II 85 190507 5330 654818 46415 0.0413
MOPSO 68 197849 6822 608938 51107 0.0233
MOGWO 82 293482 7310 625251 88450 0.015

Large size
NSGA-II 315 322508 4331 1147337 71679 0.0566
MOPSO 242 311015 6220 1087265 76031 0.0521
MOGWO 291 488381 8814 1081765 142794 0.0217

The statistical analysis of the model was implemented in the form of analysis of
variance (ANOVA) for all metrics. Figure 11 shows the means plot of the different metrics
in numerical example (at the 95% confidence level).

Comparison of MOGWO and NSGA-II show that there are significant differences
between two algorithms based on Diversity, RAS, SNS, and Spacing, MOGWO outperforms
based on Diversity, SNS and RAS, and NSGA-II has a better performance based on Spacing.
There are no significant differences in term of MID and CPU time.

Comparison of MOGWO and MOPSO show that MOGWO outperforms based on
Diversity, RAS, and SNS. There are no significant differences in term of other indices.

The results also indicate that NSGA-II has better performance in term of Spacing.
However, MOPSO outperforms based on Diversity. There are no significant differences in
term of other indices.

MOPSO is better than MOGWO and NSGA-II in term of the CPU time.

4.3. Case Study

Building a bridge is a complex undertaking requiring knowledge and expertise. Nu-
merous variables, including engineering constraints, costs, time, and quality impacts come
into play when deciding which construction method to use and bridge type to build.
In recent years, several bridges of different types have been under construction on the
Shiraz–Isfahan freeway in Iran. In this paper, the concrete bridge of the Shiraz–Isfahan
freeway, which is part of the Shiraz–Isfahan freeway project, is considered as a case study
for model evaluation. This project consists of 88 activities with an estimated duration
of 36 months and a total budget of 26 billion Tomans (6.5 million Dollars). Seventeen
renewable resources (worker, workmanship, formwork worker, ironworker, rebar worker,
engineer, tower crane, pile driver, power shovel, concrete mixer, concrete pump, truck, road
marking machine, primer spraying machine, roller machine, beam launcher, formwork set)
and eight non-renewable resources (concrete, lean concrete, paint, asphalt, tar, bituminous
waterproofing, rebar and prefabricated steel) are required for accomplishing the project.
The implementation phase of this project has initiated in July 2015. After solving the
proposed model by information of bridge construction case, the results are presented in
the next parts.

4.3.1. 3-Dimensional Objective Space

The Pareto set was first generated for the problem containing three objective functions
of time, cost, and quality. Figure 12 shows the set of 3D Pareto points produced by running.
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Figure 11. The plot of all metrics for all the algorithms.

Figure 12. Cont.
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Figure 12. Pareto sets of solutions for the three-criteria and two-criteria multi-objective
optimization problem.

Comparison with the case study where the NPV is calculated at the completion of
the activity.

As shown in Figure 13, the cost objective function has a lower value when NPV is
calculated at the end of each activity. Therefore, calculating NPV at the end of each activity
leads to not considering some amounts of costs, and the cost overrun is occurred, which is
typical in most projects.
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4.3.2. Finding the Best Solution through MCDM Methods

The Pareto sets of solutions for three meta-heuristic algorithms are presented in
Figure 12. The best Pareto solution is selected using the MCDM method; First, the criteria
(objective functions) are weighted using the Shannon’s entropy technique, subsequently,
the alternatives (the solutions) are ranked using the WASPAS method. The weight of each
criterion is presented in Table 12. Among the Pareto solutions, the 96th solution (cost
25466429315, time 153, quality 0.79886) has the highest utility score.
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Table 12. The weight of criteria.

Criteria Cost Time Quality

Weight 0.333517668 0.333343 0.333139

In addition, the Gantt chart related to the best solution is presented in Figure 14.

Figure 14. The corresponding Gantt chart with the best solution of Pareto frontier.
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4.4. Discussion

Considering the small-sized problems, the results of the three metaheuristic algorithms
of NSGA-II, MOGWO, MOPSO, and the results obtained from GAMS software were
compared in order to validate these metaheuristic algorithms. Due to the NP-Hardness of
the proposed model, the exact methods and GAMS optimization software are not able to
find the optimal solutions for the large-sized problems. Hence, these three metaheuristic
algorithms were employed using the MATLAB software. Thirty small, medium and large
size test problems were designed, and six indices of time, DM, RAS, MID, Spacing, and
SNS were considered for performance evaluation. The results showed that the MOGWO
algorithm has better performance than the other two algorithms.

Additionally, the impact of considering the time value of money was evaluated. As
shown in Figure 13, the cost objective function is greater when NPV is calculated by
executing activities in each period. Therefore, calculating NPV at the end of each activity
leads to not considering some amounts of costs and the cost overrun which is typical in
most projects. In this case study, if we do not consider the time value of money there is
about 22 percent cost overrun in project. Therefore, it is very important to consider the
time value of money and also the other indirect cost of the project in order to prevent
cost overrun.

Figure 12 shows that cost objective function and time and quality objective functions
conflict with each other so that by increasing project costs, the duration of the project
decreases, and the total quality of the project increases. As can be seen in Figure 13, in the
interval (149 weeks,154 weeks) period of time that project is completed, by increasing 0.4
to 1 percent in the total cost of the project can reduce 1 period of time of project make-span.
Additionally, it can reduce 19 periods of time by increasing 16 percent in project total cost.
Regarding the quality objective function, it can be said that with 8 percent increasing in
project total cost, 1.3 units can be added to the overall quality level of the project.

After ranking the Pareto Set of solutions using the MCDM method, the best solution is
selected regarding the project decision-makers’ policies and preference. The corresponding
Gantt chart of this solution is represented in Figure 14. According to the Gantt chart, the
project was started in July 2015 and was completed in July 2018, with a total duration of
154 weeks. However, the total project duration of 153 weeks was obtained based on the
best Pareto solution that indicates the efficient performance of the proposed methodology.

5. Conclusions

In this paper, a multi-objective mathematical programming model was presented for
resource constraint project scheduling problem (RCPSP) with the aim of time, cost, and
quality trade-off considering the time value of money. Additionally, the proposed model
was implemented on a real case study of a bridge construction project with 88 activities
and solved by three different metaheuristic algorithms named NSGA-II, MOPSO, and
MOGWO. The best Pareto solution was selected using the MCDM techniques including
the Shannon’s entropy technique and WASPAS method.

It should be noted that the value of the cost objective function is greater when the net
present value (NPV) is calculated based on each unit of time period. However, calculating
NPV based on the finish times of activities leads to not considering the real amount of costs
and results in cost overrun. In addition, the findings of this study showed that the objective
functions of the TCQ trade-off problem are conflicting. In other words, improving the value
of one objective function leads to deteriorating the values of the other objective functions.
Moreover, the results demonstrated the efficiency of the metaheuristic algorithms in solving
the proposed multi-objective optimization model. However, the MOGWO algorithm
outperforms the others in terms of the six well-known metrics including time, MID, SNS,
RAS, Spacing, and DM.

The limitation of research that can be concisely counted, are as follows: Gathering
input data of the real construction project with 88 activities was time-consuming and
challenging. In addition, due to the NP-Hardness of the problem in hand, the CPU
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run time for the problem instances (especially large size problems) was quite long. As
suggestions for future research, it is recommended to implement the proposed model
on large-sized projects and analyze the results. Additionally, the environmental impacts
of project activities and social aspects of the project can be considered as other objective
functions. Moreover, the fuzzy set theory may be applied to deal with the uncertain
parameters of projects. Furthermore, other MCDM methods may be applied to weight the
objective functions and choose the best solution.
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