
����������
�������

Citation: Yin, X.; Shi, G.; Peng, S.;

Zhang, Y.; Zhang, B.; Su, W. Health

State Prediction of Aero-Engine Gas

Path System Considering Multiple

Working Conditions Based on Time

Domain Analysis and Belief Rule

Base. Symmetry 2022, 14, 26. https://

doi.org/10.3390/sym14010026

Academic Editors: Tomohiro Inagaki,

Zhiwen Chen, Hao Luo and

Chao Cheng

Received: 12 November 2021

Accepted: 22 December 2021

Published: 26 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Health State Prediction of Aero-Engine Gas Path System
Considering Multiple Working Conditions Based on Time
Domain Analysis and Belief Rule Base

Xiaojing Yin 1, Guangxu Shi 1, Shouxin Peng 1, Yu Zhang 1, Bangcheng Zhang 1,* and Wei Su 2

1 School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China;
yinxiaojing@ccut.edu.cn (X.Y.); 2201901020@stu.ccut.edu.cn (G.S.); 2201901051@stu.ccut.edu.cn (S.P.);
2202001105@stu.ccut.edu.cn (Y.Z.)

2 School of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132000, China; sw@jlict.edu.cn
* Correspondence: zhangbangcheng@ccut.edu.cn

Abstract: The gas path system is an important part of an aero-engine, whose health states can affect
the security of the airplane. During the process of aircraft operation, the gas path system will have
different working conditions over time, owing to the change of control parameters. However, the
different working conditions which change the symmetry of the system will affect parameters of the
health state prediction model for the gas path system. The symmetry of the system will also change.
Therefore, it is important to consider the influence of variable working conditions when predicting
the health states of gas path system. The accuracy of the health state prediction results of the gas
path system will be low if the same evaluation standard is used for different working conditions. In
addition, the monitoring data of the gas path system’s health state feature quantity is huge while the
fault data which can reflect the health states of the gas path system are poor. Thus, it is difficult to
establish a health state prediction model only by using the monitoring data of the gas path system. In
order to avoid problems, this paper proposes a health state prediction model considering multiple
working conditions based on time domain analysis and a belief rule base. First, working condition is
divided by using time domain characteristics. Then, a belief rule base (BRB) theory-based health state
prediction model is built, which can fuse expert knowledge and fault monitoring data to improve
modeling accuracy. The reference value of the feature is given by the fuzzy C-means algorithm in a
model. To decrease the uncertainty of expert knowledge, the covariance matrix adaptive evolution
strategy (CMA-ES) is used as the optimization algorithm. Finally, a NASA public dataset without
labels is used to verify the proposed health state model. The results show that the proposed health
prediction model of a gas path system can accurately realize health state prediction under multiple
working conditions.

Keywords: variable condition; belief rule base (BRB); dividing the working condition; health state
prediction; aero-engine gas path system

1. Introduction

An aero-engine is a kind of complex thermal mechanism, and its health states can
affect the safe and stable flying of an aircraft [1]. The failure rate of a gas path system is
the highest among many subsystems of aero-engines. According to incomplete statistics,
the failure caused by a gas path system accounts for more than 90% of the total number of
engine failures, and the maintenance cost of a gas path system accounts for more than 60%
of the total maintenance cost [2]. Therefore, it is necessary to predict the health states of an
aero-engine gas path system.

The health state prediction of the aero-engine gas path system is based on the current
health and performance of the aero-engine gas path system [3]. Combined with its known
characteristics and performance, environment, normal operation data, failure data and
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other necessary information are used to predict the future health states of the gas path
system [4].

There are many methods that can be used to predict the health states of an aero-engine
gas path system, such as the Kalman filter method [5,6], grey theory [7–9], neural network
method [10,11], support vector machine [12,13], analytic hierarchy process [14,15], hidden
Markov model [16,17], and expert knowledge [18–20]. A two-way kernel extreme learning
machine was proposed to predict the health states of aero-engine gas path system by one
parameter [21]. The literature [22] can denoise the collected health state parameters and
predict the health states of a gas path system by using the denoising health state parameters.
The above model can predict the health states of the gas path system while the accuracy of
the prediction results is low owing to the complex structure of a gas path system and the
single health state feature.

The literature [23] proposed a hybrid recurrent process neural network which inte-
grates multiple health state characteristics of an engine gas path system and improves its
state monitoring accuracy under a single working condition. The literature [24] proposed a
BP neural network based on phase space reconstruction under a single working condition,
which integrates multiple health state features and improves the accuracy of aero-engine
state prediction technology.

The aircraft will experience different operating states when in operation. The gas
path system will be in different working conditions affected by the change of the aircraft
operation states. The accuracy of the prediction result of the health states will be low if the
influence of variable working condition is not considered.

The above health state prediction model can integrate multiple health state features of
an engine gas path system which can significantly improve the prediction accuracy of the
health state prediction model under a single working condition. However, the changing
operation of an airplane will mean the gas path system operates in different working
conditions. Thus it will lead to a health state prediction result without an explanation.

In order to establish the aero-engine gas system health prediction model and consider
the influence of expert knowledge and multiple working conditions, the working condition
division model should be combined with the BRB model to improve the accuracy of the
gas system health prediction model. Therefore, this paper proposes an aero-engine gas
path system health prediction model considering multiple working conditions. The model
first classifies the aero-engine gas path system working conditions based on time domain
characteristics and sets the conditions for different working conditions. Different ranges of
reference values are used. Then the feature reference value is determined based on the fuzzy
c-means method. According to the result of the above, the BRB is used to fuse the health
state monitoring data and prior expert knowledge to realize the health state prediction
of the aero-engine gas path system considering multiple working conditions. Finally,
the covariance matrix adaptive evolution strategy (CMA-ES) is used as the optimization
algorithm to optimize the initial parameters given by the experts.

This paper is organized as follows. In Section 2, the problem is described and formu-
lated. In Section 3, health state prediction of aero-engine gas path system considering the
multiple working conditions based on time domain analysis and belief rule basis proposed,
and the detailed steps are described. Section 4 presents a case study. Section 5 discusses
the advantages and disadvantages of the method. Finally, the conclusions are given in
Section 6.

2. Problem Description

The gas path system will be in different working conditions when the aircraft is
running, which is influenced by the control parameters’ change [25]. The health state
feature of the gas path system will be influenced in different degrees if the working
condition is changing. In addition, there are many health state features for the gas path
system while the fault data, which can reflect the health states of the gas path system,
are limited. Based on the above discussion, this paper proposes a health state prediction
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model which predicts the health states of the gas path system under changeable working
conditions to solve the following problems.

Problem I. The gas path system will be in different working conditions with the con-
tinuous change of aircraft operation states li ∈ L , i = 1, 2, . . . , m, where li is the different
working condition, L is the set of all the working conditions, m is the number of working
conditions. The health states of the gas path system will be affected by the control parame-
ters in different degrees. The accuracy of the health state prediction result will be low if the
same criterion C is used to predict the health states of the gas path system in all working
conditions. Therefore, the key of problem 1 is how to identify the working condition by
using the monitoring data recorded by the sensor and then sets a different criterion Ci for
different working condition based on the above research.

Problem II. The structure of gas path system is very complex with many health
state features Xi which can reflect its health states, such as high pressure rotor vibration
deviation, low pressure rotor speed deviation and so on. However, the fault monitoring
data X = (x1, x2, . . . xn) is limited, where Xi is health state feature, xi is the fault monitoring
data. However, the accuracy of health state prediction can be improved by combining fault
monitoring data and expert knowledge E= (E1, E2, . . . , En), where E is expert knowledge
vector, and Ei is the parameter of expert knowledge vector. Therefore, the key to problem
2 is how to use a small amount of effective health state monitoring data combined with
expert knowledge to establish a nonlinear model:

y(t) = {(Dz, βz)} = f (x1(t), x2(t), . . . , xn(t), L, E) (1)

where, y(t) is the health state prediction results of aero-engine gas path system. f is a
non-linear function, and represents the relationship between the system characteristics and
the health states of the aero-engine gas path system. D denotes the health states of the
aero-engine gas path system. βzBm is the belief degree assessed to Dz, and z = 1, 2, · · · , Z.

For example, except for the condition of normal states and failure states, there is a
sub-health condition in the aero-engine gas path system that can be expressed as:

D = {(D0) Normal, (D1)well, (D3)medium, (D4)general, (D5)low} (2)

If the aero-engine gas path system is in low health condition, the belief degree of D
can be described as:

D = {(D0, 0), (D1, 0), (D3, 0), (D4, 0), (D5, 1)} (3)

Due to the high reliability of the aero-engine gas path system, it is hard to obtain
complete monitoring data. Then Problem 2 is how to establish the non-linear health
estimation model using expert knowledge and some effective monitoring data.

3. Health Prediction Model of Gas Path System under Multiple Working Conditions

In order to solve the above two problems, this part proposes a health state prediction
model of a gas path system considering changeable working conditions. This health state
prediction model of the gas path system includes the following four parts: the first part
is to divide the working conditions by calculating the time domain characteristics of the
health state feature. The second part is to combine expert knowledge and fuzzy C mean to
determine the reference value of the feature. The third part is the time series prediction
of the gas path system monitoring data according to the resulting division of the working
condition. In the fourth part, the BRB is used to predict the health states of gas path system
by combining the fault monitoring data and expert knowledge under the different working
condition. This is shown in Figure 1.
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Figure 1. Health prediction model of gas path system with the changing working condition.

3.1. Dividing the Work Condition of Gas Path System Based on Domain Feature

The monitoring data are regarded as a sequence arranged in time order, which can
reflect the information related to the working condition. The information which reflects the
health states can be calculated through the fault monitoring data based on time domain
features. There are some parameters such as average amplitude, mean square amplitude
and so on [26].

Dimensional parameters related to the running states of the equipment can describe
the actual movement of the equipment. The dimensionless parameter is not sensitive to
the change of data amplitude and frequency which cannot reflect the operational states of
the equipment [27]. Kurtosis can characterize the steepness of the peak of the probability
density function of the data, and thus can characterize the size of the impact component in
the monitoring data [28].

The gas path system’s health states will be impacted to different degrees with the
impact of control parameters when the aircraft is running. Therefore, the gas path system
will be in different working conditions. Since the kurtosis index can reflect the magnitude
of the impact component of the monitoring data, the gas path system can be divided
according to the prediction results of the kurtosis index. Therefore, the working conditions
of the gas path system can be divided by calculating the kurtosis of the monitoring data.
The specific process is as follows:

µx = lim
T→∞

1
T

∫ T

0
[x(t)− µx]

2dt (4)

σ2
x = lim

T→∞

1
T

∫ T

0
[x(t)− µx]

2dt (5)

β =
1
T

∫ T

0
[x(t)− µx]

4dt (6)

K =
β

σ4
x

(7)

where, µx represents the mean value of each group of data. σ2
x represents the variance

of each group of data. β represents the kurtosis of each group of data. K represents the
kurtosis, which reflects the magnitude of the impact component of the signal. Finally,
according to expert knowledge and time-domain feature analysis, the result of working
condition division is obtained.

3.2. Health State Prediction Model Based on Belief Rule Base (BRB)

The BRB is used to predict the time series of the gas path system with expert knowledge
and a small amount of effective monitoring data. The k-th rule is shown in Equation (8).
According to the result of working condition division and expert knowledge, different
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reference values are set for different working conditions of gas path system to improve the
accuracy of the health state prediction result.

Rq
k : If x(t− 1) is Ak

1 Λ x(t− 2) is Ak
2 , . . . , Λ x

(
t−τ) is Ak

τ

Then x
(
t) is

{
(D1, β1,k), . . . , (DN , βN,k)

}
with a rule weight θk and attribute weight δ1, δ2, . . . , δN .

(8)

where, the Rq
k is k-th rule under the q working condition, xn is the input health state feature

of the gas path system, τ the number of delay step, Ak
m (k = 1, 2, . . . , L) is the reference

value of the m-th attribute in rule K, p is the prediction step in the BRB prediction model,
β j,k(j = 1, 2, . . . , N, k = 1, 2, . . . , L) is belief degree of j-th result, Dj ∈ D.

There are many health state features which can reflect the health states of gas path
system while the fault monitoring data are very limited. Thus it is necessary to use BRB to
fuse multiple health state features of gas path system and expert knowledge improving
the accuracy of health state prediction. The k-th rule of BRB to predict the health states is
shown in Equation (9) [29]:

Rq
k : IfF1 is Ak

1 ∧ F2 is Ak
2

Then the health state is
{
(D0, β1,k), (D1, β2,k), (D3, β3,k), (D4, β4,k), (D5, β5,k)

}
with a rule weight θk and attribute weight δ1, δ2, δ3, δ4, δ5

(9)

where, the Rq
k is k-th rule under the q working condition, x(n) = [x1(n), x2(n), . . . , xM(n)]T

is the vector composed of the engine gas path system health monitoring data input at n
time, O(Y1(n)) = h(x(n)) =

{
(Dj, β̂1

j (n)), j = 1, 2, . . . , N
}

is the corresponding output.
The implementation process of the evidential reasoning algorithm [30] is shown as:

Step 3.2.1. The matching degree of the premise suggest that the matching degree of
the feature quantity is calculated. The matching degree indicates the degree to which the
premise attribute matches the rule. The matching degree of the premise attribute in k-th
rule is calculated as follows:

ak
i =


Al+1

i −xi

Al+1
i −Al

i
, k = 1(Al

i ≤ xi ≤ Al+1
i )

1− ak
i , k = l + 1

0, k = 1, · · ·N(k, l + 1)

(10)

where, Al
i and Al+1

i respectively represent the i-th premise attribute reference value in two
neighboring rules. ak

i represent the matching degree of the premise attribute in k-th rule.
Therefore, in the k-th rule, the matching degree can be calculated by:

ak =
T

∏
i=1

(ak
i )

ϑi (11)

where, T represents the number of premise attributes included in the k-th rule; ak represents
the matching degree of the i-th input.

Step 3.2.2. Calculating activation weight. When the monitoring data are inputted to
BRB, some rules are activated. After the matching degree has been obtained, the activation
weight for the kth rule is calculated by:

ωk =
θkαk
L
∑

l=1
θlαl

, k = 1, 2, · · · , L (12)

Step 2.2.3. Rule reasoning based on ER [30].
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In the decision-making process of the BRB model, the ER algorithm is used for rule
reasoning, and all the rules in the BRB are fused by the ER analysis algorithm.

First, the utility of the evaluation result is calculated by Equations (13) and (14).

µ = [
N

∑
j=1

L

∑
k=1

(ωkβ j,k + 1−ωk

N

∑
i=1

β j,k)− (M− 1)
L

∏
k=1

(1−ωk

N

∑
i=1

β j,k)]

−1

(13)

β̂ j =
µ×

[
∏L

k=1 (ωkβ j,k + 1−ωk∑N
i=1 β j,k)−∏L

k=1 (1−ωk∑N
i=1 β j,k)

]
1− µ×

[
∏L

k=1 (1−ωk)
] (14)

where, β̂ j is a function of the rule weight, θk the attribute weight δ̄i, and the confidence
degree β j,k. N represents the number of evaluation results βj. represents the confidence of
the output relative to the evaluation result Dj

Assuming that the utility of the evaluation result Dj is µ(Dj), the expected utility of
S(X) is:

µ(S(X)) =
M

∑
j=1

µ(Dj)β j (15)

Therefore, the output of the health prediction model is:

ŷ = µ(S(X)) (16)

3.3. Dividing Feature Reference Values Based on Fuzzy C-Means

In the BRB model, the reference value of the feature is divided by expert knowledge.
However, due to the uncertainty of the expert knowledge, which is not conducive to engi-
neering practice, a new method is needed to determine the reference value of the feature.

Fuzzy mathematics is widely used in fuzzy control and artificial intelligence [31,32].
According to fuzzy thinking [33], reference values of the feature are obtained. Therefore,
the fuzzy C-means value can be used to divide the reference value of the feature. The fuzzy
C-means is show as:

FCM(c1, c2, . . . , cc) =
c

∑
i=1

n

∑
j=1

um
ij dij

2 (17)

where, c is the number of feature reference values divided; n is the number of feature data;
m is a weighted index; dij = ‖xj − ci‖. Degree of membership uij is calculated by:

uij =
1

c
∑

k=1

( dij
dkj

)2/(m−1)
(18)

Feature reference values cc is calculated by:

ci =

n
∑

j=1
um

ij xj

n
∑

j=1
um

ij

(19)

Combining expert knowledge, all reference values of the feature can be determined by
fuzzy C-means.

3.4. Parameter Optimization Based on Covariance Matrix Adaptive Evolution Strategy (CMA-ES)
Optimization Algorithm

The initial parameters of the proposed model are given by experts while there is a
certain degree of subjectivity in expert knowledge, which will lead to low accuracy of health
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state prediction results. Therefore, this paper uses the CMA-ES optimization algorithm to
optimize the initial parameters given by experts to further improve the accuracy of the gas
path system health state prediction model [34,35].

The mean square error is used as the optimization target, and the construction of root
mean square (MSE) objective function is as follows:

ξ(V) =
1
T

T

∑
n=1

(yn − ŷn)
2 (20)

where, V = [θk, δi, β j,k, µ(Dj)]
T is the parameter vector of BRB, T is the number of monitoring data.

In order to make ŷn and yn as close as possible, the following objective function is
constructed min

V
{ξ(V)}, which is shown as:

0 ≤ θk ≤ 1, k = 1, 2, . . . . , L
0 ≤ δi ≤ 1, i = 1, 2, . . . . , N
0 ≤ β j,k ≤ 1, j = 1, 2, . . . . , M; k = 1, 2, . . . . , L
M
∑

j=1
β j,k ≤ 1, k = 1, 2, . . . . , L

(21)

The boundary constraint problem can be solved by using CMA-ES optimization
algorithm, which includes the following four steps.

Step 1: Sampling operation. Firstly, take the solution as the expected value, and then
generate the normal distribution, which is shown in Equation (22), where V0 is the initial
vector of BRB model.

Vg+1
q ∼ meang + ηgN(0, Cg) (q = 1, · · · , λ) (22)

where, g is the g-th generation, mean is the central expectation, η is the number of step, C is
the covariance matrix.

Step 2: Multi objective constraint. Constraints are transformed into functions of
constrained objects. For example, the parameter vector contains the confidence of rule K
in the BRB model, and. Under constraint conditions, the objective function is shown in
Equation (23).

Hk(β j,k) =

∣∣∣∣∣ N

∑
j=1

β j,k − 1

∣∣∣∣∣ (23)

Step 3: Select and restructure. In this step, the central expectation will be offset to
optimize the solution. In this step, the central expectation will be optimized. The optimal
result is selected as the reference to continue the iterative update, which is shown in
Equation (24).

meang+1 =
ε

∑
i=1

γiV
g+1
i:λ (24)

where, γ is the attribute weight and the sum of γ is 1, λ is the number of attribute weights,
Vg+1

i:λ is the optimization result of the (g + 1) generation of layer-i.
Step 4: Update the covariance matrix. according to Equations (25)–(28), the update

process of the covariance matrix is as follows:

Cg+1 = (1− a1 − aε)Cg + a1b
g+1

(b
g+1

)
T
+ aε

ε

∑
i=1

γi(
(Vg+1

i:λ −meang)

ηg )(
(Vg+1

i:λ −meang)

ηg

)T

(25)
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where, a1 and aε are learning factors, b is evolutionary path. The initial values of the
evolutionary path are all set to 0, and b can be updated by Equation (26).

bg+1 = (1− ap)bg +

√
ab(2− ab)(

ε

∑
i=1

γ2
i )
−1 meang+1 −meang

ηg (26)

where, ab ≤ 1 is the relevant parameter of the evolutionary path, η is the step size, whose
update process is shown in Equation (27).

ηg+1 = ηg exp(
aη

dη
(
‖bg+1

η ‖
E‖N(0, I)‖ − 1)) (27)

where, dη is the damping coefficient, E‖N(0, I)‖ is the expected value of ‖N(0, I)‖, I is
the identity matrix, aη is the parameter of the evolution path bg

η , bη can be obtained by
Equation (28).

bg+1
η = (1− aη)b

g
η +

√
aη(2− aη)(

ε

∑
i=1

γ2
i )
−1C

(g)− 1
2

mg+1−mg
ηg (28)

The following work process is repeated until the position meets the accuracy require-
ments. In this way, the optimization parameter Vbest can be obtained.

4. Case Study

This part selects two health state features of NASA public data without a time mark
to verify the above established gas path system health state prediction model under the
changing condition. It needs to consider the influence of environmental interference and
sensor accuracy because this data set simulates the actual running states of aero-engine.
Therefore, it is necessary to filter the data before health state prediction influenced by
the environmental noise and sensor accuracy. Gaussian filtering is used to process these
data [36]. The filtering results are shown in Figures 2 and 3.
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4.1. Dividing the Working Condition Based on Time Domain Feature

The health state feature obtained by sensors will be impacted in varying degrees by
the influence of control parameters such as throttle size and lift angle. In addition, there is
no obvious mark during the process of the dataset’s acquisition. It is necessary to divide the
working condition of the gas path system based on the time-domain feature of the health
state feature. Thus the above two health state features are divided into a group every five
monitoring data in time order and then calculate the kurtosis of them, which is shown in
Figure 4.
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According to the kurtosis of the two health state features, the number of the gas path
system’s working condition is 5. These five different working conditions are changing with
time, which are named working conditions 1 to 5.

4.2. Health State Feature Prediction of Gas Path System Based on BRB

The BRB is used to fuse expert knowledge and a small amount of fault monitoring data
to predict the health state feature in time series based on the dividing result of the working
condition. According to the expert knowledge, there are four reference points “N”, “M”,
“H” and “VH” respectively representing different meanings of “low”, “medium”, “high”
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and “very high”. The number of reference values for each feature is set to 4, and c = 2.
According to expert knowledge and fuzzy C-mean value, the feature reference value is
calculated. The reference points of health state features under different working condition
are shown in Table 1.

Table 1. The reference points of health state features under different working conditions.

Health State Feature 1

Number N M H VH

1 456.18 465.11 480.22 499.79

2 448.35 468.86 486.32 504.39

3 452.18 463.52 486.66 496.21

4 453.77 459.48 475.45 489.38

5 454.50 462.32 477.56 498.47

Health State Feature 2

1 37.67 40.52 42.72 44.31

2 41.24 42.21 44.23 45.52

3 39.59 41.61 43.31 44.51

4 39.85 41.22 42.81 43.48

5 39.97 41.35 43.11 44.03

The number of delay step is 2, τ = 2, and the number of prediction step is 1, p = 1
in this time series prediction model of an aero-engine gas path system. There are four
reference points of x(t) and x(t− τ), thus there are 16 rules in the time series prediction
model of the gas path system’s health state features. The initial parameters of the time
series prediction model are given by expert knowledge, which is shown in Table 2.

Table 2. The initial parameters of time series prediction model.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0, 0.5, 0.5, 0)
2 N AND M (0.8, 0, 0.2, 0)
3 N AND H (0.1, 0, 0.9, 0)
4 N AND VH (0.7, 0, 0.3, 0)
5 M AND N (0.5, 0, 0.5, 0)
6 M AND M (0.5, 0.5, 0,0)
7 M AND H (0, 1, 0, 0)
8 M AND VH (0, 0, 0.5, 0.5)
9 H AND N (0.7, 0, 0.3, 0)
10 H AND M (0, 0.4, 0.6, 0)
11 H AND H (0, 0, 1, 0)
12 H AND VH (0, 0, 0.5, 0.5)
13 VH AND N (0, 0, 0, 1)
14 VH AND M (0.1, 0, 0.9, 0)
15 VH AND H (0, 0, 1, 0)
16 VH AND VH (0.5, 0, 0, 0.5)

In order to reach a prediction result with more accuracy, the initial parameter given by
expert knowledge is optimized by algorithm CMA-ES, which select 150 data in each health
state feature as training data, the population size is set to 40 and the iteration is 500. The
updated parameters of the time series are shown in Tables 3 and 4.
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Table 3. The updated parameters of belief rule base (BRB)-1.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0.626783, 0.172457, 0.192209, 0.008551)
2 N AND M (0.728580, 0.175145, 0.031722, 0.064553)
3 N AND H (0.556139, 0.272169, 0.042038, 0.129654)
4 N AND VH (0.162512, 0.229010, 0.157799, 0.450679)
5 M AND N (0.322767, 0.153216, 0.240033, 0.283984)
6 M AND M (0.506735, 0.191413, 0, 0.303065)
7 M AND H (0.043160, 0.070414, 0.694565, 0.191861)
8 M AND VH (0.145286, 0.181737, 0.116378, 0.556599)
9 H AND N (0.147285, 0.157746, 0.225319, 0.469650)
10 H AND M (0.213948, 0.198086, 0.323453, 0.264513)
11 H AND H (0.257935, 0.475565, 0.113234, 0.153266)
12 H AND VH (0.369449, 0.216516, 0.252135, 0.161900)
13 VH AND N (0.176878, 0.462870, 0.221216, 0.139036)
14 VH AND M (0.063354, 0.214438, 0.389715, 0.332493)
15 VH AND H (0.022360, 0.066674, 0.140649, 0.770317)
16 VH AND VH (0.272171, 0.312719, 0.254067, 0.161043)

Table 4. The updated parameters of BRB-2.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0.004575, 0.681227, 0.186568, 0.127630)
2 N AND M (0.814169, 0.099244, 0.032949, 0.053638)
3 N AND H (0.768632, 0.229775, 0.000797, 0.000796)
4 N AND VH (0.011045, 0.235602, 0.365752, 0.387601)
5 M AND N (0.430231, 0.001520, 0.310416, 0.257833)
6 M AND M (0.359677, 0.019029, 0.300818, 0.320476)
7 M AND H (0.595030, 0.212968, 0.048263, 0.143739)
8 M AND VH (0.397879, 0.527427, 0.010489, 0.064204)
9 H AND N (0.254057, 0.228871, 0.399035, 0.118037)
10 H AND M (0.110210, 0.007912, 0.288896, 0.592982)
11 H AND H (0.170163, 0.047206, 0.504182, 0.278449)
12 H AND VH (0.467217, 0.174257, 0.302473, 0.056053)
13 VH AND N (0.129582, 0.287104, 0.391517, 0.191796)
14 VH AND M (0.004112, 0.219503, 0.154751, 0.621634)
15 VH AND H (0, 0.003267, 0, 0.996833)
16 VH AND VH (0.080410, 0.080022, 0.345580, 0.493988)

All the data are taken as the test data to predict the health state feature of the gas
path system. The results of the two health state features are shown in Figures 5 and 6. It
can be seen from the diagram that the time series prediction results of health state feature
optimized by CMA-ES algorithm can effectively make up for the low prediction accuracy
of the health state feature results caused by the subjectivity of expert knowledge.

According to the root mean square error in Table 5, the updated result of the gas path
system’s health state feature is more accurate than the initial prediction result.

Table 5. The root mean squared error (RMSE) of different health state features.

Initial Model Updated Model

Health state feature 1 13.5141 12.6166
Health state feature 2 1.9534 1.5871
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4.3. Health State Prediction of Aero-Engine Gas Path System Based on BRB

The semantic value of gas path system’s health states is quantified (D0, D1, D2, D3, D4) =
(1 0.75 0.50 0.25 0), where Di is the different health states of gas path system, Fi is the health
state feature of gas path system. The health state prediction model of the gas path system
is shown in Equation (29).

Rq
k : IfF1 is Ak

1 ∧ F2 is Ak
2

Then the health state is
{
(D0, β1,k), (D1, β2,k), (D3, β3,k), (D4, β4,k), (D5, β5,k)

}
with a rule weight θk and attribute weight δ1, δ2, δ3, δ4, δ5

(29)

where, Ak
1 and Ak

2 respectively represent the reference values of two health state character-
istic quantities under condition P.

The health state prediction results of BRB-1 and BRB-2 are taken as the input of BRB-3,
which can predict the health states of the aero-engine gas path system. The reference values



Symmetry 2022, 14, 26 13 of 20

of the two health state features are shown in Table 1. There are 16 rules of the gas path
system’s health state prediction model because the number of two health state features’
reference points is 4. The initial parameters given by expert knowledge are shown in
Table 6.

Table 6. The updated parameters of BRB-2.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (1, 0, 0, 0,0)
2 N AND M (0, 0, 0.7, 0.3, 0)
3 N AND H (0, 0, 0, 0.8, 0.2)
4 N AND VH (0.9, 0, 0, 0, 0.1)
5 M AND N (0, 0.5, 0.5, 0, 0)
6 M AND M (0, 0, 0.5, 0.5, 0)
7 M AND H (0, 0, 0, 0.5, 0.5)
8 M AND VH (0, 0.5, 0, 0, 0.5)
9 H AND N (0.3, 0, 0, 0.7, 0)

10 H AND M (0.2, 0, 0, 0.8, 0)
11 H AND H (0.4, 0, 0, 0.6, 0)
12 H AND VH (0.1, 0, 0, 0, 0.9)
13 VH AND N (0, 0.1, 0.9, 0 0)
14 VH AND M (0, 0, 0.2, 0.8, 0)
15 VH AND H (0, 0, 0, 0.3, 0.7)
16 VH AND VH (0.3, 0, 0, 0, 0.7)

In order to make up the subjectivity of expert knowledge, the CMA-ES optimization
algorithm is used to optimize the parameters given by expert knowledge where the number
of the population is set to 66, and the number of iterations is set to 100. The optimized
parameters are shown in Table 7. The health state prediction results are shown in Figure 7.

Table 7. The updated parameters of BRB-2.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0.221159, 0.28597, 0.086321, 0.062829, 0.343714)
2 N AND M (0.128107, 0.003393, 0.203260, 0.022314, 0.642926)
3 N AND H (0.254224, 0.251018, 0.290395, 0.161309, 0.043054)
4 N AND VH (0.134931, 0.210087, 0.466548, 0.144023, 0.044411)
5 M AND N (0.865790, 0.048182, 0, 0.071426, 0.025662)
6 M AND M (0.100423, 0.072713, 0.098077, 0.178782, 0.550006)
7 M AND H (0.005379, 0.308059, 0.459540, 0.121880, 0.105142)
8 M AND VH (0.253789, 0.048157, 0.262505, 0.335647, 0.099902)
9 H AND N (0.193258, 0.302860, 0.149030, 0.160192, 0.194660)

10 H AND M (0.536648, 0.316348, 0.041354, 0.094337, 0.011313)
11 H AND H (0.046835, 0.280231, 0.201947, 0.205796, 0.265191)
12 H AND VH (0.665204, 0.094559, 0.195134, 0.035089, 0.010013)
13 VH AND N (0.100497, 0, 0.611047, 0.287832, 0.013454)
14 VH AND M (0.020941, 0.071357, 0.417684, 0.102784, 0.387233)
15 VH AND H (0.237159, 0.214191, 0.199517, 0.211400, 0.137733)
16 VH AND VH (0.492739, 0.255117, 0, 0.121081, 0.143010)
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Figure 7. (a) Health state prediction result under working condition 1; (b) health state prediction
result under working condition 2; (c) health state prediction result under working condition 3;
(d) health state prediction result under working condition 4; (e) health state prediction result under
working condition 5.

The health state prediction results of the gas path system under the different working
conditions are shown in Figure 8. According to the health state prediction result of Figure 8,
the updated prediction result can better predict the health states under different working
conditions. In order to reflect the health state prediction results of gas path system, the
above five health state prediction result under different working conditions are integrated,
which is shown in Figure 8.

The health state prediction result updated by CMA-ES optimization algorithm is more
accurate by calculating the root mean square error, which is shown in Table 8.

Table 8. The RMSE of different health state prediction model.

Prediction Model Initial Model Updated Model

RMSE 2.4001 1.1341
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4.4. Comparative Analysis

In order to verify the accuracy of the gas path system’s health state prediction model,
the health state prediction model without the consideration of the multiple working con-
ditions is taken as a comparison. The reference points of the two health state features are
shown in Table 9, and the initial belief parameters are shown in Table 2.

Table 9. The reference points without considering the multiple working conditions.

Semantic Value N M H VH

Health state feature 1 448 467 486 505
Health state feature 2 37.67 40.29 42.91 45.52

In order to account for the subjectivity of expert knowledge, the CMA-ES optimization
algorithm is used to optimize the initial parameters of health state features in time series,
which are shown in Tables 10 and 11.

Table 10. The updated parameters of BRB-1 without considering the working condition.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0.153716, 0.292718, 0.105993, 0.447573)
2 N AND M (0.861800, 0.070716, 0.067365, 0.000119)
3 N AND H (0.321176, 0.232704, 0.087782, 0.358338)
4 N AND VH (0.005139, 0.203536, 0.719891, 0.071434)
5 M AND N (0.292742, 0.071456, 0.142251, 0.493551)
6 M AND M (0.235056, 0.338192, 0.184549, 0.242203)
7 M AND H (0.570791, 0.234295, 0.114994, 0.079920)
8 M AND VH (0.166535, 0.134635, 0.246974, 0.451856)
9 H AND N (0.584955, 0.113851, 0.201512, 0.099682)

10 H AND M (0.254735, 0.140327, 0.156385, 0.448553)
11 H AND H (0.195430, 0.316090, 0.126253, 0.362226)
12 H AND VH (0.295834, 0.296295, 0.362953, 0.044918)
13 VH AND N (0.131752, 0.187740, 0.354663, 0.325845)
14 VH AND M (0, 0.184149, 0.105118, 0.733013)
15 VH AND H (0.169244, 0.187260, 0.193144, 0.450352)
16 VH AND VH (0.087349, 0.047340, 0.118129, 0.747182)
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Table 11. The updated parameters of BRB-2 without considering the working condition.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0.498411, 0.132257, 0.193689, 0.175643)
2 N AND M (0.611554, 0.259469, 0.034879, 0.094098)
3 N AND H (0.064522, 0.276302, 0.519704, 0.139472)
4 N AND VH (0.045459, 0.434752, 0.425926, 0.093863)
5 M AND N (0.113100, 0.532354, 0.197630, 0.156916)
6 M AND M (0.209847, 0.367045, 0.038525, 0.384583)
7 M AND H (0.446034, 0.131154, 0.171720, 0.251092)
8 M AND VH (0.502878, 0.389269, 0.102874, 0.004980)
9 H AND N (0.334728, 0.054691, 0.424291, 0.186290)

10 H AND M (0, 0.305871, 0.350689, 0.361470)
11 H AND H (0.148548, 0.195574, 0.248609, 0.4072689)
12 H AND VH (0.283669, 0.443720, 0.156855, 0.115755)
13 VH AND N (0.336328, 0.258820, 0.231363, 0.173489)
14 VH AND M (0.195087, 0.332693, 0.290819, 0.181401)
15 VH AND H (0.106367, 0.026548, 0.0913323, 0.775752)
16 VH AND VH (0.155854, 0.281593, 0.317729, 0.244824)

The health state prediction result of the two health state features without considering
the multiple working conditions are shown in Figures 9 and 10.
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Figure 9. The comparison result 1 without considering the multiple working conditions.

The health state features in a time series without considering the multiple working
conditions can predict the change of the gas path system’s health state features on the
whole, while it cannot predict the change of health state features on the local position in
more detail. The time series prediction model considering the multiple working conditions
is more accurate than the health state prediction model without considering the multiple
working conditions, which is shown in Table 12.



Symmetry 2022, 14, 26 17 of 20

Symmetry 2022, 13, x FOR PEER REVIEW 18 of 22 
 

 

10 H AND M (0, 0.305871, 0.350689, 0.361470) 
11 H AND H (0.148548, 0.195574, 0.248609, 0.4072689) 
12 H AND VH (0.283669, 0.443720, 0.156855, 0.115755) 
13 VH AND N (0.336328, 0.258820, 0.231363, 0.173489) 
14 VH AND M (0.195087, 0.332693, 0.290819, 0.181401) 
15 VH AND H (0.106367, 0.026548, 0.0913323, 0.775752) 
16 VH AND VH (0.155854, 0.281593, 0.317729, 0.244824) 

The health state prediction result of the two health state features without considering 
the multiple working conditions are shown in Figures 9 and 10. 

 
Figure 9. The comparison result 1 without considering the multiple working conditions. 

 
Figure 10. The comparison result 2 without considering the multiple working conditions. 

The health state features in a time series without considering the multiple working 
conditions can predict the change of the gas path system’s health state features on the 
whole, while it cannot predict the change of health state features on the local position in 

H
ea

lth
 st

at
e 

fe
at

ur
e 2

H
ea

lth
 st

at
e 

fe
at

ur
e 2

Figure 10. The comparison result 2 without considering the multiple working conditions.

Table 12. The RMSE of different health state prediction model.

Without the Working
Condition

Considering the Working
Condition

Health state feature 1 14.5066 12.6166
Health state feature 2 1.6507 1.5871

Based on the above prediction results of the health state characteristic quantity, the
health state prediction of the gas path system is carried out.

The health state prediction model of gas path system is established based on the above
prediction result of health state features and the reference points are the same as the health
state prediction model (D0, D1, D2, D3, D4) = (1 0.75 0.50 0.25 0). The updated parameters
are shown in Table 13.

Table 13. The updated parameters of BRB-3 without considering the working condition.

Number x(t) AND x(t–1) Belief Degree{D1,D2,D3,D4}

1 N AND N (0, 0.067471, 0.444641, 0.412738, 0.07515)
2 N AND M (0.284484, 0.306296, 0.217246, 0.191974, 0)
3 N AND H (0.283654, 0, 0.12222, 0.282109, 0.312018)
4 N AND VH (0.528186, 0.205603, 0.209657, 0.056554, 0)
5 M AND N (0.837629, 0.108553, 0.02377, 0, 0.030048)
6 M AND M (0.410296, 0.314038, 0.03181, 0, 0.243856)
7 M AND H (0, 0.089721, 0.161532, 0.324373, 0.424373)
8 M AND VH (0, 0.085559, 0.280462, 0.190165, 0.443814)
9 H AND N (0.133626, 0.592918, 0.111606, 0, 0.161849)

10 H AND M (0, 0.020687, 0.232157, 0.375878, 0.371278)
11 H AND H (0.191792, 0.061321, 0, 0.08299, 0.663897)
12 H AND VH (0.247792, 0.321502, 0, 0.132951, 0.297755)
13 VH AND N (0.206588, 0, 0.149312, 0.246661, 0.397439)
14 VH AND M (0.145951, 0.180765, 0, 0.106762, 0.566522)
15 VH AND H (0.468404, 0.268239, 0, 0.092345, 0.171013)
16 VH AND VH (0, 0.034978, 0.051346, 0.118371, 0.795306)
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There is an obvious stratification phenomenon of health state prediction without the
consideration of the multiple working conditions in Figure 11, while it can predict the real
health states of the gas path system.
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Figure 11. The health state prediction result without considering the multiple working conditions.

By calculating RMSE of the different health state models for gas path system, the
health state prediction model with the consideration of multiple working conditions is
more accurate than the health state prediction model without the consideration of multiple
working conditions, which is shown in Table 14.

Table 14. The RMSE of different health state prediction models.

Prediction Model Without the Working
Condition

Considering the Working
Condition

RMSE 3.9113 1.1314

5. Discussion

The results show that the health state prediction model has obvious advantages
that make full use of expert knowledge given the problems of less available data and
considering the working conditions for an aero-engine gas path system. Naturally, when a
single working condition and a lot of data are used, the result is no different from other
data-driven methods. When there are more feature data, the real-time capability of the
model is poor. Now, however, we use a small amount of data and consider working
conditions for research to establish a health state prediction model with short calculation
time and high accuracy. In order to make up for the subjectivity of expert knowledge,
we use the fuzzy C-means method to divide the reference value of the feature. In further
research, more features and consideration of working condition changes should be used to
build a more accurate health prediction model.

6. Conclusions

In this paper, health state prediction of aero-engine gas path system considering
the multiple working conditions based on time domain analysis and a belief rule base is
proposed. This model first solves the problem that the unitary working condition cannot
accurately express the health states of the aero-engine gas circuit system, and then solves the
problem that the accuracy of the model is incorrect when the expert knowledge determines
the characteristic reference value. Take the NASA public data set as an example to illustrate
its effectiveness.

The main contributions of this paper are as follows.
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(1) The working condition of gas path system is divided based on time-domain features.
The different values are set for different health states under different working condi-
tions and combining expert knowledge to establish a health state prediction model
for an aero-engine gas circuit system, which can significantly improve the accuracy of
the gas path system’s health states.

(2) In order to further improve the accuracy of the health state prediction model and make
up for the subjectivity of expert knowledge, the CMA-ES optimization algorithm is
used to optimize the relevant parameters in the prediction model given by experts
and fuzzy c-mean is used to calculate the reference value of the feature, which can
further improve the accuracy of the health state prediction model.
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