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Abstract: This paper presents the role of artificial intelligence (AI) and other latest technologies that
were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These
technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare
burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers
of these technologies was data that was obtained from heterogeneous sources (i.e., social networks
(SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological
investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of
the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major
services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role
in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)),
(ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in
performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI
role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications
of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning
protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template)
against COVID-19. Further, we discuss the challenges involved in applying AI to the available data
and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a
concise overview of other latest technologies that were increasingly applied to limit the spread of the
ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This
insightful review aims to highlight existing AI-based technological developments and future research
dynamics in this area.

Keywords: artificial intelligence; COVID-19; data-driven analytics; privacy; epidemic; epidemiological
investigations; epidemic containment strategies; healthcare; data lifecycle

1. Introduction

The recent pandemic of novel coronavirus disease 2019 (COVID-19) has changed our
lives into a new normal where free-mobility, social gatherings at a large scale, and traveling
seem impossible for the next couple of years. The COVID-19 has forced the closure of
many cities and borders for a prolonged period of time. Furthermore, changes in the
business/work hours and operating procedures of most organizations have completely
changed. One of the biggest religious gatherings of the world at Mecca was cancelled
or scaled down due to the pandemic last year [1]. Specifically, the whole world is going
through an unanticipated and extraordinary challenge of COVID-19 [2]. Although there is
a bright hope in terms of vaccine to end this pandemic, its distribution to underprivileged
countries is a main challenge. Furthermore, rehabilitation of the healthcare system to pay
ample attention to other existing diseases is also one of the main challenges in the near
future [3]. In the absence of potential vaccine, one of the main technologies that played a
critical role in combating the pandemic is artificial intelligence (AI) [4]. It can help in curbing
the disease spread through contact tracing, social distancing, quarantine monitoring, trends
analysis, symptoms reporting and analysis, symptoms clustering, symptoms severity
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estimation, disease spread modeling, and alerting. We explain these services in detail in
Section 3. A generic overview of application areas where AI has already demonstrated its
effectiveness are shown in Figure 1. This study demonstrates AI applications in the context
of the COVID-19 pandemic.

Figure 1. Overview of application areas of AI (Ref. [5]).

The impact and efficacy of AI techniques and models have been reported by many
countries in curbing the disease spread. AI models have helped to identify the transmission
routes of this disease and helped in mitigating the disease [6]. Further, the adoption of AI
aided in recovering the economies from the low-levels with improved policies [7]. The
adoption level of AI in each country was different. We present the latest finding about
AI use with real-data until November, 2020 [8] and synthetic data from November, 2020
onward in the top ten countries across the globe in Figure 2.
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Figure 2. Histogram of data about the use of AI techniques in ten countries (Ref. [8]).

From the results provided in Figure 2, it can be seen that the adoption of AI was
higher in China, and this is the first country that curbed the pandemic spread quickly [9,10].
Besides the higher use of AI during this pandemic, the adoption of technical mechanisms
(e.g., automated decision support systems, AI-driven diagnosis, and mobile doctors etc.)
in the healthcare sector are relatively higher in China compared to other countries [11,12].
Therefore, AI-powered healthcare systems as well as other rigorous measures helped China
to contain the spread of COVID-19 quickly. Furthermore, in those countries that adopted
AI techniques at a smaller scale, the pandemic forced the closure of many facilities and
activities [13]. Although AI played a vital role in this pandemic, many barriers were there
in the adoption of AI, such as privacy and data manipulation, etc. In Figure 2, we chosen
a sample of ten representative countries based on the origin of the pandemic, severity of
disease, higher daily cases tally, digitization in the healthcare sector, and/or COVID-19
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variants reported. In some countries (i.e., India, Pakistan, and Bangladesh), the covid cases
were relatively higher, but adoption of the digital mechanisms in all these countries is
significantly lower. That is why we did not include those countries in the analysis.

There are several studies that have covered this topic, especially AI role in the ongoing
COVID-19 pandemic [14–18]. However, these studies have covered only general services
of AI in COVID-19 context, and the main emphasis of most studies was on digital surveil-
lance (or contact tracing). Furthermore, the data-driven analytics on actual data and AI
essence from multiple perspectives have not been covered in prior studies. To cover these
deficiencies, this study provides insightful coverage of the state-of-the-art studies that have
devised ways to fight with COVID-19 pandemic leveraging AI. The main contributions of
this article in the field of AI-based data-driven analytics in the COVID-era are summarized
as follows.

• It covers the role of AI in COVID-19-era in six distinct regards such as epidemic
containment strategies (ECS), epidemic data life cycle (EDLC), epidemic handling
with heterogeneous sources data (EHHSD), healthcare-specific AI (HCSAI) services,
general epidemic AI services (GEAIS), and drug design and repurposing (DDAR)
against COVID-19 that have not been covered in the recent literature.

• It discusses the challenges involved in applying AI on the available epidemic data that
is not in desirable form until present due to several problems (e.g., diverse formats,
legislation, heterogeneous sources, and privacy concerns etc.).

• It elaborates the privacy issues that arise due to the person-specific data movement in
cyberspace amid the ongoing pandemic.

• It provides a concise overview of the latest technologies other than AI that contributed
in the fight against the recent pandemic through their innovative features.

• It discusses many state-of-the-art studies that have applied AI techniques in the
ongoing COVID-19 pandemic for beneficence (i.e., greater good to save lives).

• It provides many state-of-the-art studies that have demonstrated the role of IoT based
on heterogeneous data stemming from the ongoing pandemic to lower its effects.

• It discusses the synergy of AI with other emerging technologies in order to lower the
effects of COVID-19 on the general public and economies.

• It provides the avenues of future research in the respective area keeping the latest
technologies in loop.

The rest of this paper is organized as follows. Section 2 describes the prior research
status and compare presented work results with related work. Section 3 provides the
role of AI in fighting against COVID-19 through unique services in six different aspects.
Section 4 discusses the challenges involved in applying AI on the COVID-19 data that is not
in perfect until present. Section 5 summarizes the work, discusses emerging technologies
role, AI synergy with other techniques, IoT-based developments in COVID-19 context, and
provides promising future research directions. Finally, this article is concluded in Section 6.

2. Prior Research Status

In this section, we concisely present the contribution of previous studies, and compare
proposed work results with related work. From the start of this deadly pandemic, AI has
played a vital role in tackling it from a non-pharmaceutical interventions (NPI) point of
view across the globe. The unique applications of the AI have paved the way to manage the
resources well, and lowering the mortality rates through precise forecasting [19–21]. With
the help of precise forecasting, extra care can be provided to the vulnerable people having
underlying diseases, and treatment can be done on the regular basis [22,23]. Consequently,
mortality rates and ICU admission can be prevented in most cases [24]. Arora et al. [25]
discussed the potential applicability of AI in the development of early warning systems
and accurate and timely forecasting about cases/mortality leveraging social media data.
The study suggested that AI can be used in different aspects pertaining to COVID-19, but
various issues like unavailability of the large datasets, ethical concerns, security and privacy,
and computing resources remain challenging. Huang et al. [26] provided comprehensive
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coverage of the AI in terms of clinical applications. For example, authors discussed the
diagnosis of the COVID-19 via images, ultrasounds, chest scans, X-rays, lab indicators,
electronic medical records, and lab indicators. Authors discussed AI role as experienced
physicians for diagnosing COVID-19 robustly and accurately. We present the approach of
Huang et al. [26] that was proposed in order to perform diagnosis of leveraging AI based
on medical characteristics in Figure 3.

Figure 3. A flowchart of the AI methods employed for COVID-19 diagnosis and other relevant
services: ML and DL were mainly applied in the medical characteristic to diagnosis the COVID-19
infection (Partially adapted from Huang et al. [26]).

Motta et al. [27] discussed the AI role from COVID-19 diagnosis and spread control
point of views. The authors stressed the need of AI-powered decision systems to fight with
the infectious diseases. Cave et al. [28] emphasized the need of using AI ethically while
fighting with the COVID-19. Authors discussed four pillars of the biomedical ethics in
order to get true benefits from the AI during crisis. The four pillars are (I) Beneficence, (II)
Non-maleficence, (III) Autonomy, and (IV) justice. These pillars are an integral part of the
healthcare settings in order to truly benefit from AI applications.

• Beneficence: It means that AI use should be beneficent (i.e., save lives) in managing
the ongoing pandemic.

• Non-maleficence: It means the objective function of AI systems should be defined
carefully in order to avoid unintended harms while managing the pandemic. For
example, imposing strict self-isolation on elderly people may lead to mental issues.

• Autonomy: It means that people should be autonomous while controlling and en-
dorsing the technologies including AI during the pandemic. For example, diagnostic
support systems employed by healthcare workers in a pandemic should provide
enough information about the uncertainty surrounding, and assumptions behind, a
recommendation, so that it can be included into their professional judgment.

• Justice: It means that when AI systems are devised for a response to a COVID-19-like
pandemic, difficult trade-offs between values could be incorporated. For example,
decision about whether to employ centralized or decentralized app approach for data
collection in order to manage pandemic should be based on justifiable grounds (e.g.,
involvement of diverse communities/stakeholders in decisions).

Leslie et al. [29] discussed the dark sides of the AI in terms of health inequity. Au-
thors suggest that in order to reduce the inequalities, a collaboration between different
stakeholders is paramount. An important perspective regarding the use of untested AI
algorithms/methods in COVID-19 context is presented by the authors [30]. Authors sug-
gested that in order to fully affirm the role of AI in saviour of the pandemic or future
pandemics, we need to test the solutions with proofs. Chang et al. [31] concisely discussed
the role of the AI from different perspectives including diagnosis to therapy. Authors
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discussed the role of the AI in three aspects such as epidemiology (predictions mainly),
diagnosis, and therapy. According to the study findings, mismatch between epidemiology
and data science need to be resolved in order to take advantage of the AI approaches for
future endeavors. Vaishya et al. [32] analyzed the literature, and discussed the seven most
significant AI applications (as shown in Figure 4) for the COVID-19 pandemic. Authors
suggested that AI can play a dominant role in decision making and treatment consistency
through robust algorithms. We fully agree with the contributions and significance of all
studies cited above in the context of COVID-19 pandemic.

Figure 4. Overview of seven innovative AI applications in the context of COVID-19 (Adapted from
Vaishya et al. [32]).

The advantages and significance of the proposed work compared to the prior studies
are summarized as follows. (i) it provides insights about huge variety of data that is
essential to fight with the COVID-19 leveraging AI from different perspectives, (ii) it
discuss AI role in data life cycle and containment strategies that is not covered by any
of the previous studies from broader perspective, (iii) it discusses substantial number of
challenges comprehensively that hinder the applicability of AI methods in the ongoing
pandemic, (iv) it provides the coverage of AI applications from multiple perspectives rather
than one/two aspects, (v) it discusses the role of other emerging technologies with whom
AI can be converged to serve the mankind in an effective way compared to the recent past,
and (vi) it highlights actual AI applications based on the real-world data originating from
the COVID-19 diagnosis or clinical practices.

3. Role of Data-Driven Analytics Leveraging AI in the Era of Covid-19

This section concisely presents the role of the data-driven analytics leveraging AI in the
era of COVID-19. We categorize the coverage of AI applications/services in six regards such
as epidemic containment strategies (ECS) that are in place as NPIs, epidemic data life cycle
(EDLC) (aka data collection, storage, pre-processing, analysis, use, distribution, archival,
and secure disposal) that is adopted in healthcare sector to fight with the infectious diseases,
epidemic handling with heterogeneous sources data (EHHSD) as relying on a data from few
sources is insufficient to fight with COVID-19, healthcare-specific AI services (HCSAIS) that
can reduce the burden of healthcare workers, general epidemic AI services (GEAIS), and
AI role in drug design and repurposing against COVID-19. These services are unique and
emphasize the effectiveness of AI in COVID-19 era. Our aim is to highlight the significance
of AI in COVID-19 context through relevant data and services. We identify data that relate
with COVID-19 through analysis of the COVID-19 characteristics, and corresponding data.
For example, SN tweets and comments that use the word COVID or related aspects such as
quarantine, social distance, amid pandemic, and spread etc. are classified as COVID-19
data. In addition, some applications are specifically designed to collect and process data
that relate with COVID-19. In some cases, data is collected in a proactive manner, and it
can relate with COVID-19 when he/she tested positive. Furthermore, we mainly discuss
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the additional data collected to fight the COVID-19 that varies from site to site as shown in
Figure 9. Apart from these services in six regards, AI has been widely used in analyzing
the vaccine distributions and other clinical aspects concerning COID-19. We describe each
perspective and AI services in each perspective as follows.

3.1. Perspective 1: Epidemic Containment Strategies and AI Role

From the beginning of the pandemic, each country of the world introduced certain
strategies to contain the spread of COVID-19, including strict lockdown, cities and school
closures, remote telehealth, closure of bars and clubs, and work from home, etc. Apart from
these general containment strategies, many digital solutions based on the latest technologies
for exposed people identification, close contact analysis, and compliance monitoring with
the disease guidelines were also developed. We call such solutions epidemic containment
strategies (ECS), and provide different AI-supported services in each ECS. We present
the role of AI in seven different ECS that were extensively used in COVID-19 in Figure 5.
Based on the extensive review of published studies, we found that AI remained a critical
component of every ECS developed to contain the spread of COVID-19 [33–37]. Apart
from the services cited in Figure 5, AI can play a vital role in alerting people stay away
from the virus contaminated places pro-actively. In addition, it can be used to identify the
focus group to whom COVID-19 can affect more due to underlying diseases. Hence, the
role of AI in each ECS is vital and essential. Data reported in Figure 5 can be gathered
from multitude of sources. For example, surveillance data can be employed for the contact
tracing purposes [38]. We present an example of surveillance data based contact tracing
example in Figure 6.

Figure 5. Overview of AI-supported services in ECS in the context of COVID-19 pandemic.
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Figure 6. Example of surveillance data based contact tracing for COVID-19 suspects finding. (1)
Person A goes to work, bringing a Bluetooth-enabled cell phone with a digital key, which is used to
communicate with other cell phones. (2) Person A comes in close contact with persons B, C, and D;
all their cell phones exchange key codes with each other. (3) Person A later learns he is infected with
COVID-19 and enters his updated status in the app. (4) By agreeing to share his recent status with
the database, A instructs the app to send the data to the cloud service. (5) Meanwhile, B’s, C’s, and
D’s phones are regularly synchronising the cloud database to check the status of their users’ close
contacts. When B, C, and D discover that person A has reported himself infected, they all know they
should get tested for the COVID-19 (Adapted from Hsu et al. [39]).

The mobile devices generated big data that can be used to monitor the people under
quarantine [40]. In addition, GPS data can also be gathered for quarantine monitoring
purposes [41]. In South Korea, health authorities usually call people on their cell-phone
randomly, and such calls data can be used for the quarantine monitoring. The data to
monitor social distance can be collected through Bluetooth technologies, video sequences,
smart camera, and IoT platforms [42–45]. Data about the exposed/infected people can
be gathered from the relevant clinics/diagnostic-centers. It can be shared with different
entities to find the contacts of infected people [46]. COVID-19 symptoms and other related
data can be gathered with the help of the wearable sensors, ambient tools, and smart
phone technology [47,48]. Personal data at the time of the check-ups can be collected via
automated/traditional forms. Subsequently, this data is used to rank the areas based on
COVID-19 prevalence etc. Finally, CT and X-ray images data [49], ultrasound imaging
data [50], text data [51], social media data [52], biomedical data [53], and big data [54] can be
used during analytics. Apart from the data sources mentioned above for each ECS, data can
be collected from heterogeneous sources for each category. For instance, analytics can be
performed on data collected from variety of sources such as smart watches, sensors, mobile
technology, CCTV cameras, GPS locations, Bluetooth devices, and smart write bands, to
name a few. In Figure 5, the risk indexes are the quantitative values that denote the risk
of being infected with COVID-19 based on gender, age, health status, city of residence,
and knowledge of vaccine/treatment. This value is highly useful to evaluate infection risk
accurately and taking preventive measures accordingly. AI can be used to rank the most
influential indicators, and predicting the index accurately. The parameters used in each AI
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model can be different. For example, if random forest is employed then parameters can
be number of trees, variables required for tree split, sampling scheme, trees’ complexity,
and model type, etc. The choice of parameters and their values highly depends on the AI
model chosen for the desired task.

3.2. Perspective 2: Epidemic Data Life Cycle and AI Role

In South Korea, if a person tests positive for COVID-19, then his/her contact details
are collected to find the exposed people [55]. Different entities (i.e., police, mobile carriers,
and credit card companies, etc.) collect contact data and process it in accordance with the
specified procedures. This mechanism usually follows a lifecycle such as data collection,
storage, pre-processing, analytics, use, archival, and deletion. We call this whole process an
epidemic data life cycle (EDLC). We describe the role of AI in the EDLC in Figure 7.

Figure 7. Overview of AI-supported services in EDLC in the COVID-19 context.

AI can enable real-time decision making based on the collected data through EDLC.
Since EDLC is essential to curb the spread of COVID-19, different AI mechanisms can be
used at each phase of the EDLC. Although AI contributes significantly in all phases of the
EDLC, geo-fencing of a certain area to contain the spread of COVID is one of the most
useful applications. In geo-fencing, people of certain areas are put under home quarantine,
and later they are monitored whether they are within the geo-fenced area or not using
AI [56,57]. The example of a geo-fenced area (also referred as hotspot) with a dotted line is
shown in Figure 8.
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Figure 8. Example of the geo-fenced area.

In South Korea, health authorities usually keep track of the geo-fenced zones/areas
and people living in respective areas through real-time location data processing via smart
phone application. Furthermore, wrist bands were also used to monitor the quarantine
violations in the geo-fenced areas. Data reported in Figure 7 can be collected from the
infected individuals by either interviewing them or using the devices (i.e., cell phones)
owned by them. Furthermore, every country has implemented various epidemic handling
systems in the form of platforms, mobile apps, and integrated frameworks for supporting
the EDLC. For example, South Korea has implemented an epidemic investigation support
system (EISS) in which data from multiple companies (e.g., credit card, mobile carrier, and
pharmacies etc.) is fed into it [58]. The EISS has an ability to collect and share the data with
relevant and authorized entities. Similarly, Singapore Government asked their citizens to
install a mobile app through which social interactions were recorded and processed with
proper consents. Furthermore, data in EDLC can also be collected from the IoT devices and
digital tools such as CCTV. The CCTV data have played a vital role in finding the COVID-19
suspects in South Korea. For example, when a sporadic cluster emerged at a gay club,
then CCTV data has played a vital role to identify the people who may have been come
into contact with infected people leveraging multiple CCTVs footage. We invite interested
readers to gain more insight about type and nature of data processed in EDLC in previous
studies [59,60]. In [59], authors discussed the consequences of COVID-19 on different
people based on their working environments. In [60], authors discussed the importance of
big data technologies in processing large scale data. Most of the AI models can handle the
missing values present in a data. Furthermore, a simple and popular approach to address
missing values related issues is data imputation. It employs statistical methods in order to
estimate a value for a column from those values that are present, then replaces all missing
values in the column with the calculated statistic. Furthermore, many AI models predict
the missing values based on the original data statistics, and determine the missing values.

3.3. Perspective 3: Epidemic Handling with Heterogeneous Sources Data and AI Role

Due to the nature of this pandemic, reliance on single data source, for example,
relying solely on individual memory to figure out the contacts he/she has made in the
past fourteen days or using popular SN data only to find vulnerable regions [25], etc.) has
proven unsatisfactory in many countries across the globe. For example, in South Korea,
manual epidemiological investigation (i.e., interviewing confirm patients about their travel
information, facilities visits, and persons to whom they met etc.) has failed badly (in
addition, it can slow down the containment of virus due to reliance on someone’s memory
and inaccuracies), and in addition to manual investigation, heterogeneous sources data
collection and analysis helped to keep daily cases at a manageable level [61,62]. By using
data acquired from different sources such as cellular network, credit card, surveillance
cameras, and facilities-visits logs to find the exposed people is called epidemic handling
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with heterogeneous sources data. Based on the extensive analysis of literature and technical
developments [58,63], we classify the countries based on amount of heterogeneous sources
data used to handle COVID-19 in four different categories in Figure 9. From Figure 9, it
can be observed that South Korea used a huge amount and variety of data. Consequently,
South Korea has better control on the ongoing pandemic without strict lock-down. In
contrast, France has used less data, but the use of some apps was mandatory, therefore,
heterogeneity in data was high. Middle eastern countries have primarily focused on
monitoring people compliance rather than huge data collection. In Pakistan, the adoption
of digital mechanisms in healthcare industry is relatively low, which is why only required
data (e.g., voluntary reporting) was collected and processed during the ongoing pandemic.
The heterogeneity in collected data in middle eastern countries and Pakistan are average
and low, respectively.

Figure 9. Overview of heterogeneous data collected in different countries of the world.

The different data types listed in Figure 9 can be collected through combination of the
digital and manual methods. For example, geolocation data can be collected using GPS
sensors or Bluetooth devices. In South Korea, geolocation data of the confirmed patients
was collected through mobile carriers. Symptoms and quarantine monitoring related
data can be collected using low-cost sensors and/or calling people at random times and
acquiring location in real time. Personal data can be collected through forms and websites,
etc. Facility visit data can be obtained from logs maintained by each organization on daily
basis, and historical diseases data can be obtained from hospital databases and mobile-
phone based surveys. Furthermore, travel data can be obtained from the travel agencies
or airport staff. Recently, unmanned aerial vehicles have also been deployed to monitor
people’s compliance with the government guidelines. In addition, data is mostly collected
prior to taking COVID test in South Korea. Furthermore, interviews and surveys are
promising tools to acquire data. In some countries, cough sound, breathing patterns, blood
samples, and temperature reading were taken through integrated platforms and sensors.
Furthermore, to assess the spread, weather agencies and meteorologists also contributed
to data collection. SN data have also paved the ways for generating symptoms taxonomy,
and identification of new and related symptoms to COVID-19. Plenty of data collection
methods have been comprehensively discussed by Hensen et al. [64]. We demonstrate the
analytics to be performed on the heterogeneous data sources using AI in Figure 10. The
analytics results can be extremely useful to keep the cases at a manageable level in order
to lower the healthcare burden. Using data-driven analytics from different context can
alleviate the pandemic’s crisis.
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Figure 10. Overview of AI-supported analytics on heterogeneous sources data.

Data reported in Figure 10 can be collected from a variety of devices, apps, and
search engines, to name a few. IoT data can be collected from wearable sensors [65],
contents, and other related data can be gathered from e-commerce websites [66], mobile
data can be gathered from mobile carriers/service-providers, social media data can be
collected from SN service providers [67], historical data can be gathered from the hospitals
websites/repositories [68], medical images and sounds data can be collected with wearable
devices or automated machines, and demographics data can be obtained from trusted
clinics/hospitals [69]. The logistic regression based models can assist in identifying hotspots
in any territory based on the certain environment parameters and underlying conditions
[70].

3.4. Perspective 4: Healthcare-Related Services and AI Role

Besides AI use in data analytics, ECS, and EDLC described earlier, AI can be highly
useful to assist in carrying out diagnosis and trend analysis to assist mankind in an ef-
fective way [71–73]. In this perspective, we discuss the possible use of AI in healthcare-
related services that can have a direct impact on the virus virulence in any country. These
services have unique utilities such as lowering hospital burdens [74], caring for elderly
patients [75], separating the more risky people [76], and preventing people from being
infected with COVID-19 [77]. To this end, we describe many healthcare-specific services of
AI in Figure 11. We invite interested readers to the previous study for more details about
each service in the context of ongoing pandemic [78].
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Figure 11. Overview of AI-supported services in healthcare in COVID-19 context.

3.5. Perspective 5: General Epidemic Services and AI Role

In this perspective, we shed light on AI use in other sectors that were directly impacted
by the COVID-19 pandemic. For example, predictions about when aviation industries
can return to normal [79], how much transportation use reduced in each country due to
COVID-19 [80], and recommendations of show/music to alleviate people’s stress during
this pandemic [81]. AI can play a vital role to access the risk and challenges of any sector
during these unprecedented and unanticipated times [82]. In some sense, AI is lowering
the human involvement in many sectors through automated and real-time decision making
abilities [83]. For example, in south Korea, AI-powered robots were installed at the airports
that were carrying similar tasks (i.e., temperature checking, mask status analysis and
alerting, social distance monitoring and alerting in case of breaches, and preventing cluster
formation of people at one place etc) as humans do [84]. In the new normal, AI use can
possibly increase in many diverse sectors. For example, performing analytics using AI
based on spatial-temporal data can be handy to predict and prevent future pandemics [85].
In addition, AI experiences can be applied to other epidemics to fight them effectively. We
present general epidemic related services of AI in Figure 12.

AI uses in all six perspectives lay a solid foundation for future studies in the same
area. It enables researcher and developers to understand the applicability of AI in different
contexts. Furthermore, it provides conceptual foundations of AI use in different aspects
related to pandemic and AI role in each aspect. Furthermore, these concepts can be
exploited to devise new techniques for each services. In addition, there is a chance of
improvising each AI technique on COVID-19 data that is relatively new and requires ample
work to make sense of it.
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Figure 12. Overview of AI-supported general services in COVID-19 context.

3.6. Perspective 6: AI Role in Drug Design and Repurposing against COVID-19

Besides the AI use in the five different perspectives cited above, AI/ML has also been
extensively used in computer-aided drug design and repurposing existing drugs against
COVID-19 receptor proteins [86,87]. Monteleone et al. [88] discussed the role of AI in drug
repurposing with therapeutics analysis for treating infected individuals with COVID-19. In
this regard, we summarize the findings of recent SOTA studies in Table 1.

Table 1. Summary of the AI uses/applications in designing drugs and repurposing existing drugs
against COVID-19.

Ref.
Discussions about AI Use in the Era of COVID-19 along with Models Details and Purpose Achieved in the Context of COVID-19.

AI Technique Used Purpose in the Context of Designing Drugs and Repurposing Existing Drugs

Zhou et al. [89] Fully connected feedforward neural network (FNN) Drug repurposing for precision medicine and personalised treatment

Walters et al. [90] Quantitative structure–activity relationships (QSARs) Drug discovery by predicting the physical properties and biological activity of
molecules

Patronov et al. [91] Deep neural networks (DNN) AI-based generative models for drug design to combat the COVID-19

Arora et al. [92] Deep neural networks (DNN) Protein synthesis, molecular changes, time management in laboratory for drug dis-
covery

Bhati et al. [93] ML integrated with PB Sampling of relevant chemical space for target proteins analysis to make pandemic
drugs

Kabra et al. [94] Combined AI approaches Finding possible drug candidate to treat COVID-19 patients with antiviral drug
Bai et al. [95] Genetic algorithm 3D drug design of protein targets for treating COVID-19 patients
Liu et al. [96] Graph convolutional network (GCN) Drug repositioning framework to quickly identity potential drugs for COVID-19
Delijewski et al. [97] Gradient boosting tree (GBT) Identification of zafirlukast as one of the repurposing candidates for COVID-19
Haneczok et al. [98] Graph-CNN Prediction of molecular property and identification of SARS-CoV-2 3CLpro inhibitors
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4. Data Challenges While Applying Ai in the Era of Covid-19

AI has played a vital role in many aspects to curb this disease spread. Meanwhile, the
true applications were hindered by data that is not perfect and complete in many regards.
We present a taxonomy of the challenges related to data that can possibly hinder AI use in
Figure 13. These challenges need to be resolved to truly benefit from AI techniques. Some
of these challenges can be solved by AI itself. For example, multi-model mechanisms can be
used to make sense of heterogeneous sources data, feature engineering can be employed to
filter redundant/less-important data before applying AI, data manipulation can be reduced
by using advanced form of AI (i.e., federated learning), synthetic data can be generated
by projecting original data using AI, and dimensionality can be reduced using many AI
techniques.

Figure 13. Challenges involved in applying AI in the COVID-19 era due to data issues.

Concise description about each challenge, indicators, and possible solutions are de-
scribed as follows.

• Heterogeneity of data styles: During this pandemic, the data of diverse types is being
collected. For example, in South Korea, when a person is confirmed to have a COVID-
19, his/her data (contacts, place, demographics, and 14 days visits to every place, etc.)
is collected in heterogeneous formats. For example, the routes information can be in
graph form, buying items can be in tabular form, and facilities he/she has visited can
be in matrix form. Hence, fusing this heterogeneous data from different contexts to
find the potentially exposed people is very challenging. It requires parsers and unified
format conversion to deal with diverse data that is very challenging.
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• Heterogeneous sources data handling: During this pandemic, the data can originate from
different sources. For example, in South Korea, fine-grained and sufficiently detailed
data is collected to curb the disease spread. For example, healthcare sectors are
constantly acquiring data from law and enforcement agencies, credit card companies,
and SN etc. Hence, handling this heterogeneous sources data during pandemic time
is very challenging. It requires interfacing and transparent policies and data-driven
approaches to address this challenge.

• Data manipulation and misuse: During this pandemic, a huge amount of personal data
is being collected on a daily basis. For example, mobility data, trajectory information,
buying data, and social interactions, to name a few. Hence, it increases the chance of
manipulation and misuse. It requires legal, organizational, and technical measures to
address this challenge.

• Data volume: During this pandemic, a huge amount of data is being collected on a daily
basis about people. For example, in South Korea, before entering any facility, data is
being collected along with explicit identity information. Similarly, cellular networks
data is used to perform crowd analysis, and identifying people at controversial places.
Hence, handling of such higher volume of data is challenging, and it requires usage of
high performance computing model. Additionally, it requires low-cost reduction and
compression techniques to address this challenge.

• Lack of data knowledge: During this pandemic, a huge amount and diverse types
of data is being collected from heterogeneous mediums. AI experts and analytics
companies have limited knowledge of data structures and formats. For example,
temporal and spatial data can be in different formats and styles. Hence, converting
such a data into consistent styles prior to AI application is very challenging. It requires
domain expertise and visualizations techniques to address this challenge emerging in
pandemic times.

• Data convergence issues: In this pandemic, data was being collected from different sources,
and in different styles (e.g., graphs, matrix, tables, etc.). Correlating/converging dif-
ferent subjects data gathered from different sources and styles is challenging. For
instance, analyzing the characteristics of each subject based on data he/she produces
or consumes using different sources is an extremely difficult task. It requires pre-
processing and similarities-based approaches to address this challenge emerging in
pandemic times.

• Inadequacy of metrics: In this pandemic, the majority of data analytics was performed
using existing metrics that yields imprecise results considering the huge dynamics of
COVID-19. For instance, analyzing disease spread based on daily cases and ambient
conditions is difficult in the absence of desired metrics. It requires new metrics or
amendments in the existing metrics to make them more suitable for use.

• Lack of truthful data: In this pandemic, huge variations were observed in each territory
regarding the disease severity, symptoms combination, and virus effect on the different
age groups. For example, disease characteristics observed in South Korea exhibit large
differences to those observed in Japan. Hence, to clearly understand the disease
dynamics, there is a lack of truthful data, although some companies/researchers
generated synthetic data that is close to the original data for understanding/modeling
of the COVID-19 dynamics. Moreover, synthetic data may yield imprecise results in
the absence of evidence-based truthful data [99]. This challenge can possibly be solved
through data sharing with domestic and international firms, and analyzing data with
advanced AI techniques.

• Mishandling in finding exposure of contacts: To accurately find the contacts of an infected
person, close monitoring of all subjects in outdoor environments is paramount. For
example, it requires monitoring of who met with whom? for how long he/she met?
what was the nature of contact (e.g., had dinner/lunch or just crossed), whether he/she
was wearing masks perfectly or not? and how often he/she met with each other. To
capture and analyze all these aspects with fine-grained data collection about each
subject can be highly difficult, and it can lead to hidden/silent transmission of COVID-
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19. This challenge can possibly be solved through data collection from heterogeneous
sources, and analyzing data with advanced AI techniques and integrated platforms.

• Data collection in a fine-grained manner: Due to the nature of this pandemic (i.e., spread
through close contact), data about people should be collected in a fine-grained manner.
Meanwhile, in some countries, data protection laws are in place, therefore, fine-grained
data collection is not allowed. Due to which virus can spread, containment is not easy
at all. For instance, the recent pandemic spread at a wider scale in European nations
due to general data protection regulation (GDPR), which restricts data collection about
subjects without their explicit permission. This challenge can possibly be solved
through amendments in laws considering the severity of the virus for public safety.

5. Discussion on AI and Latest Technologies Use and Future Research Directions

In this section, we concisely discuss AI use/services in COVID-19 context based on
actual data and purpose of using AI, latest technologies that have been used in the era
of COVID-19, synergy of AI with other emerging technologies, and promising research
directions for future endeavours.

5.1. Discussion on AI Use in the Context of COVID-19

So far, we have reported the coverage of AI-based analytics in the COVID-19 era from
six perspectives such as ECS, EDLC, EHHSD, HCSAIS, GEAIS, and AI role in drug design
and repurposing against COVID-19. We have rigorously and thoroughly analyzed the
scope of AI in all six aspects. This concise overview will enable future research in this
area with clear directions/gaps. Specifically, we highlighted the data related challenges
that need to be resolved to yield higher adoption of AI, as AI has already demonstrated
effectiveness in many aspects related to the COVID-19 [100–105]. Thus, we summarize
AI use based on actual data used/processed, AI models applied, and purpose/service
achieved in COVID-19 context in Figure 14.

Figure 14. Practical uses of AI to fight with the ongoing pandemic.

Apart from AI unique services cited above, they can be extremely useful in preventing
diseases by predicting high risk facilities, and identification of lethal combination based on
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geographic data that can lead to a higher number of deaths. Furthermore, AI can be handy
to analyze protein sequences that can assist in developing potential vaccines for future
pandemics. Furthermore, many unique aspects such as robustness, efficiency, large data
handling, and reduction in time and cost make AI more attractive for many applications
in the healthcare sector. In many countries, AI has been integrated as a main module
with decision support systems (DSS) to efficiently fight this pandemic. Apart from the AI
services explained above, we describe various promising applications of the AI in the era
of COVID-19, keeping AI techniques used in loop in Table 2.

Table 2. Comprehensive overview of the AI use/applications in the era of COVID-19 discussed in
recent SOTA studies.

Ref.
Discussions about AI Use in the Era of COVID-19 along with Models Details and Goals Achieved in the Context of COVID-19.

AI Technique Used Purpose in the Context of COVID-19 Pandemic

Pinter et al. [106] Multi-layered perceptron Predictions of mortality rate and infected cases
Aminu et al. [107] Deep neural networks Detection of people with COVID-19
Magar et al. [108] Ensemble techniques Virus–antibody sequence analysis and patients’ Identification
Zeng et al. [109] Extreme Gradient Boosting (XGBoost) Forecasting of patient survival probability
Ashraf et al. [110] Machine & deep learning models Predict the severity of disease or chances of death
Shah et al. [111] Convolutional neural network (CNN) COVID-19 detection from X-ray images
Prakash et al. [112] Autoregressive Integrated Moving Average Impact analysis of various policies
Rathod et al. [113] AI Prediction models Effective crisis preparedness and management
Ullah et al. [114] Logistic Regression and Support Vector Machine Classification of patients with/without COVID-19
Rathod et al. [115] SVM, RProp, and Decision tree Detection of abnormal data for effective analysis
Hu et al. [116] Spectral Clustering (SC) algorithm Feasible analysis model for the treatment & diagnosis
Rashed et al. [117] Long short-term memory (LSTM) network Provides public awareness about the risks of COVID-19
Singh et al. [118] ResNet152V2 and VGG16 CNN Reduce the high false-negative results of the RT-PCR
Saverino et al. [119] Digital and artificial intelligence platform (DAIP) Changes implementation in rehabilitation services
Peddinti et al. [120] Convolutional Neural Network (CNN) Detection of COVID-19 cases in public places
Malla et al. [121] Ensemble deep learning model Real-time sentiment analysis of COVID-19 data
Lella et al. [122] Convolutional Neural Network (CNN) model Respiratory sound classification for patient identification
Haleem et al. [123] Artificial neuronal networks (ANN) Predictions of survival of COVID-19 patients
Hashimi et al. [124] Deep learning models Tracking and identifying potential virus spreaders
Amaral et al. [125] Artificial neuronal networks (ANN) forecasting and monitoring the progress of Covid-19
Zgheib et al. [126] Collection of ensemble learning methods Detecting COVID-19 virus based on patient’s demographics
Ferrari et al. [127] Bayesian framework Predictions about the behavior of the COVID-19 epidemic
Almalki et al. [128] COVID Inception-ResNet model (CoVIRNet) Automatic diagnosis of the COVID-19 patients
Umair et al. [129] VGG16, DenseNet-121, ResNet-50, and MobileNet diagnosis of the virus at early stages via X-rays and transfer learning
Tamagusko et al. [130] EpiEstim framework Analysis of the population’s mobility during the COVID-19 pandemic
Arvanitis et al. [131] Ensemble learning methods (RF, SVM, and ANN) short-term and accurate prediction of effective reproduction number (Rt)
Hussain et al. [132] Ensemble learning methods (RF, SVM, and ANN) Analysis of public attitudes on Twitter & Facebook toward COVID-19 vaccines
Kumari et al. [133] Combination of multi class SVM and CNN models Contact less authentication system and face mask identification
Talahua et al. [134] OpenCv’s face detector and MobileNetV2 architecture identifying whether people are wearing face masks or not
Yu et al. [135] GCNN ResGNet-C under ResGNet framework Effective diagnosis of COVID-19 from lung CT images
Nayak et al. [136] Lightweight and robust CNN scheme Faster and accurate diagnostics of COVID-19 patients
Bekhet et al. [137] Lightweight CNN architecture Recognizing COVID-19 patients with a 96% accuracy

Keicher et al. [138] Lightweight clustering method Patients outcomes prediction admission to ICU, need for ventilation and mor-
tality

Alshazly et al. [139] Deep network architectures and transfer learning strategy CT images-based diagnosis of COVID-19 infected people in an automated way
Carvalho et al. [140] Convolutional features & genetic algorithms Screening and diagnosis of COVID-19 patients
Fu et al. [141] Lightweight DenseANet architecture Distinction between pneumonia and COVID-19 patients using CT images
Bougourzi et al. [142] Pre-trained XG-boost classifier Analysis of sensitivity of the COVID-19 patients from CT images data
Song et al. [143] Details relation extraction neural network (DRENet) Person-level diagnoses of COVID-19 using CT images
Alruwaili et al. [144] Inception-ResNetV2 deep learning model Visualization of the lungs’ infected regions using CXR images

Wang et al. [145] Inception transfer-learning model Extraction of radiological features for timely and accurate diagnosis of COVID-
19

Jha et al. [146] logistic regression, SVM, Random Forest, and QSAR Robust drugs discovery and extraction of features combating COVID-19
Abbas et al. [147] DeTraC deep convolutional neural network architecture Classification of COVID-19 chest X-ray images

Sedik et al. [148] CNN & convolutional long short-term memory (ConvL-
STM) AI-powered COVID-19 detection system using X-ray and CT data

Bhardwaj et al. [149] Inceptionv3, DenseNet121, Xception, and InceptionRes-
Netv2 Quick and highly accurate automated COVID-19 detection

Muneer et al. [150] Deep hybrid NN models (GCN-GRU and GCN-CNN) Prediction of RNA degradation from RNA sequences
Ali et al. [151] Keras Classification model (also called Keras classifier) Classifying COVID-19 spike sequences from geographic location
Ahsan et al. [152] Histogram-oriented gradient (HOG) and CNN Detect of COVID-19 from the chest X-ray images using model fusion
Raji et al. [153] Convolution Neural Networks using medical modalities Robust detection of the virus by using the pre-trained models
Teli et al. [154] shallow and simple CNN-based approach, named TeliNet Robust classification of CT-scan images of COVID-19 patients
Jacobs et al. [155] Generative deep learning models Small molecule drug design using scalable deep learning for COVID-19
Madhavan et al. [156] Res-CovNet: A hybrid methodology Classification of multiple diseases using X-ray images
Shorfuz et al. [157] IoT-enabled deep learning-based stacking model Analysis of chest CT scans for diagnosis of COVID-19 encounters
Shankar et al. [158] Cascaded recurrent neural network (CRNN) model Detection and classification of the existence of COVID-19
Saranya et al. [159] Recurrent NN utilized the TensorFlow Keras framework COVID-19 mortality prediction using electronic health records
Alhudhaif et al. [160] CNN model built on DenseNet-201 architecture Determination of COVID-19 pneumonia from X-ray images
Aboutalebi et al. [161] COVID-Net CXR-S, a convolutional neural network Predicting the airspace severity of a COVID-19 positive patients
Zhao et al. [162] convolutional neural network (CNN) COVID-19 identification from a small subset of training data
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5.2. Discussion on Latest Technologies Used to Fight with COVID-19 Pandemic

Beside AI, numerous other latest technologies such as blockchain (BC), federated
learning (FL), few short learning (FSL), robotics, and confidential computing (CC) have
also played a vital role in this pandemic. For example, BC technology has promising
characteristics such as transparency, immutability, verifiability, and privacy-preservation
which makes it suitable for data sharing securely between different entities [163]. In
addition, it can be used to monitor the personal data flows in the healthcare environments.
FL is an emerging technology in which data in not shared, instead model results are shared
only. It can be highly beneficial to ensure individual privacy. Furthermore, it enables
model results sharing at a wider scale without privacy disclosures [164]. FSL enable
machine learning model’s training from a few data samples. It has a lot of applications in
analyzing the dynamics of COVID-19 by extracting knowledge using a limited data [165].
Robotics were used to deliver the test samples from testing sites to hospitals, and many
other innovative applications [166]. In addition, they were also used to check people’s
temperature in the streets. Some countries used robotics to monitor people’s mobility
during the rush hours. CC techniques were employed to secure the personal data since it
can use the data without accessing actual values. All these technologies have played a vital
role in serving mankind during this deadly pandemic. We summarize the role of the seven
latest technologies that were used in this pandemic as follows.

• Blockchain (BC): The BC technology has been widely used in addressing the challenges
of privacy in healthcare sectors [167,168]. The unique capabilities of the BC such as
decentralization, transparency, immutability, and traceability makes it useful for
alleviating privacy problems of data storing, distribution, and utilization phases. BC
has been rigorously used in this pandemic for transparency and verifiability related
purposes [169].

• Decision Support Systems (DSS): DSS can play a vital role in lowering the burden of
the medical staff [170]. They can be extremely useful for the ETL (extract, transform,
and load) purposes and performing the desired screening tasks in an automated ways.
DSS can be very helpful in lowering the burden of healthcare workers and planning
resources accordingly.

• Explainable AI: It is very recent technology with a wide range of practical applications
in the diagnosis and analytics [171]. It can be extremely useful in identifying the
hidden routes of disease transmission and vulnerable communities analysis.

• Internet of things (IoT): IoT has revolutionized the medical sector with unique abilities
of remote monitoring, connected healthcare, and constant tracking [172]. IoT can
be highly useful in symptoms reporting, remote analysis of patients, and patients
monitoring in ICUs, etc.

• Confidential computing and zero knowledge proofs: Both these techniques have
higher utility in data distribution with different stakeholders [173]. These techniques
enable data utilization with higher privacy guarantees. These solutions can be widely
acceptable to address the privacy implications of the data distribution with domestic
and international researchers.

• Natural language processing: It can be highly useful in the analytics phase of the
EHS for symptoms extraction and sentiment analysis [174]. It can also be useful for
symptoms clustering and forming a unified taxonomies of epidemic diseases.

• Search Engines (SE): The SE has played a vital role in devising the common symptoms
of the infectious diseases, and it can assist in identifying the origin of pandemics. The
tools can be employed to recommend helpful tips to the people to reduce the chaos
created by pandemic.

In order to fight COVID-19, every country has implemented digital solutions and
launched many projects. For instance, South Korea has implemented an integrated plat-
form named epidemic investigation support system (EISS), in which data about infected
patients is collected and shared with relevant agencies [61]. Furthermore, South Korea
has implemented many smartphone apps for contact tracing, quarantine monitoring, and
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logging with the help of different ministries [175]. China has used plenty of AI techniques
and DSS in response to COVID-19 [176]. Pakistan has launched a web-based portal to
report the statistics of virus, and multi-criteria based data-driven testing strategy [177].
Singapore has implemented an app for social interactions recording that can be used later
if someone get infected with COVID-19 [178]. Some countries have used AI and drones etc.
to curb the spread of COVID-19. In the U.S., national COVID cohort collaborative (N3C)
project is being launched in which multiple organizations are collaborating on clinical
data related to COVID-19. In addition, the N3C project aims to answer important research
questions that in return will assist to combat the COVID-19 pandemic [179]. Many countries
have developed a variety of digital solutions during this pandemic to keep their citizens
safe [180–183].

IoT and various smart sensing technologies are also playing a key role in the pandemic
arena, leveraging COVID-19 pandemic related data for various purposes such as remote
monitoring, quarantine management, and symptoms reporting [184–186]. A number of
survey studies have discussed the IOT role in the ongoing pandemic [187,188]. In this
regard, we summarize the role of IoT in COVID-19 pandemic reported by the SOTA and
recent studies in Table 3.

Table 3. Summary of IoT and various smart sensing technologies role in fight against the COVID-19
pandemic.

Ref.
Discussions about AI Use in the Era of COVID-19 along with Models Details and Purpose Achieved in the Context of COVID-19.

Data Sources Purpose Achieved in the Context of Lowering the Effects of COVID-19 on General Public

Sharma et al. [189] Wearable sensors Timely and accurately predicting COVID-19 positive cases to control the spread of COVID-19 pandemic
Khan et al. [190] Camera sensors Monitoring and countering the spread of ongoing pandemic using IoT sensors data in close indoor spaces

Awotunde et al. [191] Sensing technologies Advising patients about their health conditions preventive measures suggestions to saving lives amid the pan-
demic

Abdulkareem et al. [192] Medical devices AI and IoT based clinical decision support systems for COVID-19 pandemic handling in smart hospitals
Jayachitra et al. [193] Handheld devices IoT-based cognitive system with 100% prediction accuracy of COVID-19 infection using multimodal data
Herath et al. [194] Thermal cameras IoT-based system to detect & control the ongoing pandemic inside the hospital environment
Mukherjee et al. [195] Medical devices IoT-cloud-based healthcare predictive model in order to quickly detect COVID-19 using eKNN
Akbarzadeh et al. [196] Wearable sensors Notifying end-users when breaking the social distance guidelines in the situation of COVID-19 pandemic

Petrović et al. [197] Sound sensors A cost effective IoT-based practical solution for reducing the spread of COVID19 in indoor settings using cough
sounds

Alamri et al. [198] IoT sensors Providing real-time information to the users about potential events that can affect the public transport in COVID-
19 times

Poongodi et al. [199] COVID-specific sensors A robust health-based fully connected IoT systems in order to strengthen full COVID-19 administration using
location data

Kent et al. [200] Mobile sensors IoT-based solution for hospitals in order to improve health monitoring and providing timelier healthcare for pa-
tients

Krishnan et al. [201] Multiple sensors Checking the availability of the mask in initial stage and monitoring the students’ temperature in the latter stage
Mylonas et al. [202] IoT sensors Analyzed the effects of COVID-19 pandemic on a multiple schools in Greece for monitoring energy and noises
Bhowmick et al. [203] IoT sensors Process and help us monitor the health of older people in clouds based on different medical IoT sensors data
Herath et al. [204] IoT sensors Prevention of the COVID-19 pandemic using IoT-based platform in a smart city environments
Herath et al. [205] IoT sensors Monitoring the symptoms of COVID-19 infected patients, and detecting the patient’s activities using mobile app
Lastovicka et al. [206] IR and ultrasound Contactless solution for automatic induction of disinfection intelligent hand sanitizer to lower spread of COVID-19
Rajasekar et al. [207] RFID tags IoT-based automated tracking and tracing method for identification of the possible contacts of COVID-19 patients

Alhmiedat et al. [208] Wearable sensors Slowing the spread of COVID-19 locally and across the country by allowing individuals to maintain social dis-
tances with others

5.3. Synergy of AI with other Emerging Technologies in the Context of COVID-19

In recent years, AI has been increasingly used in combination with emerging technolo-
gies such as IoT, IoMT, cloud computing, fog/edge computing, and federated analytics,
to name a few for accomplishing multiple goals [209,210]. Ahuja et al. [211] discussed AI
use from three different perspectives such as drug discovery, public communication, and
integrative medicine in the context of COVID-19. Márquez et al. [212] discussed the joint
use of AI and big data in the era of COVID-19. According to the authors, these synergies
between disruptive technologies can facilitate obtaining relevant data that, in return, is
helpful for health-related decision-making. Anjum et al. [213] discussed the emerging
technologies to fight the COVID-19 pandemic. The authors have discussed the role of
AI and IoT-assisted drone technology, these synergies between emerging technologies
can pave the way to fight future infectious diseases using technology. Ahmad et al. [214]
discussed the role of AI in COVID-19 pandemic by performing analytics on data stemming
from COVID-19 pandemic. The authors discussed the synergies between various emerging
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technologies for healthcare decision support leveraging IoT sensors. Lainjo et al. [215]
discussed the big data and AI synergies that have helped various nations in improving
the pandemic situations and reducing the adverse impacts of COVID-19 on economies.
Bazel et al. [216] discussed the synergies between AI and three other emerging technologies
(i.e., IoT, blockchain, and big data technologies) in healthcare in order to prevent the spread
of COVID-19. Swayamsiddha et al. [217] presented a comprehensive analysis of AI-aided
detection of COVID-19 using heterogeneous sources of data (i.e., AI-enabled imaging).
Deshpande et al. [218] discussed the promising applications of AI leveraging audio signals
data. The authors have demonstrated the diagnosis and screening of COVID-19 patients
using audio-based analysis. Despite these promising applications, AI is a promising so-
lution for supply chain management in the post COVID-19 era [219]. A comprehensive
discussion on synergy between blockchain and AI, along with their benefits and limitations,
has been reported in the recent literature [220]. Recently, Deepti et al. [221] demonstrated
the gamut of synergistic applications including AI, cloud-enabled IoT, connected sensors
and actuators, and ubiquitous Internet to form connected communities that, in return,
can help to fight the COVID-19 pandemic [221]. Furthermore, AI is an important pillar
of industry 5.0 [222,223]. A relatively new concept, artificial intelligence of things (AIoT),
has emerged as a new concept for addressing the potential limitations of IoT in health-
care 4.0 [224]. Considering the promising applications of AI in the healthcare sector, its
synergy with other technologies is likely to increase in the near future for accomplishing
multiple goals. Hence, it has become an emerging avenue of research in recent years to
serve the mankind effectively.

For the convenience of readers, we provide the summary of the important AI-related
developments (adapted from [225]) reported in the published surveys in Figure 15. The
analysis presented in Figure 15 shows that AI has contributed significantly to multiple
areas (e.g., drug design and development, diagnosis, and surveillance, to name a few). On
the other hand, this analysis can enable researchers to contribute more to areas that have
been given less attention in previous studies.
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Figure 15. Statistics of AI related developments reported in the prior surveys [225].

Besides the unique AI applications cited above, many surveys on AI topics have been
published, and each survey has tried to demonstrate the AI uses from different perspectives.
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To aid subsequent research in this regard, we systematically summarize the findings of most
recent surveys that have focused on AI applications in the context of COVID-19 in Table 4.
The analysis presented in Table 4 clearly demonstrates the existing developments in review
articles. Our review is an enhanced version of these surveys as we discuss AI’s role more
broadly compared to these studies. This analysis is helpful to quickly and conveniently
grasp the research status of AI in the COVID-19 era.

Table 4. Key findings of most recent surveys that have focused on AI applications in the context of
COVID-19.

Ref. Pub. Year Review Type Key Findings Concerning COVID-19 Pandemic

Nadeem et al. [226] 2020 Literature survey Discussion of AI applications and data sources to fight against Covid-19 via technology
Abd-Alrazaq et al. [227] 2020 Scoping review Discussion about AI technology use during the ongoing COVID-19 pandemic
Raza et al. [228] 2020 Meta-analysis Discussion from broad spectrum of AI to combat COVID-19 by analyzing current SOTA studies
Chen et al. [229] 2020 Rapid review Discussion and review of the critical aspect of AI applications for COVID-19 era
Enughwure et al. [230] 2020 Systematic review Analyzed 15 SOTA studies and showed AI has many potentials in combating COVID-19 pandemic
Chiroma et al. [231] 2020 Bibliometric study Discussion on ML-based technologies to fight the COVID-19 pandemic from multiple perspectives
Bullock et al. [232] 2020 Literature review Reviewed many datasets, resources, and tools required to facilitate AI research in the era of COVID-19

Fong et al. [233] 2020 Literature review Discussed the role of AI as a technological enabler from four different perspectives in the era of COVID-
19

Latif et al. [234] 2020 Systematic Review Discussed many public datasets/repositories that are used in order to track the spread of COVID-19
and mitigation strategies

Chawki et al. [235] 2021 Systematic review Discussed about how AI can be utilized to analyze the social and clinical patterns of a COVID-19
outbreak to save people

Gunasekeran et al. [236] 2021 Scoping review Discussed many applications of AI, telehealth, and relevant digital health solutions amidst the COVID-
19

Syeda et al. [237] 2021 Systematic review Discussed many studies concerning COVID-19 that have utilized AI-based methods in different
themes

Zhao et al. [238] 2021 Systematic review Discussed and summarized 50 applications of AI, robotics, and other digital technologies in the era of
COVID-19

Kamalov et al. [239] 2021 Literature review Discussed AI applications from four perspectives such as medical diagnostics, forecasting, contact
tracing, and drug development

Safdari et al. [240] 2021 Scoping review Discussed about determining the most favorite and effective data mining tools in COVID-19 era
Nirmala et al. [241] 2021 Literature survey Pinpoints various AI applications that are effective to fight against the COVID-19 pandemic

Rasheed et al. [242] 2021 Literature review Discussed the role of AI from three perspectives such as analyze, prognosis, and tracking of the
COVID-19 cases

Senthilraja et al. [243] 2021 Literature review Discussed and find that AI is useful not only in treatment of infected patients with COVID-19, but also
for proper health monitoring

Kumar et al. [244] 2021 Literature review Discussed the development of COVID-19 classification tools & drug discovery models for infected
patients using AI

Chen et al. [245] 2021 Literature survey Investigated the scope of AI in COVID-19 era from the five aspects (i.e., virology, diagnosis, drug
analysis, and transmission)

Dogan et al. [246] 2021 Systematic review Analyzed the role of AI/ML for transmission prediction, diagnosis, and drug/vaccine development
in the pandemic arena

Alafif et al. [247] 2021 Systematic review Analyzed the role of ML/DL towards COVID-19 diagnosis and treatment and discussed findings of
SOTA in the pandemic arena

Singh et al. [248] 2021 Comprehensive
review Discussed about the COVID-19 prevention and detection using different types of biosensors.

Recently, AI has been widely used in COVID-19 drug design and repurposing on
different datasets. Tang et al. [249] used AI techniques to predict molecules and leading
compounds for each target. The dataset used in the study is available at the link (https:
//github.com/tbwxmu/2019-nCov (accessed on 15 November 2021 )). Similarly, some
other studies have also used real-world datasets to find the molecular structures for 3CLpro
[250,251]. The data used in these studies can be found at link (https://www.insilico.
com/ncov-sprint (accessed on 15 November 2021), https://github.com/ml-jku/sarscov-
inhibitors-chemai (accessed on 15 November 2021)). More details about datasets used in
drug design can be learned from Chen et al. [245].

5.4. Future Research Directions

The promising research directions that need further exploration from the research and
development point of view are described in Figure 16. Besides the other directions, privacy
preservation is one of the hot research topics in the pandemic era [252,253].

https://github.com/tbwxmu/2019-nCov
https://github.com/tbwxmu/2019-nCov
https://www.insilico.com/ncov-sprint
https://www.insilico.com/ncov-sprint
https://github.com/ml-jku/sarscov-inhibitors-chemai
https://github.com/ml-jku/sarscov-inhibitors-chemai
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Figure 16. Promising research directions in the COVID-19 era leveraging AI.

As shown in Figure 16, fusion of heterogeneous sources data for insight (i.e., contacts
of an infected individual, stay points of an individual, and co-relation of the symptoms with
underlying diseases, etc.) finding is a promising avenue for research in the near future [254].
During the pandemic, there is an emerging need to secure all phases of the data lifecycle in
order to prevent privacy breaches [255]. However, the existing approaches mainly ensure
security of one/two phases. Therefore, more practical and robust AI-powered privacy
preserving approaches are needed to secure personal data in the post COVID-19 era. In
the ongoing pandemic, many AI models have been used for multiple purposes. Moreover,
designing low-cost AI models and metrics for COVID-19-like pandemics is an emerging
avenue for future research [256]. Apart from the potential avenues of research cited above,
performing analytics on the collected data in order to extract insights is a promising area of
research due to huge data collection in the ongoing pandemic [257,258]. As the healthcare
industry is aiming to shift from the hospital-centered approach to patient/device-centered
approach, therefore, AI-based methods for supporting the cause are needed in the near
future. Furthermore, exploring the potential of other latest technologies (i.e., blockchain,
privacy by design, federated learning, swarm learning, few-short learning, deep/machine
learning, etc.) to serve mankind in an effective way compared to the recent past is an emerg-
ing avenue of the research. Finally, critical analysis of AI use from ethical point of view in
the context of ongoing pandemic has become more emergent than ever [259–261]. Besides
the AI applications cited above, joint use of AI with the IoT/IoMT has become a popular
research area [262–265]. Recently, researchers have started working on reducing the ‘black-
box’ nature of AI models through explain-ability and interpret-ability concepts [266–269].
Hence, it is worth exploring the AI use in COVID-19 context from this perspective [270].
In addition, most of the AI techniques, especially deep learning techniques, are computa-
tionally expensive. Hence, it is an emerging research area to lower the computing burden
of these techniques via pruning and quantization techniques [271–274]. Besides the areas
cited above, another promising avenue for future research is sentiment analysis of COVID-
19-related tweets [275], informative tweets detection related to COVID-19 using deep
learning [276], reviews analysis [277], topic modeling related to COVID-19 aspects [278],
COVID-19 pandemic and vaccine-related rumors detection [279], opinion analysis related
to COVID-19 [280], and awareness prediction [281], to name a few. In these areas, AI can
play a vital role with data stemming from the ongoing pandemic and corresponding surge
in SN use across the globe. Therefore, further research and development are likely to
expand in this regard (e.g., AI towards COVID-19) in order to take full advantage of the
integrated technologies to serve humanity.

Lastly, the COVID-19 pandemic has evolved into an endemic, and the new normal
may be to live with the virus for a few more years. Therefore, we must recognize and
advocate caution that such pre-emptive measures (e.g., heavy reliance on the digital tools,
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contactless services, work from home, remote health monitoring with AI tools/applications,
distance/remote learning [282], and buying online, to name a few) are ultimately worth-
while. Considering the evolution of COVID-19 in various mutations across the globe,
preparedness is the key to preventing any public health crisis, and COVID-19-endemic
countries must be ready for the challenges that COVID-19 might bring unanticipated
strain on medical infrastructure time and again. Furthermore, some tropical diseases (TDs)
have been neglected amid the prevalence of COVID-19 because most funds are being
redirected towards COVID-19 [283]. Therefore, COVID-19 effects on medical systems are
long-lasting. The contactless services are increasing significantly amid the ongoing pan-
demic, and hybrid healthcare services will likely increase in the post-COVID-19 era [284].
Most companies are moving towards zero user interface (ZUI) technologies propelled by
the ongoing pandemic in order to meet the hygiene requirements [285]. The cashless and
contactless smart vending machines are being integrated with the mobile device to reduce
people-to-people contact [286]. Furthermore, new normal activities are constantly emerging
in which companies are deploying crisis strategies to retain their stakeholders and business.
Companies are re-opening swiftly, focusing more on digital transformations, implementing
digital platforms/tools for improved consumer services and ease in working, to name a few
operational changes [287]. Besides these technical developments, researchers are emphasiz-
ing the need for research in COVID19-induced brain dysfunction (CIBD) to improve the
mental health of large populations of infected/uninfected individuals [288]. Despite these
highlighted areas and developments, AI’s role in COVID-19 and post COVID-19 era can
offer a proven method to further strengthen the impact of healthcare services/applications
on population health, which is more necessary than ever in the post-COVID era [289–292].
To this end, further developments are needed to lower the effects of this pandemic and to
serve mankind effectively in these unanticipated and challenging times.

6. Conclusions and Future Work

This paper has demonstrated the role of data-driven analytics leveraging AI in the
era of COVID-19. Specifically, we have discussed the role of AI from six different perspec-
tives in the pandemic arena that can assist early researchers to grasp the research status
conveniently. To the best of author knowledge, this is the first article that has presented
various possible and demonstrated applications of Artificial Intelligence (AI) related to
the COVID-19 pandemic. It continues to discuss challenges facing the field and proposes
future avenues of research to follow. The six unique perspectives in which AI’s use/role
was presented are, (i) AI role in seven different epidemic containment strategies (a.k.a
non-pharmaceutical interventions (NPIs)) such as contact tracing, quarantine monitor-
ing, social distance monitoring, disclosing patients’ information, reporting symptoms and
other data via wearable devices, data collection at the time of check-ups, and mining and
analytics on collected data, (ii) AI role in data life cycle phases (i.e., collection, storage,
pre-processing, analytics, use, distribution, archiving, and deletion) employed for epidemic
handing in digital solutions, (iii) AI role in performing analytics on heterogeneous types of
data stemming from this pandemic, (iv) AI role in the healthcare sector in the context of
COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI
role in drug design and repurposing against COVID-19. Furthermore, we discussed the
various challenges related to data that can hinder the application of AI in the ongoing
pandemic period. We have concisely presented the role of emerging technologies other
than AI, and promising future research directions in the post-COVID-19 era. Furthermore,
we have demonstrated the actual use of AI based on available data and utility in these
pandemic times. We have described the findings of recently published SOTA studies that
have demonstrated the role of IoT and various smart sensing technologies in order to fight
against the COVID-19 pandemic. Furthermore, we discussed the synergy of AI with other
emerging technologies in order to lower the effects of COVID-19 on the general public
and economies. With this comprehensive overview, we aim to update researchers and
developers with the existing services of AI, and possible research gaps/opportunities that
AI can provide in the near future, and data-related issues that we may face while applying
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AI models on it. Unfortunately, COVID-19 is creating many complex clinical implications
for people having underlying diseases such as diabetes, pneumonia, and heart disease, to
name a few. Hence, we may need to deal with the clinical implications emerging from the
prognosis of COVID-19 using AI, mastering the “fearful symmetry” [293]. In the future, we
aim to explore the development-related challenges of AI in the COVID-19 era. Finally, we
intend to explore AI’s role and applications in the post-pandemic era. Recently, federated
analytics has emerged as a new paradigm for performing analytics without centralizing
data [294–296]. To this end, we intend to explore the role of federated analytics in the
pandemic and post-pandemic arena. In addition, studying the role of federated learning
in the context of COVID-19 is also a very hot research area in recent times [297–299]. We
intend to explore the role of these emerging technologies to combat this unanticipated
pandemic in future work.
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