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Abstract: For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces,
we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence
theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann
algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments
reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more
convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified
Krasnosel’skiǐ–Mann algorithm.

Keywords: Hilbert space; enriched nonexpansive mapping; fixed point; modified Krasnosel’skiǐ–
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1. Introduction and Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖.
Suppose that C is a nonempty closed and convex subset of H. A mapping T : C → C is
nonexpansive if it satisfies the following symmetric contractive type condition:

‖Tx− Ty‖ ≤ ‖x− y‖ (1)

for all x, y ∈ C.
A point x ∈ C is called a fixed point of T provided Tx = x. We denote by Fix (T) the

set of fixed points of T, that is, Fix (T) := {x ∈ C : Tx = x}.
The problem of existence and approximation of fixed points of nonexpansive map-

pings is important as it has important applications in various areas of research, and many
problems can be regarded as fixed point problems for appropriate nonexpansive map-
pings: convex feasibility problems, convex optimization problems, monotone variational
inequalities, image recovery, signal processing, and so on.

However, the study of fixed points of nonexpansive mappings is not a trivial task. In-
deed, if C is a closed nonempty subset of a Banach space X and T : C → C is nonexpansive,
it is known that T may not have a fixed point or it may have many fixed points, and third,
it may happen that, even if T has a unique fixed point, the Picard iteration {xn = Tnx0}
may fail to converge to such a fixed point. One of the simplest examples of such a map
is Tx = 1− x on [0, 1] with the usual norm, which gives, for x0 = 1, say, x2n = 1 and
x2n+1 = 0. In addition, rotation about the origin of the unit disk in the plane is another
example of nonexpansive mapping having a unique fixed point while {xn = Tnx0}(x0 6= 0)
does not converge.

These aspects made the study of nonexpansive mappings one of the major and most
active research areas of nonlinear analysis since the mid-1960s, see, for example, the
monographs [1–4] and references therein.
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One way to obtain convergent iterative schemes for the approximation of fixed points
of nonexpansive mappings is mainly due to Mann [5] and to Krasnosel’skiǐ [6], who con-
sidered, instead of Picard iteration (which does not converge, in general, for nonexpansive
mappings), an explicit averaged iteration of the form

xn+1 = (1− λn)xn + λnTxn, n ≥ 0, (2)

where the initial guess x0 ∈ C is chosen arbitrarily. This simple but powerful algorithm
is usually called the Mann iteration, or the Krasnosel’skiǐ–Mann iteration, or simply
Krasnosel’skiǐ iteration, in the case λn = λ (constant), to acknowledge the pioneering
results in [5,6].

Although the Krasnosel’skiǐ–Mann algorithm defined by (2) provides a unified frame-
work for different algorithms, it however has only weak convergence under certain con-
ditions, see for example [7]. Thus, in order to achieve the convergence in norm of the
iterates, it is necessary to impose additional conditions on the considered operators or on
the space (demicompactness, continuity, compactness) or to operate some modifications of
the algorithm itself, such as in [8–11] etc.

Let H be a real Hilbert space and let T : H → H be a nonlinear mapping. Let {αn}
and {βn} be two sequences in [0, 1]. Yao, Zhou and Liou [12] introduced the following
modified Krasnosel’skiǐ–Mann iterative algorithm:{

yn = (1− αn)xn;
xn+1 = (1− βn)yn + βnTyn, n ≥ 0.

(3)

where x0 ∈ H is given, and proves that {xn} converges strongly to a fixed point of the
nonexpansive mapping T.

Note that, in the particular case αn ≡ 0 and βn ≡ λ (constant), the modified Kras-
nosel’skiǐ–Mann iterative algorithm (3) reduces to the Krasnosel’skiǐ algorithm (2).

On the other hand, the author [13], see also [14], introduced and studied the class of
enriched nonexpansive mapping as a generalization of the nonexpansive mappings.

Let (X, ‖ · ‖) be a linear normed space. A mapping T : X → X is said to be an enriched
nonexpansive (or b-enriched nonexpansive) if there exists b ∈ [0, ∞) such that

‖b(x− y) + Tx− Ty‖ ≤ (b + 1)‖x− y‖, ∀x, y ∈ X. (4)

We note that condition (4) is also symmetric and that the class of enriched nonex-
pansive mappings includes all nonexpansive mappings, which are obtained for b = 0
in (4). In [13] it was also shown (see Example 2.1) that there exist other important classes of
mappings, e.g., Lipschitzian and generalized pseudocontractive mappings, which are not
nonexpansive but are enriched nonexpansive. Results on the existence and approximation
of fixed points of enriched nonexpansive mappings by means of the Krasnosel’skiǐ iteration
were also established, for which both weak and strong convergence are provided.

However, the strong convergence result obtained in [13] for the Krasnosel’skiǐ iteration
(Theorem 1 below) is tributary to the additional property of demicompactness of the enriched
nonexpansive mapping T. To state it here, we need the following concept.

Definition 1 ([15]). Let H be a Hilbert space and C a subset of H. A mapping T : C → H is called
demicompact if it has the property that whenever {un} is a bounded sequence in H and {Tun − un}
is strongly convergent, then there exists a subsequence {unk} of {un} which is strongly convergent.

Theorem 1 ([13]). Let C be a bounded closed convex subset of a Hilbert space H and T : C → C be
a b-enriched nonexpansive and demicompact mapping. Then the set Fix (T) of fixed points of T is a
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nonempty convex set and there exists λ ∈ (0, 1) such that, for any given x0 ∈ C, the Krasnosel’skiǐ
iteration {xn}∞

n=0 given by

xn+1 = (1− λ)xn + λTxn, n ≥ 0, (5)

converges strongly to a fixed point of T.

Starting from these facts, our aim in this paper is to achieve strong convergence by
considering the modified Krasnosel’skiǐ–Mann iterative algorithm (3) to approximate fixed
points of enriched nonexpansive mappings which are not necessarily nonexpansive. We
also compare numerically the rate of convergence of the modified Krasnosel’skiǐ–Mann
iterative algorithm (3) to the one of the Krasnosel’skiǐ algorithm used in [13].

2. Strong Convergence of the Modified Krasnosel’skiǐ–Mann Algorithm

To prove the main result of this paper, we need some auxiliary results collected in the
next lemmas.

Lemma 1. Let H be a real Hilbert space. Then the following identity holds:

‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2, ∀x, y ∈ H.

Lemma 2 (Browder’s demiclosedness principle, [16]). Let C be a nonempty closed convex of a
real Hilbert space H. Let T : C → C be a nonexpansive mapping. Then I − T is demiclosed on C,
i.e., if {xn} converges weakly to x ∈ C and ‖xn − Txn‖ → 0, then x ∈ Fix (T).

Lemma 3 ([17]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i) ∑∞
n=0 γn = ∞;

(ii) lim supn→ δn ≤ 0 or ∑∞
n=0 γnδn < ∞.

Then lim
n→∞

an = 0.

Theorem 2. Let H be a real Hilbert space and let T : H → H be an enriched nonexpansive
mapping with Fix (T) 6= ∅. Let {αn} and {βn} be two sequences of real numbers in [0, 1]. Assume
the following conditions are satisfied:

(C1) lim
n→∞

αn = 0;

(C2)
∞
∑

n=0
αn = ∞;

(C3) βn ∈ [a, b] ⊂ (0, 1).

Then the sequences {xn} and {yn} generated by the modified Krasnosel’skiǐ–Mann
iterative algorithm {

yn = (1− αn)xn;
xn+1 = (1− µβn)yn + µβnTyn, n ≥ 0

(6)

converge strongly to a fixed point of T, where x0 ∈ H and µ ∈ (0, 1] is some constant.

Proof. As T is enriched nonexpansive, it follows by Equation (4) that there exists a constant
b ∈ [0, ∞), such that

‖b(x− y) + Tx− Ty‖ ≤ (b + 1)‖x− y‖, ∀x, y ∈ C.
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By using b =
1
µ
− 1, it follows that µ ∈ (0, 1] and the previous inequality becomes

‖(1− µ)(x− y) + µTx− µTy‖ ≤ ‖x− y‖, ∀x, y ∈ C. (7)

Denote Tµx = (1− µ)x + µTx. Then Inequality (7) shows that

‖Tµx− Tµy‖ ≤ ‖x− y‖, ∀x, y ∈ C,

i.e., that the averaged operator Tµ is nonexpansive.
In view of the hypotheses we have

Fix (Tµ) = Fix (T) 6= ∅.

In order to prove the theorem, let us observe that the sequence {xn}∞
n=0 given by

Equation (6), that is, {
yn = (1− αn)xn;
xn+1 = (1− µβn)yn + µβnTyn, n ≥ 0

is actually the modified Krasnosel’skiǐ–Mann iterative algorithm (3) corresponding to the
averaged operator Tµ.

Claim 1. Sequences {xn} and {yn} are bounded.
Let p ∈ Fix (Tµ). As Tµ is nonexpansive, for any x ∈ H we have

〈Tµx− p, Tµx− p〉 = ‖Tµx− p‖2 ≤ ‖x− y‖2 = 〈x− p, x− p〉

which implies

〈Tµx− p, Tµx− p〉 ≤ 〈x− p, x− Tµx〉+ 〈x− p, Tµx− p〉

⇐⇒ 〈Tµx− p, Tµx− x〉 ≤ 〈x− p, x− Tµx〉

⇐⇒ 〈Tµx− p, Tµx− x〉+ 〈x− p, Tµx− x〉 ≤ 〈x− p, x− Tµx〉

and therefore
‖Tµx− x‖2 ≤ 2〈x− p, x− Tµx〉. (8)

Using Equation (6), we have

‖xn+1 − p‖2 = ‖(1− βn)yn + βnTµyn‖2 = ‖(yn − p)− βn(yn − Tµyn)‖2

which, by Lemma 1, yields

‖xn+1 − p‖2 = ‖yn − p‖2 − 2βn〈yn − Tµyn, yn − p〉+ β2
n‖yn − Tµyn‖2

and from this identity, by using Inequality (8), one obtains

‖xn+1 − p‖2 ≤ ‖yn − p‖2 − βn‖yn − Tµyn‖2 + β2
n‖yn − Tµyn‖2

that is,
‖xn+1 − p‖2 ≤ ‖yn − p‖2 − βn(1− βn)‖yn − Tµyn‖2 (9)

which implies
‖xn+1 − p‖2 ≤ ‖yn − p‖2. (10)

Now, by Equation (6), we have

‖yn − p‖ = ‖(1− αn)xn − p‖ = ‖(1− αn)(xn − p)− αn p‖
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≤ (1− αn)‖xn − p‖+ αn‖p‖ ≤ max{‖xn − p‖, ‖p‖},

from which we can show easily by induction that

‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖},

which proves that sequences {xn} and {yn} are bounded, and so Claim 1 is proved.

Claim 2. For p ∈ Fix (Tµ), there exists M ≥ 0 such that

‖xn+1 − p‖2 − ‖xn − p‖2 + k‖xn+1 − xn‖2 ≤ Mαn, n ≥ 0. (11)

Indeed, by Equation (6), we have

yn − Tµyn =
1

βn
(yn − xn+1) (12)

which, by Equation (9), yields

‖yn − p‖2 ≤ ‖yn − p‖2 − 1− βn

βn
‖yn − xn+1‖2. (13)

Having in view that 0 < a < βn < b < 1, it follows that
1− βn

βn
>

1− b
b

:= k and

k <
1
2

, and hence by Equation (13), we obtain

‖xn+1 − p‖2 = ‖yn − p‖2 ≤ ‖yn − p‖2 − k‖yn − xn+1‖2 = ‖xn − p− αnxn‖2

−k‖xn − xn+1 − αnxn‖2

By using Lemma 1, the previous inequality implies

‖xn+1 − p‖2 = ‖xn − p‖2 − 2αn〈xn, xn − p〉+ α2
n‖xn‖2 − k‖xn − xn+1‖2

+2kαn〈xn, xn − xn+1〉 − kα2
n‖xn‖2 = ‖xn − p‖2 − k‖xn − xn+1‖2

+ αn

(
−2〈xn, xn − p〉+ 2kαn〈xn, xn − xn+1〉+ (1− k)αn‖xn‖2

)
(14)

As {xn} is bounded, there exists M ≥ 0 such that, for n ≥ 0,

−2〈xn, xn − p〉+ 2kαn〈xn, xn − xn+1〉+ (1− k)αn‖xn‖2 ≤ M,

which by using Equation (14) proves Claim 2.
As {xn} is bounded, without loss of generality, we may assume that {xn} converges

weakly to a point, say, q ∈ H.
Claim 3. {xn} and {yn} converge strongly to q.
We discuss the following two cases.
Case 1. The sequence {‖xn − q‖} is nonincreasing.
Then ‖xn − p‖ is convergent and therefore

‖xn+1 − q‖2 − ‖xn − q‖2 → 0, as n→ ∞

which, by Equation (11) and assumption (C1), implies

‖xn − xn+1‖2 → 0, as n→ ∞. (15)

Now, by Equation (6) and (C1), we deduce that

‖yn − xn‖ ≤ αn‖xn‖ → 0, as n→ ∞
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which, by Equation (16), proves that

‖yn − Tµyn‖ → 0, as n→ ∞.

Now, using the nonexpansiveness of Tµ, one obtains

‖xn − Tµxn‖ ≤ ‖xn − yn‖+ ‖yn − Tµyn‖+ ‖Tµyn − Tµxn‖

≤ 2‖xn − yn‖+ ‖yn − Tµyn‖

which shows that {xn − Tµxn} converges to 0 as n→ ∞.
As I − Tµ is demiclosed, it follows by Lemma 2 that q ∈ Fix (Tµ). This means that

{xn} and {yn} converge weakly q ∈ Fix (Tµ).
By using Equation (10) and Lemma 1, we have

‖xn+1 − q‖2 ≤ ‖yn − q‖2 = ‖(1− αn)(xn − q))− αnq‖2

≤ (1− αn)
2‖xn − q‖2 − 2αn〈yn − q, q〉 ≤ (1− αn)‖xn − q‖2 − 2αn〈yn − q, q〉. (16)

Now, as yn ⇀ q, it follows that lim
n→∞
〈yn − q, q〉 = 0 and hence, applying Lemma 3 to

Equation (16), we obtain that xn → q (and also yn → q), as claimed.
Case 2. The sequence {‖xn − q‖} is not nonincreasing.
Denote Γn = ‖xn − q‖2 and consider the function τ : N → N defined for all n ≥ n0

(for some n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

By definition, τ is a nondecreasing sequence such that

τ(n)→ ∞ as n→ ∞ and τ(n) ≤ τ(n + 1), n ≥ n0.

Now, by Equation (11), we have

‖xτ(n)+1 − q‖2 − ‖xτ(n) − q‖2 + k‖xτ(n)+1 − xτ(n)‖2 ≤ Mατ(n), n ≥ n0,

which, by letting n→ ∞, implies

lim
n→∞

‖xτ(n)+1 − xτ(n)‖2 ≤ M
k
· lim

n→∞
ατ(n) = 0

which implies
‖xτ(n)+1 − xτ(n)‖ → 0 as n→ ∞.

On the other hand, for all n ≥ n0, we have

0 ≤ ‖xτ(n)+1 − q‖2 − ‖xτ(n) − q‖2 ≤ ατ(n)[2〈q− yτ(n), q〉 − ‖xτ(n) − q‖2]

from which we deduce that

‖xτ(n)+1 − q‖2 ≤ 2〈q− yτ(n), q〉

and, as {yn} converges weakly to q (and hence {yτ(n)} converges, too), this shows that

lim
n→∞

‖xτ(n)+1 − q‖ = 0.

Therefore,
lim

n→∞
Γτ(n) = lim

n→∞
Γτ(n)+1 = 0
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Let us note that, for n ≥ n0, one has Γn ≤ Γτ(n)+1 if n 6= τ(n) (that is, τ(n) < n),
because for j satisfying τ(n) ≤ j < n, we have Γj > Γj+1. This implies that, for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n), Γτ(n)+1},

and this implies
lim

n→∞
Γn = 0,

which shows that {xn} converges strongly to q (and therefore, {yn} converges strongly to
q, too).

The next Corollary is the main result (Theorem 1) in [12].

Corollary 1. Let H be a real Hilbert space. Let T : H → H be a nonexpansive mapping with
Fix (T) 6= ∅. Let {αn} and {βn} be two sequences of real numbers in [0, 1]. Assume the following
conditions are satisfied:

(C1) lim
n→∞

αn = 0; (C2)
∞
∑

n=0
αn = ∞; (C3) βn ∈ [a, c] ⊂ (0, 1).

Then the sequences {xn} and {yn} generated by the modified Krasnosel’skiǐ–Mann
iterative algorithm {

yn = (1− αn)xn;
xn+1 = (1− βn)yn + βnTyn, n ≥ 0

(17)

converges strongly to a fixed point of T, where x0 ∈ H.

Proof. As T is nonexpansive, T is 0-enriched nonexpansive and therefore the constant µ
defined in the proof of Theorem 2 equals 1. So, the algorithm (6) reduces to Equation (17)
and conclusion follows by Theorem 2.

Remark 1. To avoid the assumption Fix (T) 6= ∅ in Theorem 2, we can merge it with Theorem 1
and consider T defined on a bounded closed subset of H.

Theorem 3. Let H be a real Hilbert space, C a bounded closed convex subset of H, and T : C → C
a b-enriched nonexpansive mapping. Then Fix (T) is a nonempty convex set and the sequences
{xn} and {yn} generated by the modified Krasnosel’skiǐ–Mann iterative algorithm{

yn = (1− αn)xn;
xn+1 = (1− µβn)yn + µβnTyn, n ≥ 0

(18)

converge strongly to a fixed point of T, where x0 ∈ H and µ ∈ (0, 1] is some constant and {αn}
and {βn} are sequences of real numbers in [0, 1], satisfying the conditions

(C1) lim
n→∞

αn = 0;

(C2)
∞
∑

n=0
αn = ∞;

(C3) βn ∈ [a, b] ⊂ (0, 1).

Proof. The first part follows by Theorem 1, while for the second part one adapts the proof
of Theorem 2, by noting that in this case, the boundedness of {xn} and {yn} is ensured by
the hypothesis.

The next example shows that Theorem 2 is an effective generalization of Theorem 1
in [11].
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Example 1 (Example 2.1, [13]). Let X =

[
1
2

, 2
]

be endowed with the usual norm and let

T : X → X be defined by Tx =
1
x

, for all x ∈
[

1
2

, 2
]

. Then

(i) T is not nonexpansive.
(ii) T is a 3/2-enriched nonexpansive mapping.
(iii) Fix (T) = {1}.

Proof. (i) Assume T is nonexpansive. Then

|Tx− Ty| ≤ |x− y|, ∀x, y ∈ X,

which, for x = 1 and y = 1/2, leads to the contradiction 1 ≤ 1/2.
(ii) The enriched nonexpansive condition (4) reduces in this case to∣∣∣∣b(x− y) +

1
x
− 1

y

∣∣∣∣ ≤ (b + 1)|x− y| ⇔
∣∣∣∣b− 1

xy

∣∣∣∣ · |x− y| ≤ (b + 1) · |x− y|.

It easy to check that, for any b ≥ 3/2, we have∣∣∣∣b− 1
xy

∣∣∣∣ ≤ b + 1, ∀x, y ∈
[

1
2

, 2
]

,

which proves that T is a 3/2-enriched nonexpansive mapping.

Therefore, all assumptions of Theorem 2 are satisfied and, for any x0 ∈
[

1
2

, 2
]

,

the sequence

xn+1 =
(5− 2βn)(1− αn)

5
· xn +

2βn

5(1− αn)xn
, n ≥ 0,

generated by the modified Krasnosel’skiǐ–Mann algorithm (6), converges to 1, the unique
fixed point of T, provided that {αn} and {βn} satisfy conditions (C1)–(C3).

3. Numerical Experiments and Conclusions

Our aim in this section is to present a comparative study of the modified Krasnosel’skiǐ–
Mann algorithm (6), involved in Theorems 2 and 3, and of the simpler Krasnosel’skiǐ
algorithm (5), involved in Theorem 1, for the case of the enriched nonexpansive function T
in Example 1. For the numerical experiments, which are given in Tables 1–4, we consider
different values of the parameters {αn}, {βn}, and λ and of the starting points x0. By N,
we denote the number of iterations needed to obtain the fixed point with six exact digits.

Table 1. Numerical experiments for Krasnosel’skiǐ iteration and starting points x0 = 1.95 and x0 = 2.

n λ = 1/2 λ = 1/3 λ = 2/3 λ = 3/4 λ = 4/5 λ = 8/9

0 1.95 1.95 1.95 1.95 2 2

1 1.23141 1.47094 0.99188 0.872115 0.8 0.666667

2 1.02174 1.20724 1.00275 1.07801 1.16 1.40741

3 1.00023 1.08094 0.999088 0.96523 0.921655 0.787958

4 1 1.029 1.0003 1.01832 1.05233 1.21564

5 1 1.00994 0.999899 0.991085 0.970681 0.86628

6 1 1.00335 1.00003 1.00452 1.0183 1.12235

7 1 1.00112 0.999989 0.997756 0.989283 0.916693
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Table 1. Cont.

n λ = 1/2 λ = 1/3 λ = 2/3 λ = 3/4 λ = 4/5 λ = 8/9

8 1 1.00037 1 1.00113 1.00652 1.07152

9 1 1.00012 0.999999 0.999438 0.99612 0.948614

10 1 1.00004 1 1.00028 1.00234 1.04244

11 1 1.00001 1 0.999859 0.9986 0.968526

12 1 1 1 1.00007 1.00084 1.02539

13 1 1 1 0.999965 0.999496 0.980812

14 1 1 1 1.00002 1.0003 1.01526

15 1 1 1 0.999991 0.999818 0.988337

N 3 11 9 20 27 57

Table 2. Numerical experiments for Krasnosel’skiǐ iteration and starting point x0 = 0.5.

n λ = 1/2 λ = 1/3 λ = 2/3 λ = 3/4 λ = 4/5 λ = 8/9

0 0.5 0.5 0.5 0.5 0.5 0.5

1 1.25 1 1.5 1.625 1.7 1.83333

2 1.025 1 0.944444 0.867788 0.810588 0.688552

3 1.003 1 1.0207 1.08121 1.14906 1.36746

4 1 1 0.993381 0.963969 0.926035 0.801969

5 1 1 1.00224 1.01903 1.04911 1.19749

6 1 1 0.999258 0.990754 0.972376 0.875348

7 1 1 1.00025 1.00469 1.0172 1.11273

8 1 1 0.999917 0.997672 0.989911 0.922473

9 1 1 1.00003 1.00117 1.00614 1.06609

10 1 1 0.999991 0.999417 0.996349 0.952238

11 1 1 1 0.999863 1.0022 1.03928

12 1 1 0.999999 0.999854 0.998683 0.97077

13 1 1 1 1.00007 1.00079 1.02352

14 1 1 1 0.999964 0.999526 0.98219

15 1 1 1 1.00002 1.00028 1.01414

N 3 1 13 22 28 56

Table 3. Numerical experiments for modified Krasnosel’skiǐ–Mann iteration and starting
point x0 = 1.95.

n αn = 1/(2n + 1); αn = 1/(n + 1); αn = 1/(n + 1);
βn = n/(3n + 2) βn = 2n/(3n + 2) βn = n/(2n + 2)

0 1.95 1.95 1.95

1 1.25754 0.983103 0.980064

2 1.00483 0.829478 0.770328

3 0.893985 0.837089 0.750714

4 0.847654 0.857922 0.770893

5 0.832607 0.875828 0.794782
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Table 3. Cont.

n αn = 1/(2n + 1); αn = 1/(n + 1); αn = 1/(n + 1);
βn = n/(3n + 2) βn = 2n/(3n + 2) βn = n/(2n + 2)

6 0.832469 0.890237 0.816099

7 0.839068 0.901868 0.83419

8 0.848366 0.911383 0.849433

9 0.858399 0.919283 0.862333

10 0.868233 0.92593 0.873334

11 0.877455 0.931592 0.882795

12 0.885909 0.936466 0.891

13 0.893569 0.940704 0.898172

14 0.90047 0.94442 0.904487

15 0.906673 0.947704 0.910084

N >1000 >1000 >1000

Table 4. Numerical experiments for modified Krasnosel’skiǐ–Mann iteration and starting
point x0 = 0.5.

n αn = 1/(2n + 1); αn = 1/n; αn = 1/(n + 1);
βn = n/(3n + 2) βn = 2n/(3n + 2) βn = n/(2n + 2)

0 0.5 0.5 0.5

1 1 1 1.25

2 0.777778 0.833333 1.1

3 0.752976 0.837727 1.05227

4 0.771613 0.858056 1.03188

5 0.79504 0.875862 1.02142

6 0.8162 0.890246 1.01536

7 0.834232 0.901871 1.01155

8 0.849452 0.911384 1.009

9 0.862341 0.919283 1.00721

10 0.873338 0.92593 1.0059

11 0.882797 0.931592 1.00492

12 0.891001 0.936466 1.00417

13 0.898172 0.940704 1.00357

14 0.904487 0.94442 1.0031

15 0.910085 0.947704 1.00271

N >600 363 362

By analyzing the results in Tables 1 and 2, some conclusions could be drawn:

1. The speed of convergence of Krasnosel’skiǐ iteration for the considered enriched
nonexpansive mapping depends on both parameter λ and starting point x0.

2. When starting from x0 = 1.95 (see Table 1), the most rapid Krasnosel’skiǐ iteration

corresponds to the value
1
2

of the parameter λ (after three iterations we obtain the exact

value of fixed point). In this case, Krasnosel’skiǐ iteration also converges quickly for the

value
2
3

of the parameter λ (after nine iterations we obtain the fixed point).
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3. For x0 = 1.95, Krasnosel’skiǐ iteration converges as slowly as the value of the
parameter λ approaches 1 (note that for λ = 1, Krasnosel’skiǐ iteration reduces to Picard
iteration, which is not convergent).

4. When starting from x0 = 0.5 (see Table 2), the most rapid Krasnosel’skiǐ iteration

corresponds to the value
1
3

of the parameter λ (we obtain the fixed point after one iteration

only), while for λ =
1
2

, the fixed point is obtained after three iterations.

5. Similarly to the case x0 = 1.95, for x0 = 0.5, the Krasnosel’skiǐ iteration converges
as slowly as the parameter λ approaches 1.

6. Now, by analyzing the results in Tables 3 and 4, note that the modified Kras-
nosel’skiǐ–Mann iteration converges very slowly in comparison with the simple Kras-
nosel’skiǐ iteration. In all the three cases considered for the parameters αn and βn, and for
any starting value x0 ∈ {1.95; 0.5}, the modified Krasnosel’skiǐ–Mann iteration converges
extremely slowly.

7. When starting from x0 = 1.95, the exact value of the fixed point is not yet reached
after 1000 iterations, while, for x0 = 0.5, the modified Krasnosel’skiǐ–Mann iteration reaches
the fixed point after 362 iterations in the third case and 362 iterations in the second case,
while in the first case, more than 600 iterations are needed to reach the exact value of the
fixed point.

8. Based on the numerical experiments reported here, we can conclude that for approx-
imating the fixed points of some enriched nonexpansive mappings, it would be more conve-
nient to use the Krasnosel’skiǐ iteration than the modified Krasnosel’skiǐ–Mann iteration.

9. Therefore, it is an open problem to study if a similar situation holds in the case of
all enriched nonexpansive mappings or nonexpansive mappings.

10. For other related developments we refer to [18–25] and references therein.
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