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Abstract: With database management systems becoming complex, predicting the execution time
of graph queries before they are executed is one of the challenges for query scheduling, workload
management, resource allocation, and progress monitoring. Through the comparison of query perfor-
mance prediction methods, existing research works have solved such problems in traditional SQL
queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally,
most query performance prediction methods focus on measuring the relationship between correlation
coefficients and retrieval performance. Inspired by machine-learning methods and graph query
optimization technologies, we used the RBF neural network as a prediction model to train and predict
the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph
data features, and query plan features were fused together and then used to train our prediction
models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for
the database clusters to obtain the query plan information and native data store. The experimental
results of four benchmarks showed that the average mean relative error of the RBF model reached
16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset.
This experiment proves the effectiveness of our proposed approach on three real-world datasets.

Keywords: Cypher queries; pattern queries; query plan tree; execution time prediction; Neo4j
database

1. Introduction

Pattern query is a fundamental operation for graph query processing, which usually
occurs in social network analysis [1], biological network analysis [2], transaction schedul-
ing [3], knowledge graph search [4], and access control [5]. Particularly, these operations
are accompanied by a complex query structure, high resource consumption, and long-
running time [6,7]. Each data graph easily has billions, and even more, nodes, relationships,
and attributions, and a graph topology structure containing local symmetry. Thus, graph
pattern query performance prediction before its execution has been a significant issue in
modern database management systems (DBMS) [8–10]. Furthermore, predicting query
performance (i.e., execution time) is beneficial for many database tasks, including, but not
limited to, the following:

• Query scheduling [11,12]: Through prediction technology, it obtains performance
metrics to help database management systems decide the number of queries and how
to run queries.

• Workload management [13–15]: With the help of prediction models, it can be applied
to estimate the workload and improve the query execution efficiency.

• Resource allocation [16,17]: The computational resources (e.g., memory, CPU, cache
size) are adjusted to meet the operating requirements of the load and then help the
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systems achieve optimal utilization. In most cases, the goal of predicting query tasks
is to ensure the timeliness of the load and to maximize resource utilization.

• Progress monitoring [18,19]: According to the result of the query performance pre-
diction, it can provide support for process management by industrial managers and
guide progress-monitoring systems to monitor the lifecycle of a process.

Recent studies have commonly applied performance prediction methods on SQL
queries; however, they cannot be directly used on Cypher (https://neo4j.com/product/
cypher-graph-query-language/ (accessed on 25 February 2021)) queries in the Neo4j
(http://www.neo4j.com (accessed on 25 February 2021)) database. There are some basic
differences in the data models compared with SQL queries. For example, Cypher queries
contain nodes, relationships, and attributes. Additionally, for each query plan, special
operators are provided to implement the query task, such as the NodeByLabelScan operator
acting on nodes and the Expand operator acting on relationships. Thus, the performance
prediction for Cypher queries is a particular challenge in the Neo4j database. First, the
complex schemas and variation information descriptions are considered in Cypher queries.
For example, if the filter condition is “Tom” in a query statement, it may return the result
of “Tom Hanks”, “Tom Cruise”, etc. Second, traditional graph query performance pre-
diction methods are mostly based on a query optimizer [20,21] which requires tuning by
the database manager. Third, for graph query performance prediction problems, existing
research work commonly uses the linear regression approach, which cannot obtain accurate
prediction results for complex queries [22,23]. Moreover, graph query performance predic-
tion features selection is also a challenge; the quality of the prediction models depends on
the selected query features, and irrelevant features will increase noise during the training
process.

To address these challenges, we proposed a learning-based graph pattern queries
execution time neural network prediction approach. First, the graph pattern and native
data were modeled and encoded as input features to the prediction network, and then the
query plan operators were modeled and encoded as features to improve the accuracy of
prediction results. Second, we used the RBF neural network to train the feature vectors
and used the model to predict new Cypher queries. Compared to relational DBMS, the
Neo4j database has not released a standard query benchmark. Thus, we designed a Cypher
query benchmark for the Northwind, FIFA2021, and CORD-19 datasets. Additionally, we
deployed a monitoring environment for the Neo4j database cluster.

The main contributions of this study are summarized as follows:
(1) To extract the features from Cypher queries, we designed a benchmark of four

types of Cypher queries. Additionally, we deployed a monitoring environment for the
Neo4j database to collect the query information.

(2) We proposed an effective feature-modeling and -encoding approach for Cypher
queries. First, we extracted query plan features and encoded them into vectors. Second, to
capture the query structure, we proposed a pattern-modeling method and encoded them
into corresponding feature vectors. As far as we know, this is the first pattern used to
capture the query structure in Cypher queries.

(3) We proposed an RBF method prediction approach to predict execution time, and
three real-world datasets were used to verify its accuracy and effectiveness. The experi-
mental results show that our approach outperformed other approaches.

The rest of this paper is organized as follows: Section 2 describes the substantial
research works of query performance prediction; Section 3 briefly introduces the Cypher
queries and prediction model architecture; Section 4 presents our query feature modeling
and prediction approaches; the evaluation and analysis of the experimental results are
performed in Section 5; and Section 6 details the conclusions of this paper.

2. Related Work

Query performance prediction is a significant issue in databases [24]. This section
introduces some representative works closely related to our work.

https://neo4j.com/product/cypher-graph-query-language/
https://neo4j.com/product/cypher-graph-query-language/
http://www.neo4j.com
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2.1. Relational-Based Queries

The performance prediction approach has been used in relational databases, e.g., Ora-
cle, PostgreSQL, and SQL Server. In [16], the boosted regression tree is proposed to estimate
the CPU time and I/O of an individual operator. This approach does not rely on any func-
tioning form and can even fit complex dependencies between input features and output
results. In [25], the costs model used by query optimizers cannot meet query execution time
prediction. Thus, the authors refined estimates for the query plan before execution and
found that the machine-learning approach is better at estimation. However, this approach
is only used in a static workload. To meet a dynamic workload for queries, the combi-
nation queueing model and buffer pool model are used to predict the query execution
time [26]. To overcome the statistic information loss and highly expensive maintenance of
the statistic-based approach, the authors first proposed the machine-learning approach [27],
the k-nearest neighbor regression (KNN), and support vector machine (SVM) models to
predict SPARQL query execution time. For concurrent queries, the contention approach
was proposed in [16]. This approach introduces concurrent query intensity and query
sensitivity to represent the impact of hardware resource contention and uses the query plan
features’ characteristics to estimate query performance. In [28,29], the authors focused on
representing SPARQL queries with feature vectors and using them to train predictive mod-
els, and then used KNN regression and SVM models to predict query performance during
the warm and cold stages. A plan-structured deep neural network model for predicting the
latency of SQL queries was proposed in [30]. This approach did not need human-crafted
feature selection and automatically discovered complex performance models at both the
operator and query plan level. In [31], the embedding approach was proposed for concur-
rent queries to predict performance, and the authors used the graph-structured model to
capture the operator feature and the correlations between different operators.

2.2. Graph-Based Queries

Graph query is the most primitive operation for information access, retrieval, and the
analysis of graph data [32]. In [33], the authors provided a benchmarking framework for the
systematic investigation of query evaluation performance. In [22], the authors developed
modeling and learning algorithms for readability and graph pattern matching queries. The
former provided three features for graph queries and predicted the execution time using the
statistical learning models with LR, RT, RF, and SVM. The latter increased quality features
based on the former and employed a multi-label regression model to predict graph query
performance, including execution time, query answer quality, and memory consumption.
Additionally, a novel long short-term memory (LSTM) learning method was proposed
in [34], extracting the query plan features and dynamic system features to predict the query
task execution time in the graph database. For graph queries, it is now in the research stage.

In summary, for query performance prediction problems, many studies used heuristic
and statistics optimization techniques to estimate query cost, but in many cases, missing
data that lead to the prediction result are not accurate. To solve these problems, the machine-
learning approach is introduced to predict query performance. However, this approach can
only predict a single query or simple query and cannot capture the correlation of complex
query features.

Additionally, we also list some works using RBF neural networks. In [35], the authors
proposed a simple RBF classifier to allow overlaps in the same pattern class. Addition-
ally, [36] used the RBF network as the multi-label learning framework; each instance was
trained to associate with a set of labels and used the frameworks to predict a label set for
unseen instances. In [37], an RBF neural network was used to predict traffic flow time
series, which has good prospects in traffic stream prediction. Furthermore, RBF neural
networks are widely used for classification and regression tasks.
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3. Cypher Queries

In this section, we present the overview of the Cypher query process pipeline and
briefly describe the query plan and operators. Additionally, we also define the graph
models and graph pattern query.

3.1. Overview of the Cypher Query Plan

Figure 1 shows an overview of the generated process of the Cypher query plan. First, the
Cypher query statement is submitted to the Cypher parser, and then the parsed statement
generates an execution plan by the Cypher query planner; the execution plan tells the
database which operators will be selected to complete a query task, and the final query
result will be returned to the user by the Cypher Runtime. Additionally, the cost estimator
selects the cheapest plan from the candidate execution plan queue by cost in the planner.

Figure 1. Processing pipeline of Cypher queries.

The execution plan is decomposed into query operators, each of which implements a
specific piece of query work. The operators in the execution plan are chained together in a
tree; each operator in the execution plan is represented as a node. Compared to SQL queries,
it largely contains the same operators, such as Scan, Seek, and Join. The Expand operator is
a unique operator used to find all edges from the given node. The Neo4j operator library
provides 82 operators (http://www.neo4j.com/docs/cypher-manual\#execution-plans\
#operators-summary (accessed on 27 February 2021).) to choose from. Table 1 lists some
of the most used query operators. Eager operators are used to complete execution in its
entirety before any rows are sent to their parents as input. Updating operators are used
as an inquiry that updates the graph. Leaf operators, in most cases, are used to locate the
starting nodes and relationships required to execute the query.

Table 1. Some of the most used query operators available in the Neo4j Operator Library.

Operators Type Specification

AllNodeScan Leaf Scans all nodes from the node store
NodeByLabelScan Leaf Utilizes the built-in index on node labels
NodeByIndexScan Leaf Scans all nodes in a user-defined index
NodeByIndexSeek Leaf Finds nodes using a user-defined index

Expand (All) None Traverses all relationships from a given node

CreateUniqueConstraint Leaf, Updating Creates a unique constraint on a property for
all nodes having a certain label

NodeHashJoin Eager Combines two independent results based on
an overlapping set of nodes

CartesianProduct None Combines two independent results without
any overlapping components

3.2. Overview of Performance Prediction Architecture

We consider a set of queries Q = Q1, Q2, . . . , Qn, where each query Qn is a Cypher
query instance. The query execution time will be used as our primary evaluation metric
to estimate the query performance. The problem of graph query performance prediction

http://www.neo4j.com/docs/cypher-manual\#execution-plans\#operators-summary
http://www.neo4j.com/docs/cypher-manual\#execution-plans\#operators-summary
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is training a prediction model to predict the query execution time of each Cypher query
instance. As shown in Figure 2, the Cypher query prediction process includes three parts:
the training data generator, extraction feature, and an RBF neural network prediction model.

Figure 2. The overview of prediction architecture.

First, the data generator collects query plans, operators, and query records from the
Neo4j database. Second, the data information from the generator is modeled and encoded
to feature vectors by the feature extractor. Then, these feature vectors feed to the prediction
model to train and then use the trained model to predict query performance without execut-
ing a query. Thus, users can complete optimization query tasks according to the prediction
result. For database management systems, training data are produced by the Neo4j database
cluster, which includes three nodes: one master node and two slave nodes. Furthermore, we
deployed a monitor node to monitor the servers and collect data information.

4. Cypher Query Execution Time Prediction

To predict the execution time of a query, first, we extract the query plan and graph
pattern data, then encode them into feature vectors. Second, we use an RBF neural network
as our prediction model, which is used to estimate the query execution time without
executing the queries.

4.1. Feature Extraction and Encoding

The performance prediction accuracy is highly dependent on features in the training
sets; thus, it is crucial to know how well the feature is represented and how much infor-
mation can be obtained from Cypher queries. In this section, we propose to capture the
plan-level and pattern sequence of two types of features to represent Cypher queries.

Definition 1 (Cypher feature modeling). Let Qn = (H, R) denote Cypher queries, where
H = {h1, h2, . . . , hn} is the query plan andR = {r1, r2, . . . , rn} is the pattern in Cypher queries.
The feature modeling is the transformation that maps Qn → f , where f ∈ FQn .

4.1.1. Encoding Query Plan

Each query statement can be transformed into a query plan tree composed of operators
through the query planner. As shown in Figure 3, for each operator in the query plan
tree, we can pre-define the size of the operator’s encoding table according to the Operator
Library in the Neo4j database. Then, we can encode operators into a one-hot feature vector.
Specifically, we select the operator types, rows, and hits of the query plan tree features to
represent the query plan.
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Figure 3. An example of encoding query plan tree for Cypher queries (The * symbol in the RETURN
clause means return all query results).

Operator types: As shown in Table 1 and Figure 3, the task of executing a query is
divided into different operators, each of which implements a specific piece of query work.
We pre-define the size of the operator types’ encoding table according to the Operator
Library in Neo4j database and encode operator types into a one-hot vector. For example,
the NodeByLabelScan can be encoded as “1000”.

Rows: The execution of one query plan starts from the leaf nodes of the tree, and then
the output of the child node becomes the input of the parent node. Hence, we used the
number of rows produced by each operator as the query plan feature.

Hits: Each operator in the query plan tree performs part of the query or update task.
The Neo4j storage engine uses the database hits to indicate the operator’s work. Thus, the
number of hits for each operator should be considered to represent the query plan feature.

For the query plan tree, we denoted the query plan features Operator types, Rows,
Hits as Osi , Rsi , Hsi , then concatenated and normalized these features’ vector as follows:

FQ(plan) = [Osi , Rsi , Hsi ] (1)

where the si is the query plan tree nodes, Q are Cypher queries, and FQ(plan) is the query
plan features vector. If it is padded with 0, it means the node has no features.

4.1.2. Encoding Graph Pattern

In this section, we define the graph model and pattern sequence. Then, we use the pattern
sequence to capture the pattern query features, and then encode them into a feature vector.

Definition 2 (Graph model). Define a graph G = (N, R, L), whereN is the set of nodes,
R ⊆ N × N × L is a set of labeled directed edges, and L denotes an edge from node ni to node
ni+1 with label li ∈ L.

Cypher queries use the pattern to describe the shape of query data; the circles are used
to represent nodes, and arrows are used to represent edges. In the Neo4j database, there
are the node pattern (e.g., (a)), edge pattern (e.g., (a
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4.2. Prediction Model 
To predict the performance of Cypher queries, we applied the radial-based function 

(RBF) models [38] to historically executed queries. An RBF neural network includes three-
layer structures, including the input, hidden, and output layers. Additionally, the hidden 
layer maps vectors from a low-dimensional to a high-dimensional space. Compared to the 
other neural networks, it uses the radial-based function as an activation function to 
compute vectors and has a strong approximation and fast learning ability in their training 
phase. Once a prediction model is derived from the training queries, it can then be used 
to estimate the performance of newly requested queries without executing the query. 

b)), and path pattern (e.g., (a
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Relationship type: The arrow describes the relationship between two nodes that have 
a specific type. For example, the Expand operator has types 𝑋, 𝑌, and 𝑍 in Figure 3. 
Thus, the corresponding value of each relationship type can be encoded as “100”, “010”, 
and “001”. 

Attributes: The graph data model consists of nodes, relationships, and attributes. The 
attribute information is similar to columns in the SQL query tables. For example, the 
NodeByIdSeek and Filter operators have attribute: id and name, as shown in Figure 3. 
Thus, the corresponding values of the attributes can be encoded as “100000” and “010000”. 

Pattern: For each Cypher query, we can extract each query pattern sequence and then 
use one-hot encoding to encode them into a feature vector. As shown in Figure 3, the 
Cypher query statement showed three pattern types: (: 𝐴) − ሾ: 𝑋ሿ → (: 𝐵), (: 𝐶) − ሾ: 𝑌ሿ →(: 𝐷), and (: 𝐸) − ሾ: 𝑍ሿ → (: 𝐹); the pattern sequence can be denoted as 𝐴𝑋𝐵, 𝐶𝑌𝐷, 𝐸𝑍𝐹. 
Thus, the pattern 𝐴𝑋𝐵 that uses the one-hot can be encoded into “100000100010000”. 

For each Cypher query statement, we denote the Node label, Relationship type, and 
Attributes as Μொ, 𝑅ொ, and 𝐴ொ. We then concatenate these feature vectors as follows: 𝐹ொ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛) = ൣΜொ, 𝑅ொ, 𝐴ொ൧ (2)

Thus, the final feature vector is concatenated as follows and is fed into the prediction 
neural network to train. 𝐹ொ = ൣ𝐹ொ(𝑝𝑙𝑎𝑛), 𝐹ொ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛)൧ (3)

where the 𝐹ொ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛) is the pattern feature in Cypher queries, 𝐹ொ(𝑝𝑙𝑎𝑛) is the query 
plan features, and 𝑄 are the Cypher queries. 

4.2. Prediction Model 
To predict the performance of Cypher queries, we applied the radial-based function 

(RBF) models [38] to historically executed queries. An RBF neural network includes three-
layer structures, including the input, hidden, and output layers. Additionally, the hidden 
layer maps vectors from a low-dimensional to a high-dimensional space. Compared to the 
other neural networks, it uses the radial-based function as an activation function to 
compute vectors and has a strong approximation and fast learning ability in their training 
phase. Once a prediction model is derived from the training queries, it can then be used 
to estimate the performance of newly requested queries without executing the query. 

b)).
Thus, we use the pattern sequence as defined to describe the Cypher query’s expression.

Definition 3 (Pattern sequences). Given a Cypher query Qn, an alternating sequence Pj(Qn) of
the form is defined as Pj(Qn) = L1T1L2 . . . Tn−1Ln, where the Ln denotes node labels and Tn−1
denotes relationship types.

To capture pattern query features, we used entity labels and types, attributes, and
patterns to reflect pattern features.
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Node label: Nodes and edges are the basic structures in a graph. For each node, the
label attribute is used to describe the graph model, and it requires only one. Thus, we used
one-hot to encode the corresponding node label. As shown in Figure 3, the leaf operators
have node labels F and C; these can be encoded into “000001” and “001000”.

Relationship type: The arrow describes the relationship between two nodes that have a
specific type. For example, the Expand operator has types X, Y, and Z in Figure 3. Thus, the
corresponding value of each relationship type can be encoded as “100”, “010”, and “001”.

Attributes: The graph data model consists of nodes, relationships, and attributes.
The attribute information is similar to columns in the SQL query tables. For example, the
NodeByIdSeek and Filter operators have attribute: id and name, as shown in Figure 3.
Thus, the corresponding values of the attributes can be encoded as “100000” and “010000”.

Pattern: For each Cypher query, we can extract each query pattern sequence and then
use one-hot encoding to encode them into a feature vector. As shown in Figure 3, the Cypher
query statement showed three pattern types: (: A)− [: X]→ (: B) , (: C)− [: Y]→ (: D) ,
and (: E)− [: Z]→ (: F) ; the pattern sequence can be denoted as AXB, CYD, EZF. Thus,
the pattern AXB that uses the one-hot can be encoded into “100000100010000”.

For each Cypher query statement, we denote the Node label, Relationship type, and
Attributes as MQ, RQ, and AQ. We then concatenate these feature vectors as follows:

FQ(pattern) =
[
MQ, RQ, AQ

]
(2)

Thus, the final feature vector is concatenated as follows and is fed into the prediction
neural network to train.

FQ =
[
FQ(plan), FQ(pattern)

]
(3)

where the FQ(pattern) is the pattern feature in Cypher queries, FQ(plan) is the query plan
features, and Q are the Cypher queries.

4.2. Prediction Model

To predict the performance of Cypher queries, we applied the radial-based function
(RBF) models [38] to historically executed queries. An RBF neural network includes three-
layer structures, including the input, hidden, and output layers. Additionally, the hidden
layer maps vectors from a low-dimensional to a high-dimensional space. Compared to
the other neural networks, it uses the radial-based function as an activation function to
compute vectors and has a strong approximation and fast learning ability in their training
phase. Once a prediction model is derived from the training queries, it can then be used to
estimate the performance of newly requested queries without executing the query.

The RBF network is composed of a single hidden-layer feed-forward neural network.
It has a good generalization ability and a fast-learning speed. The RBF network is denoted
as below:

F (v) =
q

∑
i=1

ωiρ(v, ci) (4)

where the q is the number of hidden neurons, ωi is the weight of i-th hidden neurons, ci is
the center of i-th hidden neurons, and ρ(v, ci) is the RBF function, usually the Gauss RBF
function. The Gauss function is denoted as

ρ(v, ci) = exp
(
−βi||v− ci||2

)
(5)

To start training the RBF neural network, we first need to define a loss function. The
loss function is denoted as

min
F

L(yi,F (v)) =
1
|N|

q

∑
i=1

(yi −F (v))2 (6)
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Given a loss function and a set of input query features, the next step is to adjust the
weights of the RBF neural network to minimize the loss function.

5. Experimental Evaluation
5.1. Datasets

Three real-world graph datasets, namely, Northwind Twitter (http://data.neo4j.com/
northwind (accessed on 25 January 2021)), FIFA2021 (https://www.kaggle.com/bryanb/fifa-
player-stats-database (accessed on 27 January 2021)), and CORD-19 (http://blender.cs.illinois.
edu/covid19/ (accessed on 27 January 2021)), were used in this experiment. All datasets need
to be processed in a special format before being used in the Neo4j graph database.

Northwind Twitter Dataset: The social network Northwind dataset is provided by
Twitter; it contains approximately 5000 entities (e.g., vertex of customer and product, the
relationship of the purchase) and about 11,039 pieces of property information (e.g., name,
city, address).

FIFA2021 Dataset: This dataset contains 17k+ unique players and more than 60 at-
tributes extracted from the latest FIFA database. It contains an approximately 504 KB node
store, 2.5 MB relationships store, and 1.2 MB property store in the graph database.

CORD-19 Dataset: This dataset contains a 2.1 MB node store (e.g., gene, disease, chemical,
and organism nodes), a 4.3 MB relationships store (e.g., gene–chemical, chemical–disease
associations, gene–disease associations), and a 13 MB property store in the graph database.

To evaluate the proposed prediction models, we developed a query generator to
produce training and testing queries from the benchmark in datasets. Compared with the
relational databases, the Neo4j DBMS has not released a standard query benchmark. Thus,
we designed a Cypher query benchmark relevant to our prediction approach to obtain
query workloads. Table 2 lists the basic query benchmark in the Neo4j DBMS.

Table 2. The basic benchmark for Cypher query (The ∗ symbol in N3 means a variable-length
identifier in the Cypher syntax).

Operations Type Specification

N1 Node pattern
Node pattern with label

(a)
(a: A)

N2

Edge pattern
Edge pattern with relationship type
Edge pattern with node label and

relationship type

(a)-[r]-(b)
(a)-[r: R]-(b)

(a: A)-[r: R]-(b: B)

N3

Path pattern
Variable-length pattern with lower bound
Variable-length pattern with upper bound

Variable-length pattern with lower and
upper bound

Variable-length pattern with any length

(a)-[r1]-(b)-[r2]-(c)
e.g., (a)-[∗1..]-(b)
e.g., (a)-[∗..2]-(b)

e.g., (a)-[∗1..2]-(b)
(a)-[*]-(b)

N4 Cycle pattern
(a)-[r1]-(a)

(a)-[r1]-(b)-[r2]-(a)
(a)-[r1]-(b)-[r2]-(c)-[r3]-(a)

5.2. Monitor

To better obtain metrics on the Cypher query performance prediction features and
metrics, we deployed a monitoring environment for the database work node. The moni-
toring architecture is shown in Figure 4. In addition, the configuration information of the
monitor node and work node is shown in Table 3.

As shown in Figure 4, the monitor architecture of the causal cluster includes four
nodes, one monitor node, and three work nodes. In the monitor node, the Prometheus
server and Grafana visualization tool are deployed to monitor and collect the data transfer
information and the metrics of each query instance. The monitor metrics data are stored in
the directory (../neo4j/metrics) in the database. Prometheus is an open-source monitoring

http://data.neo4j.com/northwind
http://data.neo4j.com/northwind
https://www.kaggle.com/bryanb/fifa-player-stats-database
https://www.kaggle.com/bryanb/fifa-player-stats-database
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
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framework that provides a universal data model and convenient data collection and query
interfaces, such as the Neo4j metrics data collection model.

Figure 4. The monitor architecture of Neo4j Causal Cluster.

Table 3. Software configuration for monitoring environment.

Software Version

Neo4j neo4j-enterprise-3.5.0
JDK jdk1.8.0_151

Prometheus Node prometheus-2.22.1
Exporter Node exporter-1.0.1

Grafana grafana_7.3.1
OS Ubuntu16

5.3. Evaluation Techniques

In this experiment, for comparative analysis, we mainly considered traditional machine-
learning and deep-learning models.

Traditional machine learning: We implemented the traditional machine-learning
approaches of line regression (LR), regression trees (RT), and support vector regression
(SVR) that were proposed in [22]. The authors proposed five types of statistical machine-
learning models (linear regression [39], regression tree [40], random forest [41], KNN [42],
and SVM [43]) to predict graph query performance. In this experiment, for comparative
analysis, we mainly considered three kinds of prediction models as the prediction models
to predict query performance.

Neural network approach: We implemented the fully connected neural network
(FCNN) prediction model that was proposed in [44]; the FCNN model includes on in-
put layer, one hidden layer, and one output layer. This approach uses query structure,
predicates, and heuristics features as input vectors and outputs the query prediction cost.
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5.4. Experiment Results of Prediction Models

To evaluate the errors of these prediction models, we used the root mean square error
(RMSE) as the evaluation metric. It is denoted as follows:

RMSE =

√√√√ 1
n

j

∑
i=1

(ŷi − yi)
2 (7)

where n is denoted as the number of templates, ŷi is denoted as the prediction values for
Cypher queries, and yi is denoted as the actual values.

Table 4 shows the result of the RMSE of each prediction model on the three datasets.
In the Northwind dataset, the node numbers are much smaller than in the other datasets.
Thus, the result of the RMSE of N1 was the smallest. Compared to N2, N3, and N4, the
N1 benchmark had minimal complexity; the error was also lower than that of the other
benchmarks. In the three kinds of statistical learning models, the LR model had the largest
error; its RMSE was greater than that of the SVR and RT models. The result of the RMSE of
the RBF model was the smallest.

Table 4. The result of root mean square error (RMSE).

Datasets Benchmark LR SVR RT FCNN RBF

Northwind N1 2.28 2.49 2.22 2.53 1.93
N2 15.96 15.53 15 15.88 13.92
N3 15.25 18.61 13.89 15.21 13.99
N4 18.87 15.24 10.64 13.87 10.68

FIFA2021 N1 6.26 6.75 6.06 6.01 5.95
N2 16.52 6.6 6.44 7.23 6.23
N3 11.04 9.39 9.38 15.02 8.84
N4 7.56 7.07 7.18 10.16 5.09

CORD-19 N1 7.70 8.14 8.17 11.46 6.87
N2 5.18 5.04 5.01 5.98 5.0
N3 7.04 6.89 6.90 7.24 6.78
N4 13.06 12.56 12.54 16.86 12.23

Additionally, we also used the mean relative error as our evaluation metric; the mean
relative error is denoted as follows:

MreEror =
1
n

n

∑
i=1

|ŷi − yi|
yi

× 100% (8)

where the ŷi are the predicted values for Cypher queries, yi are the actual values, and n is
the number of templates.

Figure 5 shows the result of the mean relative errors of five models on the three kinds
of datasets. Compared with the statistical learning models, the SVR model had the highest
mean relative error. Compared to the neural network model, the RBF model’s mean relative
error was much lower than that of the FCNN models. In the N1 benchmark, the SVR
models had the largest error of 43% in the Northwind dataset; the FCNN and SVR models
had a small difference in mean relative error in the FIFA2021 dataset. Additionally, in
the CORD-19 dataset, except for the FCNN model, the other model’s error was almost
the same. Similarly, the average mean relative error of the RBF model in the Northwind
dataset reached 16.5%; in the FIFA2021 dataset, 12%; and in the CORD-19 dataset, 16.25%.
The size and complexity of an experiment’s datasets can affect the query performance
prediction. With respect to the difference between the Northwind dataset and the CORD-19
dataset, the former has five types of nodes and four types of relationships, and the latter
has three types of nodes and two types of relationships. Additionally, the FIFA dataset’s
underlying data are the simplest; the corresponding query category variables are also less
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than those of the other datasets. Additionally, the prediction models can also directly affect
the results predicted.

Figure 5. The mean relative error of the four benchmarks on the three datasets in five types of models:
LR [22], SVR [22], RT [22], FCNN [44], and RBF [38].

Figure 6 shows a comparison between the predicted execution time and the actual
execution time of the five models for four benchmarks on the Northwind dataset. In
the N1, N2, and N3 benchmarks, we found that several actual values were much larger
or much smaller than other actual values due to the influence of the database system
(e.g., network bandwidth, CPU and I/O utilization, etc.). In Figure 6, there is a large
error between the predicted value and the actual value of the SVR model. In contrast, this
situation did not appear for other benchmarks; we will explore the main reasons for this
in future work. Additionally, we also found that the predicted value of all the samples
fluctuated with the fluctuation of the true value; thus, the accuracy and effectiveness of the
prediction models are further verified. As shown in Figure 6, the predicted value of all the
templates fluctuated, followed by the actual value, verifying the effectiveness of the five
prediction models. The results for the FIFA2021 dataset and CORD-19 dataset are omitted
for space considerations.
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Figure 6. Comparison between the actual execution time and the predicted execution time in the
Northwind dataset benchmarks (N1, N2, N3, and N4) with five types of models: LR [22], SVR [22],
RT [22], FCNN [44], and RBF [38].

As shown in Figure 7, the performance accuracy becomes better and better as the
training data size grows in the training process. However, in most other research work,
less query training data are used in evaluation experiments. The reason for this is that
obtaining features of a large collection of query samples is a time-consuming process.
Additionally, the prediction effect may be poor for unexpected queries. Nevertheless, we
will still consider expanding the size of the query samples to cover more of a variety of
queries in the future. It can be concluded from Figure 8 that the normalized time of the
FCNN and RBF models are much higher than that of the statistical learning models. The
reason for this is that, compared with statistical models, neural network models need to
learn more parameters.
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Figure 7. The accuracy of training size in five types of prediction models: LR [22], SVR [22], RT [22],
FCNN [44], and RBF [38].

Figure 8. The normalized time of training for the five types of prediction models: LR [22], SVR [22],
RT [22], FCNN [44], and RBF [38].
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6. Conclusions

In this paper, we used an RBF neural network as a prediction model to predict the
Cypher query execution time in the Neo4j database. We combined the query plan, query
patterns, and data information to model corresponding features for each Cypher query
and then encoded them into feature vectors. Additionally, we also deployed a monitoring
environment for the Neo4j clusters to collect statistical information. In the experiment,
we designed four types of Cypher query benchmarks in the three real-world datasets to
verify the effectiveness of the prediction models. The experimental results of the four
benchmarks show that the average mean relative error in the Northwind dataset reached
16.5%; in the FIFA2021 dataset, 12%; and in the CORD-19 dataset, 16.25%. Compared to the
other datasets, the FIFA dataset’s underlying data are simpler; the corresponding query
category variables are also less than those of the other datasets. Thus, the more complex
the underlying data, the lower the prediction accuracy.

The study of performance prediction for Cypher queries is in its infancy. To solve the
crucial issue of graph queries in the fields of workload management, query scheduling,
resource allocation, progress monitoring, etc., our future work can be considered as follows:

1. Query-driven and data-driven methods have their advantages and disadvantages;
how to combine the two methods to improve performance prediction accuracy is
important for research work.

2. Sparse and high-dimensional representation is a challenge in learning-based methods;
existing research works have explored some methods of representation learning [30],
but there is still a significant amount of research space for the dense input.

3. The execution time of a plan depends on the sum of the time cost of all operators.
Therefore, in addition to the query plan and pattern features, we should consider
the impact of the hardware deployment environment and the state of the database
(e.g., buffer, stream queries, concurrent queries) for the query performance.
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