
����������
�������

Citation: Canale, E.; Robledo, F.;

Sartor, P.; Stábile, L. Solving the

Max-Diversity Orthogonal

Regrouping Problem by an Integer

Linear Programming Model and a

GRASP/VND with Path-Relinking

Approach. Symmetry 2022, 14, 18.

https://doi.org/10.3390/

sym14010018

Academic Editors: Angelo Sifaleras,

Andrei Sleptchenko, Adriana Felicia

Gabor and Laszlo T. Koczy

Received: 15 October 2021

Accepted: 14 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Solving the Max-Diversity Orthogonal Regrouping Problem by
an Integer Linear Programming Model and a GRASP/VND with
Path-Relinking Approach

Eduardo Canale 1 , Franco Robledo 1 , Pablo Sartor 2,* and Luis Stábile 1

1 Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay; canale@fing.edu.uy (E.C.);
frobledo@fing.edu.uy (F.R.); lstabile@fing.edu.uy (L.S.)

2 IEEM Business School, Universidad de Montevideo, Montevideo 16000, Uruguay
* Correspondence: psartor@um.edu.uy

Abstract: Students from Master of Business Administration (MBA) programs are usually split into
teams. In light of the generalistic nature of MBA programs, diversity within every team is desirable in
terms of gender, major, age and other criteria. Many schools rotate the teams at the beginning of every
term so that each student works with a different set of peers during every term, thus training his or
her adaptation skills and expanding the peer network. Achieving diverse teams while avoiding–or
minimizing—the repetition of student pairs is a complex and time-consuming task for MBA Directors.
We introduce the Max-Diversity Orthogonal Regrouping (MDOR) problem to manage the challenge
of splitting a group of people into teams several times, pursuing the goals of high diversity and
few repetitions. We propose a hybrid Greedy Randomized Adaptive Search Procedure/Variable
Neighborhood Descent (GRASP/VND) heuristic combined with tabu search and path relinking
for its resolution, as well as an Integer Linear Programming (ILP) formulation. We compare both
approaches through a set of real MBA cohorts, and the results show that, in all cases, the heuristic
approach significantly outperforms the ILP and manually formed teams in terms of both diversity
and repetition levels.

Keywords: MBA teams; orthogonal regrouping; diversity; GRASP; VND; path relinking

1. Motivation

There is empirical evidence showing that diversity among team members plays an
important role in the success of organizations; see [1–3] for studies on the impacts of
gender diversity on revenue and profits, female executive ratios on profit, and educational
and work ratios on innovation. Collaborative, multidisciplinary team-formation and
staffing/scheduling problems in workforce management are of paramount importance in
project deployment and large-scale corporations. Diversity within teams is also increasingly
important in contexts such as squadrons in “agile organizations” and study groups in
executive education programs. In fact, the case that motivated the work presented in this
article on MBA team formation and rotation is a good example. Experience shows that
student skills and the learning process benefit significantly from highly diverse teams
with respect to prior experience, age, gender, major, years of work experience and other
attributes. The main goal of MBA programs is to develop generalistic professionals able
to cope with the complexity of managing organizations. They are generalistic by nature;
students benefit much more from addressing their weaknesses regarding skills, experience
and discipline knowledge than from further developing those that they have already
mastered. An important part of learning achieved by every student comes from his or
her peers through teamwork. In addition, developing abilities to work in diverse teams
and quickly adapt oneself to them is also a goal in itself of most current MBA programs.
The problem of splitting a group of people into a given number of teams in a way that
maximizes the intra-team diversity is challenging, as discussed in Section 2. Moreover,

Symmetry 2022, 14, 18. https://doi.org/10.3390/sym14010018 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14010018
https://doi.org/10.3390/sym14010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1311-6497
https://orcid.org/0000-0003-4235-4221
https://orcid.org/0000-0001-7076-3917
https://orcid.org/0000-0001-6839-8922
https://doi.org/10.3390/sym14010018
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010018?type=check_update&version=2

Symmetry 2022, 14, 18 2 of 13

in many contexts, it can be desirable to rotate the teams several times so that every team
member meets as many peers as possible, trains his or her adaptation skills, etc. Continuing
with the case of MBA programs, they are usually split into 4–6 terms. Many business
schools rotate the groups every term so that students develop their ability to adapt to
different groups, benefit from new points of view and expand their peer network. Creating
highly diverse teams while minimizing the repetition of peer pairs between terms is a
very challenging problem faced by program directors when launching a new cohort. For
instance, at IEEM Business School (Universidad de Montevideo), MBA directors typically
spend 6–8 hours coping with this problem, as many times as cohorts are launched every
year, yet achieving team partitions has been barely satisfactory in meeting the goals of high
diversity and few repetitions.

Given the intrinsic difficulty of the underlying partitioning and clustering problems
involved, it is highly convenient to develop algorithms to automate this task as much as
possible. In this work, we focused on maximum-diversity regrouping assignments of MBA
students; nevertheless, the reader can find potential applications to similar partitioning
problems that involve rotating the partitions several times.

The contributions of this article can be summarized as follows:

1. We introduce the Max-Diversity Orthogonal Regrouping (MDOR) problem.
2. A feasibility condition and an upper bound for the optimum are derived in Section 3.3

for some ranges of the parameters.
3. An exact Integer Linear Programming (ILP) formulation for the MDOR problem

is proposed (Section 3.2).
4. A GRASP/VND methodology combined with tabu search and path relinking

is proposed.
5. We compare the performance of both approaches against each other and against

a real case of manual team splitting using data from five MBA cohorts of IEEM
Business School, Universidad de Montevideo, Uruguay, who graduated between 2017
and 2019.

This document is organized as follows. The related work is presented in Section 2.
A mathematical programming formulation for the MDOR is introduced in Section 3. A
full GRASP/VND heuristic combined with tabu search and path relinking as a post-
optimization technique is presented in Section 4. Computational results based on real-life
students are presented in Section 5. Section 6 contains concluding remarks and directions
for future work.

2. Related Work

Based on our scientific literature review, the works that are closest to ours are [4–6].
A simplified model with a high similarity in team formation was presented in [4], which
considers the dining philosophers problem for the assignment of students into groups.
In [5], the problem was modeled using integer linear programming. This work considered
a centroid for each cluster. Two approaches were studied: the min-sum approach tries to
minimize the distances with respect to the centroid; the second is a min-max approach
whose goal is to minimize the maximum (i.e., the worst) distance. The case study in [6]
consisted of the assignment of 8 advisors to 235 students. This work applied integer linear
programming, and it is equivalent to the min-sum approach given by [5]. The problem
belongs to the NP-hard computational complexity class, and heuristics are available to
tackle it [7]. A hybrid genetic algorithm was proposed in [8]. There, the authors suggested
Tabu Search combined with strategic oscillations. Independently, [9] proposed an artificial
bee-workers approach. In [10], a competitive General Variable Neighborhood Search
(GVNS) was also proposed. An extension of this GVNS was developed in [11], with a
skewed VNS combined with a shaking process to better explore the search space. The
goal in the Orthogonal Regrouping Problem is to repeatedly partition a given set in such
a way that every pair is included only once in a cluster. Well-known instances have been
extensively treated, e.g., the Kirkman’s Schoolgirl Problem and the Social Golfer Problem.

Symmetry 2022, 14, 18 3 of 13

This article is an extended version of [12], where we introduced the MDOR problem.
It is worth remarking that, although this work was motivated by the assignment of MBA
students to teams that are reconstructed every term, it has potential applications to other
scenarios, such as staffing and scheduling in workforce management [13], team formation
models for collaboration [14] and team-formation algorithms for faultline minimization [15],
among others.

3. Problem

In this section, we describe the main features of the problem, and then we present a
mathematical programming formulation. A brief discussion covers particular cases, which
are considered to address the problem heuristically.

3.1. Problem Description

Our problem formulation requires a definition of distance between any two items. In
the context of grouping MBA students, the distance between two students represents how
different they are in terms of a set of criteria (age, type of major, gender, work experience,
admission test score, etc.) that the MBA Director chooses. In the case of the real-life sets
used in our test, the criteria are:

• Career (subdivided into percentages of Social, Natural and Exact Sciences content);
• Admission test score;
• Residence (urban or countryside);
• Gender;
• Age.

Career is split into three attributes in [0, 1] that account for the relative levels of Social,
Natural and Exact Sciences. The score on the admission test and age are natural numbers,
while the remaining attributes assume a binary domain. Once the attributes are selected, a
distance function between the different individuals dij must be specified. In what follows,
the normalized Euclidean distance is considered:

dij = d(xi, xj) =
‖xi − xj‖2

maxu 6=v ‖u− v‖2
, (1)

where the distance between each pair of students is found by a numerical assignment to
the different attributes (i.e., different coordinates). Note that this normalization implies that
0 ≤ dij ≤ 1 for all pairs of students i and j with corresponding attributes xi and xj.

3.2. Problem Formulation

Consider the following variables:

• N: the number of students;
• G: the number of teams (clusters);
• K: the number of attributes;
• M: the number of students per team: M = N

G (if integer);
• S: the number of terms (clusterings);
• dij: the distance between students i and j;
• R: the maximum number of terms that any pair of students can share (R = 1 for an

SGP instance).

Consider the set of binary decision variables xigs, such that xigs = 1 if and only if
student i is assigned to group g in term s, and xigs = 0 otherwise. Additionally, we consider
the set of binary decision variables ygs

ij such that ygs
ij = 1 if and only if xigs = 1 and xjgs = 1,

where i and j are students, g is a group and s is a term. We introduce the MDOR problem
as the following integer linear programming model:

Symmetry 2022, 14, 18 4 of 13

max
xigs

S

∑
s=1

G

∑
g=1

N−1

∑
i=1

N

∑
j=i+1

dijy
gs
ij , (2)

s.t.
G

∑
g=1

xigs = 1, ∀(i, s) ∈ {1, . . . , N} × {1, . . . , S} (3)

N

∑
i=1

xigs = M, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (4)

2ygs
ij ≤ xigs + xjgs, ∀(i, j, g, s) ∈ ×{1, . . . , N}2 × {1, . . . , G} × {1, . . . , S} (5)

xigs + xjgs ≤ ygs
ij + 1, ∀(i, j, g, s) ∈ {1, . . . , N}2 × {1, . . . , G} × {1, . . . , S} (6)

G

∑
g=1

S

∑
s=1

ygs
ij ≤ R, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N} (7)

xigs ∈ {0, 1}, ∀(i, g, s) ∈ {1, . . . , N} × {1, . . . , G} × {1, . . . , S} (8)

ygs
ij ∈ {0, 1}, ∀(i, j, g, s) ∈ {1, . . . , N}2 × {1, . . . , G} × {1, . . . , S} (9)

The goal (objective function (2)) is to maximize the diversity-sum of all student peers i, j
among all clusters (second summation) and terms (first summation), where the intracluster
diversity is precisely the distance-sum among all pairs of that cluster. Constraints (3)
state that each student is included in one and just one team for all clusters and terms.
Constraints (4) state that the teams have exactly M students for all teams and terms.
Constraints (5) and (6) enforce the coherence between the x and y sets of variables as
follows. Constraints (5) state that if two students i and j share group g in a certain term
s, i.e., yijgs = 1, then both flag variables xigs and xjgs must be equal to one. Conversely,
Constraints (6) state that if xigs and xjgs are both one, meaning that they share team g in
term s, then yijgs must be equal to one. Constraints (7) limit the number of times that any
pair of students i, j can meet throughout the different terms (outer summation). Finally,
Constraints (8) and (9) define the binary domain for the decision variable sets x and y.

3.3. Discussion

Note that the previous MDOR model is adequate when M = N
G is an integer. Next, we

discuss how to overcome this limitation and to minimize the number of repetitions as well.

3.3.1. Number of Students per Group

If M = N
G is not an integer, we can introduce a slight change in Constraints (4). In fact,

consider the Euclidean division: N = G×M + r for some remainder r : 0 ≤ r < G. We can
arrange M + 1 students in r groups and M students in the remaining G− r groups.

As a more general setting, pick two vectors ~a and~b representing lower and upper
bounds on the number of students per group. Replace Constraints (4) with:

G

∑
g=1

xigs ≥ ag, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}

G

∑
g=1

xigs ≤ bg, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}.

3.3.2. Avoiding Repetitions

Completely avoiding repetitions is not always possible, depending on the parameters
G, M and S of an MDOR instance (see Table 1). Even when it is possible, no polynomial-
complexity algorithm is known for the general case; variations such as the SGP-completion
problem are known to be NP-complete [16,17], so no feasible solution is guaranteed to be

Symmetry 2022, 14, 18 5 of 13

computed in polynomial time unless S = 1. In the last case, any distribution is a feasible
solution, but the optimization problem is equivalent to the MIN CUT INTO BOUNDED
SET problem [18], where sets have bounds equal to M and edge weights equal to di,j, which
is NP-complete on N and G, since maximizing the edge weights inside the groups is the
same as minimizing the edge weights between these groups. It is then plausible to assume
that MDOR is NP-hard, but we were not able to prove it. If so, it would be NP-complete
since checking if a solution is feasible and if its cost is greater than a given constant takes
polynomial time.

Table 1. GRASP/VND with path relinking versus ILP for MDOR.

Instances Heuristic ILP GAP

Name N S G R fh(x) Time (h) GAPi (%) fi(x) Time (h) %

2017-1 31 1 5 1 43.5 11.7 202 42.5 24 2.43
2017-1 31 6 5 3 256.2 24 171 245.2 24 4.45
2017-1 31 6 6 2 198.4 24 123 198.4 24 0
2017-1 31 6 6 3 209.3 24 249 190.0 24 10.17
2017-1 31 6 7 2 170.4 24 176 162.1 24 5.12
2017-1 31 6 7 3 179.7 24 315 160.2 24 12.21

2018-1 47 1 5 1 107.3 24 293 104.6 24 2.58
2018-1 47 6 6 3 514.6 24 234 479.8 24 7.24
2018-1 47 6 7 2 408.1 24 162 408.0 24 0.02
2018-1 47 6 7 3 437.6 24 288 413.1 24 5.92
2018-1 47 6 8 2 351.1 24 209 346.2 24 1.39
2018-1 47 6 8 3 377.5 24 356 352.2 24 7.16

2018-2 35 1 5 1 52.6 21.8 223 52.1 24 0.99
2018-2 35 6 6 2 242.7 24 128 239.4 24 1.40
2018-2 35 6 6 3 260.8 24 230 247.9 24 5.23

2019-1 40 1 5 1 77.8 19.1 267 77.0 24 0.99
2019-1 40 6 5 3 452.2 24 167 447.8 24 0.99
2019-1 40 6 6 2 357.3 24 123 357.2 24 0.02
2019-1 40 6 6 3 381.8 24 237 356.0 24 7.24
2019-1 40 6 7 2 301.7 24 167 298.7 24 0.98
2019-1 40 6 7 3 324.0 24 304 296.8 24 9.16

2019-2 30 1 5 1 41.1 11.3 226 40.9 24 0.50
2019-2 30 6 5 3 241.2 24 188 223.9 24 7.70
2019-2 30 6 6 2 No feasible solution
2019-2 30 6 6 3 195.9 24 258 180.1 24 8.79

2020-1 42 1 7 1 58.2 24 474 57.3 24 1.57
2020-1 42 6 7 2 Time limit exceeded
2020-1 42 6 7 3 337.5 24 651 323.62 24 4.29

Average 4.17

Let us consider a certain student. If R = 1 in each term s, he/she will meet M− 1
different students, so, among the S terms, he/she will meet S(M− 1) students. In order
to fulfill this restriction, the total number of students should be greater than or equal to
1 + S(M− 1), i.e., N ≥ 1 + S(M− 1).

Let us also upper bound the value of the objective function given in Equation (2),
assuming that N/G is an integer and R = 1, by sorting the distances dij. More concretely,
let ji,h be a matrix, where every row i is a vector that contains the indexes of N − 1 students
(excluding i) sorted by descending distance to i, i.e,

di,ji,h ≥ di,ji,h+1
h = 1, . . . , N − 1.

Symmetry 2022, 14, 18 6 of 13

Then,

F =
S

∑
s=1

G

∑
g=1

N−1

∑
i=1

N

∑
j=i+1

dijy
gs
ij =

1
2

S

∑
s=1

G

∑
g=1

N

∑
i=1

N

∑
j=1

dijy
gs
ij =

1
2

N

∑
i=1

∑
j:ygs

ij =1

dij

≤ 1
2

N

∑
i=1

S(M−1)

∑
h=1

diji,h ,

which is an upper bound that can be easily precomputed, which can help to estimate the
gap to the optimum. If R > 1 and S(M− 1) = qR + R′ with 0 ≤ R′ < R, then

F ≤ 1
2

N

∑
i=1

(
R′diji,q+1 + R

q

∑
h=1

diji,h

)
.

Two possible heuristic approaches arise to cope with the repetition problem. One
might build high-diversity solutions while controlling the repetition level. Alternatively,
one might generate repetition-free solutions and then choose and/or modify them to seek
for improved diversity. In this paper, we introduce an algorithm that follows the first
approach. A parameter GLOBAL_REP is set; if the algorithm generates solutions that
include a repetition for a certain pair more than GLOBAL_REP times, then it accepts
the algorithm.

4. Solution

GRASP and VND are well-known metaheuristics that have been successfully used to
solve many hard combinatorial optimization problems. GRASP is a powerful multistart
metaheuristic that operates in two phases. A feasible solution is generated in the first
phase, whose neighborhood is then explored in the local search phase. The second phase
is usually enriched by means of different variable neighborhood structures. For instance,
VND explores several neighborhood structures in a deterministic order. Its success is based
on the simple fact that different neighborhood structures do not usually have the same local
minimum. Thus, the resulting solution is simultaneously a locally optimum solution under
all neighborhood structures. Additionally, the metaheuristic is enriched with path relinking,
which is an enhancement of the GRASP procedure, leading to significant improvements
in solution quality. Path relinking was first introduced in the context of tabu sarch [19].
It was suggested as an approach to integrate intensification and diversification into the
search for solutions. In the context of GRASP, path relinking was first introduced by [20].
This approach generates new solutions by exploring trajectories between high-quality
solutions; it starts from one of these solutions, called the initiating solution, and generates a
path in the neighborhood space that leads towards other solutions, the guiding solutions.
The reader is invited to consult the comprehensive Handbook of Heuristics [21] and GRASP
with Path-Relinking [22] for further information. Here, we develop a GRASP/VND with
path-relinking methodology.

4.1. GRASP/VND with Path-Relinking Methodology for the MDOR

We followed a traditional VND flow diagram, which consists of three local searches:

• Insert: moves a student to another group;
• Swap: swaps two students from different groups;
• 3-Chain: exchanges three students from three different groups.

The most simple local searches appear at the beginning. Therefore, the order is respec-
tively Insert, Swap and 3-Chain. A greedy randomized Construction phase is run first.

To speed up the evaluation of the objective function, the internal structures in the main
algorithm consider two vectors:

• xc[i]: the current group for student i, and
• sdc[i][g]: current sum-diversity between student i and his/her peers in group g.

Symmetry 2022, 14, 18 7 of 13

Note that sdc[i][g] = ∑j:x[j]=g di,j, and if we link the students in a graph with link
weights di,j, by virtue of the Handshaking Lemma, we obtain the following objective:

f (xc) =
1
2

N

∑
i=1

sdc[i][xc[i]]. (10)

Next, the details of the construction and local searches are presented.

4.2. Construction Phase

The search space is the set of all student assignments to the groups, where each student
belongs to exactly one group. A feasible solution also satisfies the respective lower and
upper bounds ag and bg. In our Construction phase, an iterative student insertion into
groups takes effect, meeting the lower bounds ag. Finally, in order to realize feasibility,
all students are assigned to some group, satisfying the upper bound bg. Two factors are
considered for these group insertions: diversity and repetitions. In this construction phase,
the priority is given to repetitions. Therefore, a memory of the previous terms is used, and
if two assignment have an identical number of repetitions, the assignment with maximum
diversity is chosen. During the process, the diversity per group g for some student x is
computed using the following expression:

d′(x, g) = ∑
y∈g

d(x, y)
|g| .

Note the division by the cardinality |g|; this is meant to avoid preferring groups with
larger numbers of students. Algorithm 1 illustrates the pseudocode of the construction phase.

Algorithm 1 Construction(studentGroup, a, b, atrsStandard, repMatrix)

1: studentVector← {1, 2, . . . , N}
2: groupVector← {1, 2, . . . , N}
3: assignOneRandomStudentToEachGroup(studentGroup, repMatrix)
4: while groupVector 6= {} do
5: selGroup← assignGroupToStudForMinRepetitions(
6: studentGroup, repMatrix)
7: if groupCount[selGroup] = a[selGroup] then
8: groupVector← groupVector− selGroup
9: end if

10: end while
11: for g← 1 to G do
12: if groupCount[g] = b[g] then
13: groupVector← groupVector− g
14: end if
15: end for
16: while groupVector 6= {} do
17: selGroup← assignGroupToStudentForMinRepetitions(
18: studentGroup, repMatrix)
19: if groupCount[selGroup] = b[selGroup] then
20: groupVector← groupVector− selGroup
21: end if
22: end while

The following variables are considered during the Construction phase:

• studentGroup[s]: the group assigned to student s ∈ {1, . . . , N};
• atrsStandard[i, j]: the value of attribute j ∈ {1, . . . , K} for student i;
• groupCount[g]: the number of students in group g ∈ {1, . . . , G}.

The following functions are also considered:

Symmetry 2022, 14, 18 8 of 13

• assignOneRandomStudentToEachGroup(): it assigns one random student uniformly
picked at random to each group.

• assignGroupToStudForMinRepetitions(): it picks a random student and assigns him/her
to the group that leads to the least number of repetitions. Ties are resolved based on
maximum diversity.

4.3. Insertion

In this local search, student i is moved from one group to a different one. We remark
that a local search takes place whenever the resulting solution is both better and feasible.
To test feasibility, we simply check the lower and upper bounds for the old and new groups,
respectively. The difference in the objective is the change in the diversity:

f (xn)− f (xc) = sdc[i][g2]− sdc[i][g1],

where xn is the new solution, and xc is the current solution.

4.4. Swap

In this local search, two students i and j, originally belonging to different groups
gi 6= gj, are exchanged, and the difference in the objective function is:

f (xn)− f (xc) = (sdc[i][gj]− sdc[i][gi]) + (sdc[j][gj]− sdc[j][gi])− 2dij

4.5. Three-Chain

Consider three different students i, j and k belonging to three different groups gi, gj
and gk. Student i is moved to gj, j is moved to gk, and k is moved to gi:

f (xn)− f (xc) = (sdc[i][gj]− sdc[i][gi]) + (sdc[j][gk]− sdc[j][gj]) + (sdc[k][gi]− sdc[k][gk])

− (dij + djk + dki)

4.6. Shake

In order to increase the diversity in the search space, a shake process takes place.
Consider a k-neighborhood of a Swap operation, i.e., an arbitrary application of k swaps.
Shake picks a k-neighbor, and the VND phase is restarted with the obtained solution,
provided that the tabu list allows for the shake to be carried out (i.e., controlling the
repetition threshold). In the general algorithm, k starts as equal to a parameter K_MIN
and is increased by a second parameter K_STEP until the solution is improved or until it
equals a third parameter K_MAX.

4.7. Path Relinking

To perform the post-optimization path-relinking process, a neighborhood structure is
defined. Two solutions x1 and x2 are neighbors if there exists a sequence of swaps between
students that keeps the number of global repetitions under the threshold R. Which students
to take in each swap is determined based on the symmetric difference between the two
solutions. The paths are developed using this neighborhood structure. Starting from one or
more elite solutions, paths in the solution space leading toward other elite solutions are
generated and explored in the search for better solutions.

Algorithm 2 illustrates the pseudocode of the path-relinking procedure applied to a
pair of solutions xs (starting solution) and xt (target solution).

Symmetry 2022, 14, 18 9 of 13

Algorithm 2 Path_Relinking(xs, xt)

1: Compute symmetric difference ∆(xs; xt);
2: f ∗ ← max{ f (xs), f (xt)};
3: x∗ ← argmax{ f (xs), f (xt)};
4: x ← xs;
5: while ∆(x; xt) 6= ∅ do
6: m∗ ← argmax{ f (x⊕m) : m ∈ ∆(x, xt)};
7: while maxNumberO f Repetitions(x⊕m∗) > R do
8: m← getRandom(∆(x, xt))
9: ∆(x⊕m, xt)← ∆(x, xt) \ {m}

10: x ← x⊕m
11: m∗ ← argmax{ f (x⊕m) : m ∈ ∆(x, xt)};
12: end while
13: ∆(x⊕m∗, xt)← ∆(x, xt) \ {m∗}
14: x ← x⊕m∗

15: if f (x) > f ∗ then
16: f ∗ ← f (x)
17: x∗ ← x
18: end if
19: end while
20: return x∗

The procedure starts by computing the symmetric difference ∆(xs, xt) between the
two solutions; in this case, this represents the set of moves (swaps) needed to reach xt
(target solution) from xs (initial solution). A path of solutions is generated linking xs and xt.
The best solution x∗ in this path is returned by the algorithm. At each step, the procedure
examines all moves m ∈ ∆(x; xt) from the current solution x and selects the one that results
in the maximum diversity under the threshold R. If there is no swap that keeps the number
of repetitions within the threshold, it applies one swap from ∆(x, xt) at random and repeats
the procedure. If necessary, the best solution x∗ is updated. The procedure terminates
when xt is reached, which is when ∆(x, xt) = ∅.

4.8. Main Algorithm

The main algorithm iterates over all terms. For each one, it starts by invoking Con-
struction for a number of times equal to MAX_TRIES, which acts as a parameter. The
most diverse solution is passed to the following step, where the following cycle is repeated
for a number of times equal to T_MAX (another parameter): Shake, Insertion, Swap and
3-Chain. Then, the algorithm selects a set Y of instances, chosen randomly from the pool
of elite solutions, for the post-optimization path-relinking process [19]. The best solution
found is chosen for the term, and the process moves to the next one.

Algorithm 3 illustrates the pseudocode of the main algorithm.

Symmetry 2022, 14, 18 10 of 13

Algorithm 3 Heuristic(MAX_TRIES, T_MAX, K_MIN, K_STEP, K_MAX)

1: f ∗h ← 0
2: for iter ← 1 to MAX_TRIES do
3: P← ∅ {Elite solution set}
4: T ← ∅ {Tabu List}
5: for i← 1 to T_MAX do
6: x ← GreedyRandomizedConstructionPhase()
7: x ← LocalSearchPhase(x, T , K_MIN, K_STEP, K_MAX)
8: T ← UpdateTabuList(x, T)
9: if i ≥ 2 then

10: Choose, at random, pool solutions Y ⊆ P to relink with x
11: for y ∈ Y do
12: Determine which (x or y) is the initial xs and which is the target xt
13: xp ← PathRelinking(xs, xt)
14: Update the elite set P with xp
15: if f (xp) > f ∗h then
16: f ∗h ← f (xp)
17: x∗ ← xp
18: end if
19: end for
20: end if
21: end for
22: end for
23: return x∗

5. Computational Results

We carried out a comparison between the algorithm (coded in Python 3.9) introduced
herein and the ILP model implemented using the optimization engine IBM CPLEX version
12.8. Both were executed on a home PC (Intel-core i7 2.2 GHz, 8 GB RAM). One hundred
independent iterations were run (since GRASP is a multistart metaheuristic), and the best
solution was finally returned. As a preliminary stage, an adjustment of all parameters
was performed by running several experiments. Some instances were included even
though there were no feasible solutions in order to show that the existence depends on the
parameters, as stated in Section 3.3.

Table 1 reports the performance of the GRASP/VND with path relinking and ILP for
each instance. The heuristic was tested with the following parameters: MAX_TRIES = 100,
T_MAX = 106, K_MIN = K_STEP = 1 and K_MAX = 3.

Following the terminology, fh(x) and fi(x) represent the values of the best solutions
found using the heuristic and the integer linear programming model, respectively. The
column Time indicates the CPU time in seconds that the algorithms runs. The column Time
under ILP gives the time required to reach either the optimum value or the best lower
bound when the optimum is not attained. The elapsed time is 24 h. Column GAPi indicates
the gap calculated by CPLEX. In essence, it is the best bound, as the best objective value,
that an integer solution could potentially have based on information that the solver has
discovered so far. The best bound is the best relaxed-but-region-constrained solution for
any region that has not yet been eliminated from the search space. The column under GAP
shows the result of computing the gap with respect to the best solution found with ILP
(GAP = fh(x)− fi(x)

fi(x) × 100).
In the GAP column, the reader can observe that our heuristic finds better solutions

than the ILP in almost all cases. Even though a global optimum is not formally proved
for some instances, the null gap between ILP and our solution reinforces the evidence of
optimality. The average GAP obtained is 4.28%.

To understand the global effectiveness of our VND scheme with path relinking, a
midpoint test was performed. Table 2 shows the performance of the algorithm for the
MDOR. The columns Insertion, Swap, 3-Chain and Path Relinking show the percentage

Symmetry 2022, 14, 18 11 of 13

of each kind of movement applied over 100 executions of the VND local search phase
and path relinking, respectively. The column #Moves states the average number of moves
applied during these iterations. The column entitled mp shows the relative improvement
in the objective function between the best solution found in each local search phase with
the post-optimization path-relinking process compared to the feasible solution obtained
from the construction phase over 100 iterations. The reader can see that the VND with
the path-relinking effect is noticeable, since the diversity is roughly half the optimum in
most cases using only the construction phase. Note that each movement is applied only
if an improvement is achieved. It is clear that Insertion, Swap and Path Relinking are the
most effective movements, while 3-Chain seldom has an effect. The effectiveness of path
relinking is evident and reaches over 25% of the total number of applied movements in the
post-optimization process.

The six test cohorts were manually split into teams by the corresponding program
directors at IEEM Business School when each one was launched (between 2017 and 2020).
They claim to have spent between 6 and 10 h working on a spreadsheet for every cohort.
Table 3 compares what they achieved to the output of the heuristic algorithm. Columns f
and R stand for the objective function and the maximum repetition parameter for both the
heuristic and manually developed solutions. The comparison shows that, in all cases, the
heuristic generated superior solutions in terms of objective function (the global diversity
score) and equal or better solutions in terms of repetition levels; furthermore, by using the
algorithm, directors can save almost all of the mentioned time that they spent on this task.

Table 2. Performance of the local search phase and path relinking. Abbreviations: I = Insertion,
S = Swap, 3C = 3-Chain, PR = Path Relinking, M = #Moves.

Instances Heuristic, all in %

Name N S G R I S 3C PR M mp

2017-1 31 1 5 1 53 15 0 32 21 73
2017-1 31 6 5 3 25 29 2 44 137 43
2017-1 31 6 6 2 61 23 0 16 119 52
2017-1 31 6 6 3 29 13 0 68 91 36
2017-1 31 6 7 2 13 46 1 40 97 58
2017-1 31 6 7 3 45 32 0 23 114 42

2018-1 47 1 5 1 76 12 0 12 51 23
2018-1 47 6 6 3 61 22 0 17 276 74
2018-1 47 6 7 2 22 65 1 12 204 32
2018-1 47 6 7 3 21 14 4 61 197 88
2018-1 47 6 8 2 12 52 1 35 186 21
2018-1 47 6 8 3 11 57 0 32 202 62

2018-2 35 1 5 1 61 22 0 27 31 52
2018-2 35 6 6 2 19 57 1 23 131 78
2018-2 35 6 6 3 29 58 2 11 169 85

2019-1 40 1 5 1 63 32 0 5 32 17
2019-1 40 6 5 3 68 9 3 20 178 46
2019-1 40 6 6 2 61 35 0 4 177 59
2019-1 40 6 6 3 45 27 0 28 132 87
2019-1 40 6 7 2 12 79 0 9 253 86
2019-1 40 6 7 3 31 45 0 24 101 49

2019-2 30 1 5 1 78 19 0 3 24 62
2019-2 30 6 5 3 23 61 1 15 117 59
2019-2 30 6 6 3 46 12 0 52 99 64

2020-1 42 1 7 1 23 38 2 37 44 64
2020-1 42 6 7 3 57 16 0 27 208 46

Average 40.1 34.2 0.7 26 130.4 56.1

Symmetry 2022, 14, 18 12 of 13

Table 3. Performance comparison: heuristic vs. manually generated solutions.

Instances Manually Generated Heuristic

Name G N f (x) R f (x) R

2017-1 5 31 229.8 4 256.2 3
2018-1 8 47 361.1 3 377.5 3
2018-2 6 35 243.7 3 260.8 3
2019-1 6 40 354.9 4 381.8 3
2019-2 5 30 227.0 3 241.2 3
2020-1 7 42 301.2 3 337.5 3

6. Conclusions and Directions for Future Work

A combinatorial optimization problem named Max-Diversity Orthogonal Regrouping
(MDOR) is introduced. It was conceived to cope with the problem of partitioning MBA
cohorts into high-diversity teams, rotating the teams every term and keeping repetitions
under a given (low) threshold. Nevertheless, the MDOR has potential applications in
workforce management or team formation models for collaboration.

An exact integer linear programming method and a GRASP/VND methodology en-
riched with path relinking are proposed in order to address the MDOR. The tests presented,
based on six real MBA cohorts, show that the heuristic algorithm produces partitionings
faster and with fewer repetitions and higher diversities than the best solution found for
the ILP exact method in almost all cases. The heuristic algorithm produced solutions that
were significantly better than those manually generated by the program directors in terms
of maximum repetitions and global diversity score. In fact, the partitionings obtained via
the GRASP algorithm were presented to the MBA Directors, who agreed that they would
have been far superior to those that they had manually generated, which led them to start
applying the GRASP/VND algorithm from 2021 onward.

Future work includes:

• Weighing the diversity differently in different terms. In the MBA example, diversity
is more important in earlier terms than in later ones, since as long as the program
advances, students tend to increase their field-specific knowledge and experience;
towards the end of the program, it should be much more difficult to guess what their
major or previous experience is based only on the attendance of a class;

• Considering the fact that a student can join the MBA in a term other than the first one
(e.g., deferrals from previous cohorts) or that a student can leave the program before
completing it;

• Allowing the algorithm to run starting at a term other than the first one, taking into
account the previous teams for further repetitions and allowing a different number of
teams to be set;

• Allowing rules such as “student A and B cannot (or must) be together in terms X,
Y, Z”;

• Testing a different approach to define the problem from the one presented herein
(maximizing diversity while controlling for repetitions); this could be (a) minimizing
repetitions while controlling for diversity or (b) maximizing an objective function
that simultaneously considers diversity and repetitions through a well-tuned relative
weighting for both factors;

• Exploring the potential benefits of other heuristic approaches, e.g., adaptive VND [23].

Author Contributions: Conceptualization, P.S.; methodology, F.R. and E.C.; software, L.S.; validation,
P.S.; formal analysis, F.R. and E.C.; data curation, P.S.; writing, P.S. and L.S.; visualization, L.S.; project
administration, F.R.; funding acquisition, P.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Symmetry 2022, 14, 18 13 of 13

Data Availability Statement: The MBA cohort datasets used in our tests are available at: http:
//www2.um.edu.uy/ieem-papers/mba-groups.zip (accessed on 17 December 2021).

Acknowledgments: This work is partially supported by Project ANII FCE_1_2019_1_156693 Teoría
y Construcción de Redes de Máxima Confiabilidad, MATHAMSUD 19-MATH-03 Rare events analysis in
multi-component systems with dependent components, STIC-AMSUD ACCON Algorithms for the capacity
crunch problem in optical networks and the Grant-Thornton Research Center of IEEM Business School.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Herring, C. Does Diversity Pay?: Race, Gender, and the Business Case for Diversity. Am. Sociol. Rev. 2009, 74, 208–224. [CrossRef]
2. Ellemers, N.; Rink, F. Diversity in work groups. Curr. Opin. Psychol. 2016, 11, 49–53. [CrossRef]
3. Talke, K.; Salomo, S.; Kock, A. Top Management Team Diversity and Strategic Innovation Orientation: The Relationship and

Consequences for Innovativeness and Performance. J. Prod. Innov. Manag. 2011, 28, 819–832. [CrossRef]
4. Bhadurya, J.; Mightyb, E.J.; Damar, H. Maximizing workforce diversity in project teams: a network flow approach. Omega 2000,

28, 143–153. [CrossRef]
5. Desrosiers, J.; Mladenović, N.; Villeneuve, D. Design of balanced MBA student teams. J. Oper. Res. Soc. 2005, 56, 60–66. [CrossRef]
6. Baker, B.M.; Benn, C. Assigning pupils to tutor groups in a comprehensive school. J. Oper. Res. Soc. 2001, 62, 623–629. [CrossRef]
7. Feo, T.A.; Khellaf, M. A class of bounded approximation algorithms for graph partitioning. Networks 1990, 20, 181–195. [CrossRef]
8. Fan, Z.P.; Chen, Y.; Ma, J.; Zeng, S. A hybrid genetic algorithmic approach to the maximally diverse grouping problem. J. Oper.

Res. Soc. 2011, 62, 1423–1430. [CrossRef]
9. Rodriguez, F.J.; Lozano, M.; García-Martínez, C.; González, J.D. An artificial bee colony algorithm for the maximally diverse

grouping problem. Inf. Sci. 2013, 230, 183–196. [CrossRef]
10. Dragan, U. Variable neighborhood search for maximum diverse grouping problem. Yugosl. J. Oper. Res. 2014, 24, 21–23.
11. Brimberg, J.; Mladenovic, N.; Uroševic, D. Solving the maximally diverse grouping problem by skewed general variable

neighborhood search. Inf. Sci. 2015, 295, 650–675. [CrossRef]
12. Banchero, M.; Robledo, F.; Romero, P.; Sartor, P.; Servetti, C. Max-Diversity Orthogonal Regrouping of MBA Students Using a

GRASP/VND Heuristic. In Proceedings of the ICVNS 2021, Abu Dhabi, United Arab Emirates, 21–25 March 2021; pp. 58–70.
13. Bruecker, P.D.; den Bergh, J.V.; Beliën, J.; Demeulemeester, E. Workforce planning incorporating skills: State of the art. Eur. J.

Oper. Res. 2015, 243, 1–16. [CrossRef]
14. Wi, H.; Oh, S.; Mun, J.; Jung, M. A team formation model based on knowledge and collaboration. Expert Syst. Appl. 2009,

36, 9121–9134. [CrossRef]
15. Bahargam, S.; Golshan, B.; Lappas, T.; Terzi, E. A team-formation algorithm for faultline minimization. Expert Syst. Appl. 2019,

119, 441–455. [CrossRef]
16. Triska, M. Solution Methods for the Social Golfer Problem. Master’s Thesis, Technische Universität Wien, Vienna, Austria, 2008.
17. Colbourn, C.J. The complexity of completing partial Latin squares. Discret. Appl. Math. 1984, 8, 25–30. [CrossRef]
18. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences), 1st ed.; W. H. Freeman: New York, NY, USA, 1979.
19. Glover, F. Tabu search and adaptive memory programming advances, applications and challenges. In Interfaces in Computer

Science and Operations Research; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–75.
20. Laguna, M.; Marti, R. GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 1999,

11, 44–52. [CrossRef]
21. Mart, R.; Pardalos, P.M.; Resende, M.G.C. Handbook of Heuristics, 1st ed.; Springer Publishing Company: Berlin/Heidelberg,

Germany, 2018.
22. Resendel, M.G.; Ribeiro, C.C. GRASP with path-relinking: Recent advances and applications. In Metaheuristics: Progress as Real

Problem Solvers; Ibaraki, T., Nonobe, K., Yagiura, M., Eds.; Operations Research/Computer Science Interfaces Series; Springer:
Boston, MA, USA, 2005; Volume 32, pp. 29–63.

23. Karakostas, P.; Sifaleras, A.; Georgiadis, M.C. Variable neighborhood search-based solution methods for the pollution location-
inventory-routing problem. Optim. Lett. 2020. [CrossRef]

http://www2.um.edu.uy/ieem-papers/mba-groups.zip
http://www2.um.edu.uy/ieem-papers/mba-groups.zip
http://doi.org/10.1177/000312240907400203
http://dx.doi.org/10.1016/j.copsyc.2016.06.001
http://dx.doi.org/10.1111/j.1540-5885.2011.00851.x
http://dx.doi.org/10.1016/S0305-0483(99)00037-7
http://dx.doi.org/10.1057/palgrave.jors.2601775
http://dx.doi.org/10.1057/palgrave.jors.2601135
http://dx.doi.org/10.1002/net.3230200205
http://dx.doi.org/10.1057/jors.2010.92
http://dx.doi.org/10.1016/j.ins.2012.12.020
http://dx.doi.org/10.1016/j.ins.2014.10.043
http://dx.doi.org/10.1016/j.ejor.2014.10.038
http://dx.doi.org/10.1016/j.eswa.2008.12.031
http://dx.doi.org/10.1016/j.eswa.2018.10.046
http://dx.doi.org/10.1016/0166-218X(84)90075-1
http://dx.doi.org/10.1287/ijoc.11.1.44
http://dx.doi.org/10.1007/s11590-020-01630-y

	Motivation
	Related Work
	Problem
	Problem Description
	Problem Formulation
	Discussion
	Number of Students per Group
	Avoiding Repetitions

	Solution
	GRASP/VND with Path-Relinking Methodology for the MDOR
	Construction Phase
	Insertion
	Swap
	Three-Chain
	Shake
	Path Relinking
	Main Algorithm

	Computational Results
	Conclusions and Directions for Future Work
	References

