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Abstract: Artificial intelligence (AI) techniques in power grid control and energy management in
building automation require both deep Q-networks (DQNs) and deep deterministic policy gradients
(DDPGs) in deep reinforcement learning (DRL) as off-policy algorithms. Most studies on improving
the stability of DRL have addressed these with replay buffers and a target network using a delayed
temporal difference (TD) backup, which is known for minimizing a loss function at every iteration.
The loss functions were developed for DQN and DDPG, and it is well-known that there have been few
studies on improving the techniques of the loss functions used in both DQN and DDPG. Therefore,
we modified the loss function based on a temporal consistency (TC) loss and adapted the proposed TC
loss function for the target network update in both DQN and DDPG. The proposed TC loss function
showed effective results, particularly in a critic network in DDPG. In this work, we demonstrate that,
in OpenAlI Gym, both “cart-pole” and “pendulum”, the proposed TC loss function shows enormously
improved convergence speed and performance, particularly in the critic network in DDPG.

Keywords: deep Q-network; deep deterministic policy gradient; temporal consistency loss; temporal
difference; deep reinforcement learning; target network update

1. Introduction

Promising outputs have been accomplished in the field of deep reinforcement learning
(DRL) that combines reinforcement learning (RL) [1] and deep learning (DL) [2]. With
RL, we developed a framework for a behavioral policy that maximizes values regarding
the control of unknown complex environments. With DL, we demonstrated that there is
a high-level method of pattern recognition and image processing. In DRL, we applied
DL using a deep neural network (DNN) as an approximation function for RL. DRL has
achieved optimization applications, such as the games of Go and Alpha Go [3], which is one
of the most incredible works. There are two well-developed representatives of model-free
and off-policies in DRL: deep Q-network (DQN) [4,5] for discrete environments and deep
deterministic policy gradient (DDPG) [6] for continuous action spaces.

Deep Q-networks [4,5] developed by Google Deep Mind learned to defeat 49 various
Atari games through screen images. Q-learning [7] obtained an optimal action policy using
an action-value function. In Atari games [4,5], DQN uses DL, such as a convolutional
neural network (CNN), to extract feature patterns and RL, such as Q-learning, to train
an agent. DDPG [6] combines the ideas from DQN [4,5], which uses experience replay
buffers and slow-learning target networks, and a deterministic policy gradient (DPG) [8],
which can operate over continuous action spaces. DDPG has two networks: an actor that
proposes an action, given a state, and a critic that predicts whether the action is positive or
negative, given a state and an action. DDPG also uses DNN approximations as a nonlinear
function, such as DQN, for continuous real-valued action spaces. However, learning an
agent is unstable and difficult using nonlinear function approximations [9]. To deal with
these instabilities, DQN uses replay buffers with an off-policy method and a target Q-
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network with a delayed temporal difference (TD) backup. TD [1] is designed to evaluate
a given policy and is interpreted as minimizing a loss function at every iteration of the
value function.

It is known that DQN is used for discrete and low-dimensional action spaces and
DDPG is used for continuous real-valued and high-dimensional action spaces. Both DQN
and DDPG are known to have features that are symmetrical to each other. However,
techniques in power grid control and operation [10] and energy management in building
automation and control systems [11] require both the DQN and DDPG of DRL because their
systems require an extensive exploration of high complexity, nonlinearity, and stochastic
nature. In [10], DDPG is used to control the voltage set-points of generators, whereas DQN
is used for shunt capacitors or to control transformer tap-ratios. The two different DRLs,
namely DQN and DDPG, are applicable for training artificial intelligence (AI) techniques
of autonomous voltage control in power grid control and operation. One study [11] uses
two representative RL, DON and DDPG, to exploit the availability of huge monitoring data
and machine learning algorithms for improved strategies of load balancing in a simulated
cooling network.

Pseudo-Code 1 DRL-based AI agent using both DON and DDPG

1.  FMU is simulated by passed monitoring data and the state-vector is generated
2. DRL agent processes the state-vector and the reward

2-1. DON for solving control problems with the set-point value for the temperature, which
is designed to be within a discrete range, such as [0.95,0.975,1.0,1.025,1.05]

2-2. DDPG for continuous action-spaces of float numbers in the range from —1 to +1, such
as the parameters of the chiller and the valves of the cooling waters to the consumer
sites

3. The controls are forwarded to FMU for load balancing betweem sites

Pseudo-Code 1 describes the procedures for Figure 1, which demonstrates the schematic
architecture of the framework used in [10,11]. In every iteration, the functional mock-up
units (FMU) are simulated per time-step, and a state-vector is generated. Both the state-
vector and the reward are processed by both DQN and DDPG, and the control signals for
load balancing between sites are forwarded to the FMU. The DQN is for low-dimensional
discrete data and DDPG is for continuous action-spaces of float numbers.
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Figure 1. Schematic architecture of the framework used by both DON and DDPG.
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In this study, we considered the application of both DQN and DDPG similar to that
of “step 2” in Pseudo-Code 1 and the agent in Figure 1 [11]. The most fundamental
aspects to consider in both DQN and DDPG are the methods, replay buffers, and a target
network [12]. In replay buffers, the correlations between sampled data are reduced because
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mini-batch learning is performed with random data. The target network is a neural network
similar to a Q-network, even if it is updated slower than the Q-network. For a more stable
learning process, less frequent updates of the target network are recommended. However,
in principle, the use of the target network can cause the agent to be trained slowly and
disrupt online RL, which is a desirable attribute [6,13]. This implies that the use of replay
buffers and the target network are deviations from online RL. Moreover, the requirement
of extremely large samples tends to be risky in actual applications. This might cause
instability in long-term runs.

To stabilize the learning processes with the target network, Durugkar et al. [14]
proposed constrained TD to prevent the target value from changing after the TD updates
using the gradient projection technique. Pohlen et al. [15] proposed a temporal consistency
(TC) loss to prevent the Q-function at every target state action from changing substantially
by minimizing the target network. Therefore, the study by Pohlen et al. [15] was considered
to alleviate the instability of the learning process. Ohnishi et al. [16] proposed constrained
DQN to behave in two different methods: when the difference between the maximum
value of the Q-function and the value of the target network is large, constrained DQN
updates the Q-function more conservatively, and when this difference is small, constrained
DQN behaves similar to that of conventional standard Q-learning. Studies [14-16] provide
a family of target-based TD-learning algorithms [17]. Study [17] showed that the success
of deep Q-learning is indispensable to use a separate target network to improve the
performance of Q-learning, and provided insight into the theoretical approaches, and
introduced three different update methods: averaging TD, double TD, and periodic TD,
where the target network is updated in an averaging, symmetric, or periodic manner,
respectively. The aforementioned studies are concerned only with DQN. Therefore, we
focused on both DQN and DDPG from the insights of these studies.

We suggested a slightly modified TC loss function at each iteration, which originated
from [15,16], for a periodic update of the target network. The constrained DQN [16]
proposed a TC loss similar to that in [15], except using the source Q-function instead of the
target Q-function. We modified the TC loss originating from both constrained DQN [16]
and that in [15] for both DQN and DDPG, particularly for a critic network. In our study, the
target network was updated based on the proposed TC loss. We mentioned the proposed
TC loss as TC-DQN for DQN and TC-DDPG for the critic network of DDPG. Moreover,
the characteristic features of TC-DQN and TC-DDPG were inherited from constrained
DQN [16]; when the difference between the outputs of the Q-function and the target
network is large, the update of the target network can be conservative, but when the
difference between the outputs is small, the update can be aggressive, as in the case of
standard Q-learning for both DQN and DDPG.

We implement the proposed TC loss functions, TC-DQN and TC-DDPG, for target
network updates in standard tasks in OpenAl Gym, such as “cart-pole” for a discrete state
space and “pendulum” for a continuous state space. Consequently, the proposed TC loss
functions, TC-DQN and TC-DDPG, are more robust against fluctuations in the frequency of
updates in the target network. The experimental results show that the proposed TC-DQN
and TC-DDPG could be used as an additional component, as in [16]. Moreover, there is
a big difference in the loss functions between Constrained DQN [16] and the proposed
TC-DQN and TC-DDPG. Constrained DQN [16] uses the maximum value of Q-network for
the additional subtracted gradient term of the loss function for DQN, and the difference in
this paper is that target-network is used for both DQN and DDPG. The main contribution
is that the proposed equation can be used simultaneously for both DON and DDPG. Load
balancing is a field that has been studied for a very long time, and it was possible to
check the cases in which DQN and DDPG has been recently applied to the field through
referenced papers [10,11]. We believe that the proposed TC-DQN and TC-DDPG could be
useful in applications such as autonomous voltage control in power grid control and load
shifting in a cooling supply system [10,11].
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2. Notation and Background
2.1. Markov Decision Process (MDP)

An MDP [1] is characterized by (S, A, P, 1, v), where S denotes a finite state space, A
denotes a finite action space, P(s, a, s’) = P[s’ | s, a] represents the state transition probability
from state s to s’ for action a, r: S X A — [0, o] represents a uniform stochastic reward,
and y € (0, 1) denotes a discount factor. Further, r"*(s) denotes a stochastic reward and
R™(s) denotes the expectation for a policy 7t and a state s, that is, R(s) = Y aca7i(s, a)R(s, a).
The infinite-horizon discounted value function for policy 7 is J™(s) = E[Y}; = oY'r(si, a;) I so
=s], where s € 5, and E denotes the expectation with regard to the state-action-reward
trajectories. For pre-selected feature-functions ¢y, ..., ¢n: S — R, ¢ € R!S' X1 is defined
as¢p=¢()... p(ISI) € RSN where @(s) = ¢1(S) ... ¢n(s) € R". The goal of RL with
the linear function approximation is to determine weight vector 6 € R" such that ] = ¢0
approximates the true value function J™. In the standard TD-learning [1], the update rule
is Ory14-0¢ — om(6t), where n(6t) = —(x(s, a) + v]pi(s”) — Jpi(s)) Valpi(s). A key issue is that
the stochastic gradient, 11(6;), does not correspond to the true gradient of the loss function,
I(9). The asymptotic convergence of the TD-learning [1] is 8;41 = 6; — &;Vl(6; 6;); the loss
function [(0;0;) = %Es,a[(Esr, [r(s, a) + Yo' (s")] — Jo(s))?], where 6 denotes an online (source)
variable and 6 denotes a target variable. At each iteration i, the target variable is set to the
value of the current source variable, and a stochastic gradient step is performed as shown
in Algorithm 1 [1].

Algorithm 1 Standard TD-Learning

Initialize 6o randomly and Set 8’0 = 6o
For iterationk =0,1 ... do
Sample s~d(-) and a~7(s,")
Sample s” and 7(s, a)
Let g = ¢(s)(r(s,0)+yP(s)T0% — p(s)T 6
Update 041 = 0 — gk
Update 6441 = Op11
End for

2.2. Deep Q-Network (DQN)

In DON [4,5] in Algorithm 2, DNNs and RL are successfully combined to approximate
the action values for a given state s;. At each time-step, based on current state s;, the agent
selects an action e-greedily with regard to action value a;, and stores a transition (s, at, 1t,
St+1), characterized by the aforementioned MDP to a replay memory buffer D [12]. During
the inner loop in Algorithm 2, DQN applies Q-learning updates with a mini-batch of
experiences in D drawn randomly from the stored samples. After performing experiences
replay, the agent executes an action in accordance with a e-greedy policy. With a neural
network as a function approximation, the actions of the agent represent the experience
histories produced by a function ¢ such as (¢4, at, 11, ¢t+1). The parameters of the neural
network with weight 6 as a Q-network are optimized with stochastic gradient descent to
minimize the loss in every iteration j, (rj + ymax, QY (pj+1,@") — Qe((pj, aj))z. The gradient
of the loss is back-propagated into weights 0 of the online (source) network; the term 6~
denotes the weights of a target network; a periodic copy of the online network. The use of
target networks and experience replay enables relatively stable Q-learning.
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Algorithm 2 DQN with experience replay

Initialize replay memory D
Initialize Q with the weight 0 Q for action-value function
Initialize Q~ with the weight 8 @ =6 < for target-net
For episode =1, M do
Initialize sequence S; = {x;} and pre—processed sequence ¢; =¢(S7)
Fort=1,Tdo
With probability € select a random action a¢
Otherwise select a; = argmax,Q(¢(Sy),az; 0 )
Execute action at and observe reward rt and new state sy, and
Pre—process ¢ry1 = Psi41
Store transition (¢, a¢, 1, Ppe1) in D
Sample random mini—batch of transitions (¢; , a;, r;, ¢;11) from D
Sety; =r; ifi + 1 = terminate
y; = ri+ ymax, Q (¢i,1,0097) otherwise
Perform a gradient descent step on (y;—Q(s;,a;;0 <))
With respect to the network parameters 69
Every C steps reset Q™ = Q
End for
End for

2.3. Deep Deterministic Policy Gradient (DDPG)

An efficient evaluation of the Q-value function is required to determine the optimal
action in DQN. However, it is not solvable if the action space is continuous, although it
is simple for discrete and small action spaces. In several applications, such as robotics,
discretization is not desirable and might require large amounts of memory and computing
power in the case of a fine discretization. Lillicrap et al. [6] presented an algorithm called
DDPG, as shown in Algorithm 3, which is solvable for continuous applications with DRL;
in contrast to the DQN, an actor-critic architecture is used. As policy w in DDPG is a direct
mapping from states to actions, such as u: S — A, it is currently the best policy, such
as p(sy) = maxa'Q(st, a’). Actor p and critic Q are estimated by function approximations
1w(s16*) and Q(s | 69), parameterized by 8" and 69, respectively. With the insights of DQN,
a target value for training is calculated using a slowly updated target Q-network and policy
networks, denoted by Q'(s169) and w'(s|18"'), respectively. For each update time-step,
a mini-batch of n samples is generated randomly. First, the target value y; is computed
using the target Q-network and policy networks, y; = 1 + YQ'(Si+1, W (Si+1 | 6")169). Then,
the mean square error is obtained by loss L(69Q) = 1/nYi (yi — Q(si, aj !l 69))2, and the
policy is updated according to the mean of all samples, as stated in the DPG [8]: Vg*R*
—1/nYiVaQ(s;, al6Q) | a=p(sil o) Vo t(si | 6%). The parameters 69 and 6" of the target
networks are slowly moved towards the parameters of their associates in each update step,
09 «— (1 — 102 + 19Q and 6" + (1 — 1)0" + 0", with T € (0, 1].
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Algorithm 3 DDPG

Initialize replay memory D
Initialize Q with the weight 62 for critic-net
Initialize Q— with the weight 62 — = 69 for target-net of Q
Initialize pu with the weight 6" for actor-net
Initialize u— with the weight 6%~ = 6% for target-net of p
For episode =1, M do
Initialize a random process N for action exploration
Initialize observation state s1
Fort=1,Tdo
Select action at = p(st | 0u) = Nt according to the current policy and exploration noise
Execute action at and observe reward rt and new state st + 1
Store transition (st, at, rt, st + 1) in D
Setyi=ri+vyQ—(si+1, u—(si+110p—)10Q—)
Update critic-net by minimizing the loss: L = % Yi (yi — Q(st, at) | 6Q)2
Update actor-net by using the sampled policy gradient:
Vou] ~ & i VaQ(si, u(si) | 0Q) VOppu(silOp)
Update the target-nets:
Ou—=710u+ (1 — 1)0u—
0Q— =10Q + (1 — T)6Q—
End for
End for

3. Proposed TC Loss Functions for Both DON and DDPG
3.1. Previously Developed Loss Functions

The update of Q-learning with a target network can be viewed as follows:
Ot 1 ¢ Ot + a(targetq — Q(star0%)) VeQ(st,a6%), )

where targetq = r(st, ar) + ymaxaQ(st.1, a; 69Q~,), 69, denotes the source (online) variable,
and 69 denotes the target variable. The state-action value function Q(s, a; 69) is param-
eterized by 0. The update of the online variable % is similar to the stochastic gradient
descent step. The term r(s¢, a;) represents the immediate reward of taking action a; in state
st, and targetq denotes the target value under the target variable, 2. When the target
variable is set to be the same as the online variable at each iteration, learning the agent
reduces to the standard Q-learning [7] and is known to be unstable with a nonlinear func-
tion approximation because of dynamic changes in the target, and the Q-function might
diverge [1]. Several choices of target networks have been proposed in studies to overcome
this instability: (i) periodic update, that is, it is copied from the online variable every t > 0
steps, as used for DQN [4,5]; (ii) symmetric update, that is, it is updated symmetrically as
the online variable, first introduced in double Q-learning [18]; and (iii) Polyak averaging
update, that is, it takes a weighted average over the past values of the online variable used
in DDPG [6]. Studies [4-6,18] are categorized as target-based Q-learning [17]. A key issue
is that the stochastic gradient does not correspond to the true gradient of the loss function
to make the theoretical analysis rather subtle. When an agent selects actions stochastically
according to a policy, in batch value prediction, a value function algorithm uses a fixed
data batch to learn an estimate, which is never the same as the true value function [19].
Study [19] also addressed the issue of non-true probability of the agent action under the
given policy with importance sampling to deal with the mismatch between the empirical
weight and the correct weight.

3.2. Newly Proposed TC Loss Functions

We considered the developed TC loss function to minimize the instability of the learn-
ing process, particularly for the applications [10,11] in both DQN and DDPG. Therefore,
we modified the loss function at each iteration, which originated from [15,16], for the target
network update. We used a periodic update [17] based on the proposed TC loss. Moreover,
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we introduced the TC loss function for a critic network, particularly in DDPG. We used the
critic and the actor of the target, Q7 (s, a 69 )and pn(s!o*"), respectively, similar to that
in DDPG. In DDPG, the weights of these target networks are updated as follows: 82~ <
109 + (1 — 102~ with T << 1. However, in our study, we changed the update rule of the
target network as follows.

First, targetq in (1) using DON [4,5] was updated as follows:

01 < 0y + (targetpon — Q(s1,a6:60%)) VoQ(st,a;0%%), (2

where targetpon = 1(s, at) + YQ (5441, target-action; 69—y and target-action = max,; Q™ (5¢41,a").
Second, targetq in (1) using DDPG [6] was updated as follows:

Orr1 < Ot + x(targetpppg_critic — Q(st,source—action;GQt))VgQ(st,source-action;GQt), 3)

where targetpppg_critic = 1(St,source-action) + ’yQ’(st+1,target—action;0Q’t), source-action =
(st 0%¢) + Ny, target-action = p (Sgy1 |0 141) + Nigp, (s 10#) = max,Q(s, al 04), and N
= a random process from Ornstein-Uhlenbeck process [20] such as DDPG.

Pohlen et al. [15] added the TC loss function to alleviate the instability of the learning
process between temporally adjacent target values. Although Huber loss was adopted in
the original study [15], L2 loss was used in this study, as in [16], for more simplicity. We
did not use a positive threshold of the constraint used in [16] because the hyper-parameters
of the learning algorithm should be tuned individually for each task and the research. We
did not expect an improvement in performance by applying the hyper-parameters because
the hyper-parameters also had to be studied. Furthermore, it was considered that when
the different components of the observation had different physical units, the ranges might
vary across environments. This made it difficult for the network to learn effectively and
determine hyper-parameters that generalize across environments with different scales of
states [6].

For the differentiation of the modified TC loss function in our study, we defined
ETC_DQN(st+1,target—action;9Q_t) for DON and L1c.pppG_critic (St+1,target-action; 6Q—y) for
DDPG.

For DQN, (2) was updated with Ltc.pon(St+1, target—action;GQ_t) as follows:

Be1 <+ 61 + o (targetpon — Qlst,ai82)) VeQ(stai0%) — Vo Lrepon(se target-action;62 )], (4)
where Lrc.pon(St+1, target—action;GQ’t) = % Yi(Q7 (i)(se41, target-action) — Q7 (i—1)(s¢+1,

target—action))2 and target-action = max, Q™ (5¢+1,a").
For DDPG, (3) was updated with L1c.pppG_critic (St+1,target-action; 69-,) as follows:

01 < Oy + o [(targetpppG_critic — Q(st,source—action;GQt))VgQ(st,source—action;BQt) — VgL1c-DDPG_Critic(St+1,target-action; OQ’t)], (5)

where L1c.pDPG_Critic (St+1.arget-action; 627 ¢) = 1 ¥1(Q ™ (i)(se1, target-action) — Q (i—1)(s¢41,
target—action))z, source-action = p(s¢ | %) + Ny, target-action = u™ (Sgy1 |0 41) + Ny,
u(s16") = max,Q(s, al0*), and N = a random process.

The target-update was performed when Lrc.pon(St+1, target—action;HQ’t) < 1lcpoN
and L1c.pprG_critic (St+1,target-action; 69~y < 1 TC-DDPG._Criticc Where # denotes a positive
threshold of the constraint specified in [16]. The characteristics of the target network update
could be applied flexibly in DOQN and DDPG, as followed in [16]: when the difference
between the outputs of the Q-function and the target network is large, the update of
the target network can be conservative. Moreover, based on the suggestion in [16], the
newly proposed TC loss functions could be used together with other methods to improve
its performance.

Algorithm 4 includes both DQN and DDPG with the proposed TC loss functions,
TC-DQN and TC-DDPG.
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Algorithm 4 The proposed algorithm with TC-DQN and TC-DDPG

Initialize replay memory D
Initialize Q with the weight 69 for both action-value function and critic-net in both DQN and
DDPG
Initialize Q~ with the weight 82~ = 09 for target-nets in both DQN and DDPG
Initialize p with the weight 6" for actor-net in DDPG
Initialize u~ with the weight 6%~ = 0" for target-net of i in DDPG
For episode =1, M do
Initialize a random process N for DDPG
Initialize observation state s;
Fort=1,Tdo
Derive the action in DQN a; with probability € or a; = argmax,Q(s;, a; 69) or in DDPG
ar = u(se 1 0F) + Nt
Execute action at and observe reward ry and new state sy,
Store transition (s¢, a¢, 11, Sg47) in D
Sample a random mini-batch of transitions (s;, a;, 7;, 5;41) from D
In DON
Set Vi =Ti if i + 1 = terminate
yi =1+ ymaxg’ Q7 (siy1,a’; 62-) otherwise
Update action-value function on (y; - Q(s;, 4;;09))?
Update target-net with the additional subtraction(TC-DQN) on
— 3 E)(Q ()(si41, maxa’ Q™ (si41,@')- Q™ (i — 1)(s141, maxa' Q™ (si1,
a’))?
In DDPG
Sety; =ri +vQ (Siv1, i~ (sip1 16F7)16Q7)
Update critic-net on %Zi (yi - Qs a;)169))?
Update actor-net on%Zi VaQ(s;, u(si)109) Vou u(s;| 6#)
Update target-net for actor-net on 6y — = 70 + (1 — 7 )o¥ —
Update target-net for ciritic-net with the additional subtraction(TC-DDPG) on
— 3% (Q(i)(Si41, 1 (541 10#7) +Njpq — Q7 (i—1)(5i41, p™ (5341 1077) + N ))?
End For
End For

4. Evaluation and Results
4.1. “Cart-Pole”

There are four observations and two discrete actions in “cart-pole” [21], as shown
in Figure 2. The pole is attached to a cart that moves back and forth from left to right.
The poles start straight. The goal is to not fall over when the cart is speeding up or
slowing down. A reward of +1 is considered by the environment for every step when the
pole remains vertical until the next action is completed. At the end of the episode, the
angle of the pole is between —12° and +12°, and the cart position is between —2.4 and
+2.4. However, the requirements of implementation studies can be considered for better
solutions [22]. A Q-learning agent will receive —100 if it falls before reaching the maximum
length of the episode. Moreover, if the average reward over 10 consecutive episodes is 490
or more, Q-learning will end before the maximum length of the episode is reached. DQN
with the proposed loss function was implemented using TensorFlow [23] and Keras [24] in
OpenAl Gym [25].



Symmetry 2021, 13, 2411

9of 15

Reward

500

450

400

350

300

250

200

150

100

50

(a) Environment Observation

Number Observation Minimum Maximum
0 Cart Position -24 +24
1 Cart Velocity -Inf +Inf
2 Pole Angle ~-41.8° ~+41.8°
3 Pole Velocity At Tip -Inf +Inf
(b) Actions
Number Action
0 Push Cart to the Left
1 Push Cart to the Right

Figure 2. “cart-pole” [21] in OpenAl Gym [25].

In terms of quality comparison, as shown in Figures 3-5, in the best case, average
case, and standard deviation, both the standard DON and DQN with the proposed loss
functions were considerably similar. As shown in Figure 5, the average standard deviation
of the DQN with the proposed loss functions was 170, and the average standard deviation
of the standard DQN was 166. This showed that the fluctuating patterns before reaching
the end of the episode in both the cases were considerably similar. However, as depicted in
Figure 6, in terms of quantity comparison, “When it is finished with the smallest steps,”
the DON with the proposed loss functions was slightly faster than the standard DQN. The
comparison was also conducted by Wilcoxon-Signed-Rank-Paired Test in R. “the number
of steps in each episode” in Figure 6 had the p-value of Wilcoxon-Signed-Rank-Paired
Test, 0.001953, which is more significant than the level, 0.05. This showed that the DQN
with the proposed loss functions significantly improved compared to the standard DQN in
almost the same period.

One of the Best Cases

1 3 57 91113151719212325272931333537394143 4547 49515355575961636567697173757779818385878991939597

Number of Steps in One Episode

—e—The standard DQN —e—The proposed algorithm

Figure 3. One best case comparison between the standard DON and the DQN with the proposed TC loss function.
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One of the Average Cases

Reward

Number of Steps in One Episode

—e—The standard DON  —e—The proposed algorithm

Figure 4. One average case comparison between the standard DQN and the DQN with the proposed
TC loss function.

The Standard Deviation

Standard Deviation
= - N
g 8 8 8

o

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Episode Number

—e—The standard DQN —e—The proposed algorithm

Figure 5. Standard deviation comparison between the standard DQN and the DQN with the proposed
TC loss function.

What is the number of steps in each episode?
400
350
300
250
200
150

Number of Steps

50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Episode Number

—e—The standard DQN —e—The proposed algorithm

Figure 6. “What is the smallest step in every episode?” comparison between the standard DQN and
the DQN with the proposed TC loss function.
4.2. “Pendulum”

In “pendulum” [26], the inverted “pendulum” starts in an arbitrary position, and
the goal is to swing upward to remain vertical. Since the “pendulum” is an unresolved
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environment, there is no special reward threshold to be considered resolved. The “pendu-
lum” environment has three observations and one individual action, as shown in Figure 7.
There is also an exact equation for rewards: —(6% + 0.1 x 62 + 0.001 x action?), where 6 is
normalized between —7 and +7. Therefore, the lowest cost is — (7> + 0.1 x 82 + 0.001 x 22)
= —16.2736044 and the highest cost is 6 [26]. The goal is to maintain zero degrees (vertical)
with minimal rotational speed and minimal effort. DDPG with the proposed loss function
was implemented using TensorFlow [23] and Keras [24] in OpenAl Gym [25].

(a) Environment Observation

Number Observation Minimum Maximum
0 Cos(theta) -1.0 +1.0
1 Sin(theta) -1.0 +1.0
2 Theta dot -0.8 +0.8
(b) Actions
Number Action Minimum Maximum
0 Joint Effort -2.0 +2.0

Figure 7. “pendulum” [26] in OpenAI Gym [25].

7

In “pendulum”, “when the episode ends” [26,27] did not exist. Therefore, all obser-
vations were made in terms of qualification, such as “How many above-average rewards
happen in a period?” (for example, 200 time-step in an episode), as shown in Figure 8§,
“What is the maximum reward in every episode?” as shown in Figure 9, and “What is
the median reward in every episode?” as shown in Figure 10. The standard deviations of
both the DDPG with the proposed TC loss function and standard DDPG were compared,
as shown in Figure 11. Since the reward started from —2000 and the time-step for the
reward to reach 0 was typically approximately 200, the standard of a certain period was set
to 200 time-step. The TC loss function proposed in this study significantly recorded the
above-average rewards. The highest and median rewards were also noticeably higher than
those of the standard DDPG. In particular, compared to the standard deviation, it could
be predicted that the rewards tended to increase rapidly for a certain period of time-step.
Moreover, as shown in Figure 12 “What is the accumulated reward per episode?” the
proposed TC loss function could work appropriately until convergence.

The number of more than the average rewards
180

160

N f//m\\ ‘.\\ 1~
140 / \
\/ \_/
U /

20 y
~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Times

Episode Number

—e—The standard DDPG —e— The proposed algorithm

Figure 8. “How many above-average rewards happened?” comparison between the standard DDPG
and the DDPG with the proposed TC loss function.
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The Highest Reward

Reward

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Episode Number

—e—The standard DDPG =~ —e— The proposed algorithm

Figure 9. “What is the maximum reward in every episode?” comparison between the standard DDPG
and the DDPG with the proposed TC loss function.

The Median

-400

-600

Reward

-1000

-1200

g0

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

-1400

Episode Number
—eo—The standard DDPG =~ —e— The proposed algorithm

Figure 10. “What is the median reward in every episode?” comparison between the standard DDPG
and the DDPG with the proposed TC loss function.

The Standard Deviation
550
500
450
400
350

300

Standard Deviation

250

200
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Episode Number

—eo—The standard DDPG —e— The proposed algorithm

Figure 11. Standard deviation comparison between the standard DDPG and the DDPG with the
proposed TC loss function.
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The Accumulated Reward

-SOq)O
-100g00
7150900

Reward

—200900
-250p00 ~d :
WN‘MW *‘-«,VM

-300p00
s | 2 3 - 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Episode Number

—e—The standard DDPG —e— The proposed algorithm

Figure 12. “What is the accumulated reward per episode?” comparison between the standard DDPG
and the DDPG with the proposed TC loss function.

5. Discussion

The comparison of “cart-pole” as the representative of DON and “pendulum” as
the representative of DDPG indicated that the results in “pendulum” were significantly
improved compared to those in “cart-pole”. Studies conducted on various loss func-
tions [15-17] indicated that the DON with those loss functions gradually improved. In
particular, the TC loss function proposed in this study showed better results in a continuous
environment than in a discrete environment. Various methods have been proposed to
improve different off-policy algorithms based on target network updates, particularly
for DQN. Although this study was based on well-known algorithms such as DQN, it
showed that the proposed TC loss function could be another suggestion for improving the
performance, particularly for a different environment such as DDPG, and exploited as an
additional component. However, we can find that the comparison by Wilcoxon-Signed-
Rank-Paired Test shows the lack of performance in DQN can be dismissed. The proposed
TC loss function showed a remarkable improvement in DDPG. This is different from [16].
Therefore, these efforts have led to a new TD algorithm, which is very valuable, particu-
larly in a continuous area. Meanwhile, if there has been extensive research on updating
loss functions to improve DQN, we might transmit such efforts to DDPG. Therefore, our
next step is to study the results from various developed studies on DQN, which is the
representative of the off-policy algorithm, such that it can be well applied to DDPG, which
is another representative of the off-policy algorithm.

6. Conclusions

We proposed a novel TC loss function based on a previously developed TC loss and
adapted the proposed TC loss function for target network updates for both DON and
DDPG, particularly for a critic network. Algorithms with the proposed TC loss function
can be a family of target-based TD-learning. The target network update is used to deal
with the mismatch between the estimate and the true value. Depending on the difference
between the outputs of the learning agent and the target network, the target network
update can be applied flexibly in both DQN and DDPG. We applied the proposed TC loss
functions in DQN for a discrete environment and DDPG for a continuous environment for
applications that can use both. Notably, the results in the continuous environment with
DDPG significantly improved compared to those in the discrete environment with DQN.
The proposed TC loss function in a well-known algorithm such as DQN did not exhibit
extremely high performance. However, the lack of performance in DQN can be dismissed
by Wilcoxon test. The proposed TC loss function exhibited a remarkable improvement
in the environment with DDPG. This is significantly different from earlier studies. This
can acquire enormously improved convergence speed and performance as a new TD
algorithm, which is very valuable, particularly in a continuous environment. Therefore,
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we believe that the proposed TC loss functions could be useful in applications such as
autonomous voltage control in power grid control and load shifting in a cooling supply
system. Meanwhile, if extensive studies on improving DQN provide much better results,
we can apply the efforts to DDPG through a correct adjustment because both DQN and
DDPG are families of TD-learning off-policies.
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