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Abstract: The specific loading-path change during sheet metal forming may lead to some abnormal
deformation phenomena. Two-stage orthogonal loading paths without elastic unloading have
revealed a phenomenon of apparent loss of normality, further modeled in the literature by non-
normality theories. In this paper, a particular orthogonal strain-path change is investigated using
the Teodosiu–Hu hardening rule within an associated plasticity framework. The results indicate that
cross work-hardening has a significant contribution to the apparent loss of normality and subsequent
asymmetric yield surface evolution. Detailed contributions of the model’s ingredients and features are
clarified. The developed material model is intended for sheet metal forming simulation applications.

Keywords: cross hardening; biaxial–shear loading path change; normality loss; apparent yield
surface evolution

1. Introduction

With an increasing demand for more complicated structure components and more
complex shapes of sheet metal parts, the multi-stage forming method needs to be applied.
During the multi-stage forming processes, the metal sheet usually undergoes multi-step
deformation histories, which raises challenges in describing the material behavior. Indeed,
the effect of strain path changes, which occurs during forming processes, is needed to be
considered in the constitutive modeling.

During the past decades, many studies have been devoted to revealing the material
behavior under complex loading path changes. The different loading path changes during
metal deformation usually affect the evolution of plastic anisotropy and work hardening,
which should be considered in constitutive modeling. Li et al. [1] explored strain-path
change effect on the variation in plastic anisotropy of IF steel via a biaxial–uniaxial tension
test, which states the role of crystallographic texture and microstructure evolution during
material deformation. Furthermore, they used a meso-scaled constitutive model to predict
earing behavior, which emphasizes the importance of the consideration of plastic anisotropy
causing the loading path change. Hu [2] also studied work hardening-induced anisotropy
of rolled sheet metals, not only using anisotropic coefficients, but also taking into account
stress-components and strain-ratios. Mánik et al. [3] applied a successive uniaxial tension
tests in rolling followed by transverse direction to investigate the evolutions of transient
stress, work-hardening, and Lankford values of aluminum under a cross-loading path
change. Based on the experimental findings, they proposed a continuum plasticity model
that used a “delayed pointer” tensor to represent the microstructural anisotropy evolution
under a cross-loading path change. In addition, the material model could be further
enriched to describe mechanical property changes caused by complex material processing
methods such as aging and heat treatment, etc., as discussed in [4].

Symmetry 2022, 14, 142. https://doi.org/10.3390/sym14010142 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14010142
https://doi.org/10.3390/sym14010142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14010142
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010142?type=check_update&version=1


Symmetry 2022, 14, 142 2 of 13

Concerning the effect of strain-path change on work hardening, many studies have
been reported as well. Haddadi et al. [5] developed a microstructural-based hardening
model, which was applied to describe the anisotropic hardening under tension and shear
loading paths change. The early re-yielding behavior, transient hardening, and cross
hardening were found in Bauschinger shear and orthogonal tension-shear loading paths,
which were correctly described by the models [6]. Wang et al. [7] also simulated a tension–
shear test using proposed constitutive model that considers anisotropic hardening effects
under an orthogonal strain-path change. Thuillier and Manach [8] compared the strain
hardening behaviors of steel sheets by using tensile and shear–strain paths to clarify the
effect of loading path. Vincze et al. [9] performed material tests under two-step uniaxial
tension along rolling and transverse directions successively. They found that the influences
of the pre-strain amounts, severity of loading path change, and subsequent work-hardening
can be captured by the model proposed in [10]. Recently, a new constitutive model for
describing transient hardening phenomenon is proposed in [11], where the orthogonal
strain-path changes and Bauschinger effects are modeled by yield surface distortion and
kinematic hardening, respectively.

Because anisotropic plasticity and strain hardening behavior of materials are depen-
dent on loading histories, the evolution of yield surface needs to be accurately described
under different strain path changes. Kuroda and Tvergaard [12] used three different meth-
ods: uniaxial/biaxial loading, biaxial loading–unloading–reloading, and biaxial–shear
loading path changes without unloading, to determine the yield surface evolution of
aluminum and steel. Compared with the yield surface determined by using the uniax-
ial/biaxial loading and biaxial loading–unloading–reloading methods, they found that a
vertex appears at the biaxial loading, followed by shear loading path change point, as well
as non-normality flow behavior in the second loading path. Khan et al. [13] systemically
studied the yield surface evolution under different loading–unloading paths at finite plastic
strain6061 aluminum alloy. They found that the J2 yield criterion can well describe the trans-
lated and distorted of yield surface evolution. Furthermore, the non-symmetric nose-like
shape of yield loci was observed in orthogonal tension–torsion loading path. The similar
experimental results were observed for 1100 aluminum alloy in [14]. However, compared
with the cross-softening effect on the yield surface evolution for Al6061, the Al1100 had
a cross hardening at finite deformation under the tension–torsion loading path [15]. Re-
cently, Iftikhar and Khan [16] investigated the subsequent yield surface evolution subjected
proportional/non-proportional loading paths with finite plastic deformation. The results
show that the asymmetric yield surface evolution under proportional loading–unloading
paths. In addition, Hu et al. [17] first performed three pre-strain loadings under tension,
torsion, and combined tension–torsion for steel, and the von Mises type initial yield surface
is determined. Later, they found that the size of yield surface was shrinking due to the
cross softening. Furthermore, the shape of the yield surface no longer obeyed the sym-
metry of von Mises’ circle. Lu et al. [18] found that the pre-cyclic loading direction and
pre-strain levels have a strong effect on the evolution of yield surface. Furthermore, the
obvious asymmetric corner effects lead the subsequent yield surface changes from the von
Mises symmetry circle to a distorted asymmetry ellipse. The above discussed experimental
investigations indicate that the specific yield surface evolution is strongly dependent on
the material load history.

A lot of contributions have been made by researchers to predict the vertex effect and
non-normality on the yield surface evolution. Gotoh [19] formulated a classical and the
simplest constitutive model to describe the vertex effect concerning rigid-/elastic-plastic
materials [20]. Hughes and Shakib [21] proposed a simplified von Mises plasticity, which
could represent the corner plastic flow theory. Simo [22] also used a modified J2 theory
to interpret the non-normality flow effect caused by a sharp corner at the loading point
changes on the yield loci. Kuroda and Tvergaard [23] used a crystal plasticity model to
represent non-associated observations. Furthermore, they developed a plasticity model
that incorporated the effect of the plastic spin via a vertex flow rule on flat yield loci in [24].
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Based on their previous studies, Kuroda [25] proposed a size-independent corner-like
plasticity model, which considers the plastic strain gradients effect on the loss of nor-
mality. Stoughton [26] applied a non-normality rule with two independent functions of
plastic potential and stress yield to describe the flow behavior of steel and aluminum.
Cvitanić et al. [27] implemented non- normality constitutive framework into finite element
codes. Safaei et al. [28] systemically numerical integration methods for classical constitutive
models based on non-normality rule. Based on their work, more advanced hardening
models have been investigated as well [29–31]. Recently, Chen et al. [11] accurately pre-
dicted the earring for the 6014 aluminum deep-drawn part by using constitutive models
consisting of different anisotropic yield criteria and non-normality flow rule.

Based on the experimental investigation in [32], the vertex at loading path-change
point, and apparent loss of normality and symmetry in the second loading path, are
explored. An advanced constitutive model was employed to predict such plastic behaviors
after strain-path changes. The effects of rate sensitivity, isotropic/kinematic hardening,
and degradation of elastic modulus have been taken into account to explain experimental
observations in previous work [33] with a Chaboche-like model. However, in this type of
strain-path change biaxial-to-shear, the first loading path, and subsequent loading path,
are orthogonal. As a results, this typical loading path introduces cross hardening, which
plays a role in subsequent yield locus evolution and normality loss. Recently, the role of the
cross-hardening effect has been discussed within the framework of crystal plasticity [34,35].
However, the ingredient of cross hardening that has a significant contribution to the
apparent violation of the normality condition and subsequent yield surface evolution need
to be investigated at the classical plasticity.

In this paper, the orthogonal biaxial followed by shear loading path change is studied
using a modified microstructural-based Teodosiu–Hu hardening model within a framework
of associated plasticity. Detailed contributions of the model’s ingredients and features were
clarified.

2. Constitutive Modeling
2.1. Elasto-Visco-Plastic Constitutive Framework

In this section, an elasto-visco-plastic (EVP) model is formulated within a convenient
rotation frame where the rate form of deformation and internal state variables are used.
This approach has an advantage in formulating the applied material models with an
identical form as in small strains, which can be accurately adopted in the finite element
implementation. When an ideal tension–compression symmetric material deforms into
plastic regime, its work hardening behavior usually evolves in a complex way that may
break the original symmetry of the yield locus. Generally, the shape and the center of the
yield locus can change and translate according to an arbitrary hardening model. Due to
this work concentrates on cross hardening modeling, the von Mises yield locus is chosen in
the paper.

According to basic theory of metal forming, the total strain rate
.
ε is made up of the

elastic strain rate
.
ε

e and the visco-plastic strain rate
.
ε

vp. The hypo-elastic law can be given
by

.
σ = C :

.
ε

e
= C :

( .
ε− .

ε
vp), (1)

where
.
σ is the stress rate and C = 2GI′s4 + KI⊗ I is the fourth-order tensor in the case

of isotropic linear elasticity. The scalars G and K can be computed with using Young’s
modulus E and Poisson’s ratio v. The ingredients of second order unit tensor I are the
Kronecker deltas in which Ikl = δkl . While I′s4 is the fourth-order symmetric deviatoric unit

tensor and its components are I′s4ijkl = (1/2)
(

δikδjl + δilδjk

)
− (1/3)δijδkl . The visco-plastic

strain rate tensor
.
ε

vp is formed

.
ε

vp
=

.
ε

vp
· ∂σ

∂σ
=

.
ε

vp
·V, (2)
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where V is the plastic flow direction governed by the associated flow rule, σ(σ′ −X) is the
von Mises stress and σ′ indicates the deviatoric part of the stress tensor. The second order
tensor X represents the kinematic hardening. The equivalent visco-plastic strain rate

.
ε

vp
is

assumed to obey the equation

.
ε

vp
=

.
ε

#·sinh
(

σ#/k#
)

, (3)

where k# and
.
ε

# are model parameters, which respond to the visco-plastic effect of material.
The “overstress” σ# represents the increase in the stress intensity due to the visco effect-
plastic behavior, which is expressed as:

σ
(
σ′ −X

)
−Y− σ# ≤ 0, (4)

where Y describes the size of the yield locus. The equality sign corresponds to elasto-
viscoplastic loading, while the inequality sign denotes elastic loading.

2.2. Modified Teodosiu–Hu Hardening Model

With the consideration of the texture evolution under two-step loading at small
deformation, a Teodosiu–Hu hardening (THH) model was proposed by Teodosiu and
Hu [36]. The focused THH model also has an ability to describe not only the Bauschinger
effect but also path dependent hardening behavior after strain-path change.

In THH model, the planar persistent dislocation structures (PPDS) describe the mi-
crostructure evolution that contributes to the strain hardening of the material. This model
includes four internal state variables: R, X, S, P. The variable R is a scalar, while X and P
are second-order tensors and S is fourth order tensor.

The size of yield locus Y is calculated by a function of R and S in Equation (5):

Y = Y0 + R + f |S|, (5)

where Y0 is the initial yield stress. R represents the contribution of the isotropic hardening,
which uses Swift type

.
R = HR·

.
ε

vp
= n·K1/n(Kεn

0 + R)n−1/n·
.
ε

vp
, (6)

where K, ε0, and n are the parameters of Swift law. In Equation (5), f |S| captures the effect
of PPDS on loading path-dependent hardening where f is a material parameter and S is in
charge of describing the directional strength of the PPDS.

In this work, a Ziegler type kinematic hardening rule is formulated by the backstress
variable X in the following Equation

.
X = HX·

.
ε

vp
= CX ·(Xsat·n−X)·

.
ε

vp
, (7)

where n = (σ′ −X)/σ indicates the offset deviatoric stress direction in Equation (7). In TH
model, Xsat is no more a constant, but a function of the variable S. The calculation of Xsat
on the S variable is governed by

Xsat = X0 + (1− f )|S|
√

r + (1− r)β2
S, (8)

where X0 is the initial value of Xsat and r is a material constant. The ratio βS = SD/|S|
characterizes the change in the direction of the current

.
ε with respect to the PPDS, which

evolves during the interval (0, 1). In this work, its value equals to zero when biaxial–shear
strain path change happens.

The PPDS is related to the current loading direction of the deformation rate, which
evolves completely differently from the rest of the PPDS during loading path changes.
Therefore, the variable S can be divided into two parts: a scalar, SD, describes the strength
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regarding to the currently active slip systems, while SL represents the latent part of the
PPDS. Therefore, the S is governed by the following form:

SD = N : S : N, SL = S− SDN⊗N, (9)

where N = Dp/|Dp| characterizes the direction of Dp. The evolution rules of SD and SL are
followed by

.
SD = HSD·

.
ε

vp
= CSD[g(Ssat − SD)− hSD]·

.
ε

vp
, (10)

where Ssat and CSD are the saturation value and evolution rate of SD, and

.
SL = HSL·

.
ε

vp
= −CSL(|SL|/Ssat)

nL ·SL·
.
ε

vp
, (11)

where CSL and nL characterize the saturation rate of SL. Two functions g and h in
Equation (10) have been brought to depict the transient hardening when strain-path change
occurs. Their math equations are

g =

{
1− CP

CSD+CP
, if P : N ≥ 0

(1 + P : N)np
(

1− CP
CSD+CP

· SD
Ssat

)
, otherwise

(12)

and

h =
1
2

(
1− X : N

Xsatn : N

)
. (13)

In Equation (12), np is a material constant, and P describes the polarity of the PPDS. It
evolves into the form .

P = HP·
.
ε

vp
= CP·(N− P)·

.
ε

vp
, (14)

where CP represents the polarization rate of the PPDS.
Furthermore, according to Equations (9)–(11), the time derivative of the norm of the S

can be deduced as

.
|S| = H|S|·

.
ε

vp
=

1
|S|

[
HSDSD − CSL

(
|SL|
Ssat

)nL

|SL|2
]
·

.
ε

vp
, (15)

where |S| =
√
|SL|2 + S2

D. Thus, the total hardening function HY is given for this model as

HY = HR + f H|S|. (16)

Detailed descriptions of the THH model and its finite element implementation can be
found in [5,37], respectively.

When only isotropic hardening is considering in metal deformation under uniaxial
tensile loading mode, the evolution of the tensile stress component σT can be calculated by
the variable Y as

Y ≡ σT , (17)

This is directly measured and applied for the parameters’ identification of the isotropic
hardening model. However, when kinematic hardening is considered, the Equation (17)
does not hold anymore instead of using σT = Y + X∗, where X∗ represents the tensile
component of X under monotonic tensile loading [33,38]. The drawback of this model
is that any alteration to the kinematic component will influence the monotonic tensile
stress predictions, even though the isotropic hardening ingredient does not change. In
order to overcome this drawback that exists in explicitly modelling σT , the size of the new
calculating yield locus is

Y = σT − X∗. (18)
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The explicit calculation of X∗ is needed, which self-compensates kinematic hardening’s
contribution in uniaxial tension. In previous publications [33,38], the authors have derived
an explicit form for Armstrong–Frederick type kinematic hardening:

X∗ = Xsat·
(

1− exp
(
−CX ·

.
ε

vp))
. (19)

Similarly, a modified Teodosiu–Hu hardening (MTHH) model is applied here. σT is
expressed by

σT = HσT ·
.
ε

vp
, HσT = HR. (20)

Thus, the size of the yield locus Y is governed by

Y = σT − σ∗, (21)

where σ∗ is a scalar, which can be directly derived from Equation (5):

σ∗ = X∗ + f S∗D, (22)

.
X
∗
= H∗X ·

.
ε

vp
, H∗X = CX(Xsat − X∗), (23)

and S∗D is a scalar as well and it can be calculated by

.
S
∗
D = H∗SD·

.
ε

vp
= CSD[g∗(Ssat − S∗D)− h∗S∗D]·

.
ε

vp
. (24)

Moreover, two scalars h∗ and g∗ can be written as:

h∗ = 0.5·(1− X∗/Xsat), (25)

g∗ = 1− CP
CSD + CP

∣∣∣∣ S∗D
Ssat
− P∗

∣∣∣∣, (26)

and P∗ is a scalar, which follows the Equation (27)

.
P
∗
= H∗P·

.
λ, H∗P = CP(1− P∗). (27)

Finally, the rate form of Equation (21) can be derived as

HY = HσT − H∗σ , H∗σ = H∗X + f H∗SD. (28)

It should be noted, the core of the MTHH model, which has been governed via
Equations (5)–(15), remains unchanged.

3. Investigation of Cross Hardening and Apparent Normality Loss after Biaxial–Shear
Loading Path Change
3.1. Simulations of Biaxial-to-Shear Experiments

In this section, a series of simulations of biaxial-to-shear tests have been performed
using a self-developed program. The materials A6XXX-T4 aluminum and SPCE mild steel
were described in detail in [32]. The biaxial-to-shear test consists of two-step loading pro-
cesses as experimentally applied in [32]. The first loading step performed in the numerical
investigations was an equi-biaxial loading formulated by

.
ε11=

.
ε22 > 0. Once the biaxial

strains reached the values ε11= ε22 = 0.01 when the first loading was ended, the applied
total strain rate was abruptly switched into

.
ε11=− .

ε22 > 0 with
.
ε11 > 0 in the second loading

path. Figure 1 illustrates the experimental investigations in [32], which determine the
evolution of the yield locus by using biaxial-to-shear loading (solid lines). The dashed lines
and symbols show the determined yield loci via loading–unloading–reloading method
in [32]. The short black lines located on the subsequent yield surface, which determined via
biaxial-to-shear the abrupt loading path change method, indicate the direction of plastic
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strain in the second loading path. Consequently, the evolution of stress trajectory is traced
and the angle β, which describes the situation of normality after strain-path change is
presented as a function of angle α, as illustrated in Figure 2.

Figure 1. Experimental results determining the evolution of the yield locus by using biaxial-to-shear
loading (solid lines). Dashed lines/symbols present the yield loci vis loading–unloading–reloading
method in [32] for aluminum alloy A6XXX-T4.

Figure 2. Schematic illustration of (a) apparent normality loss after biaxial-to-shear loading path
change and definition of angles α and β; (b) experimental observation of normality loss for aluminum
A6XXX-T4 and mild steel SPCE in [32].

3.2. Effect of Cross Hardening

The material parameters of A6XXX-T4 aluminum and SPCE mild steel used in elasto-
visco-plastic model for biaxial-to-shear simulation is given in Table 1, based on refer-
ences [32,39]. The role of the cross-hardening effect on the yield locus evolution and normal-
ity loss was shown in Section 3.1. In Equation (6), the size of yield surface Y = Y0 + R+ f |S|
where the contribution of the cross hardening is f |S|. To explore the effect of cross hard-
ening on the apparent yield surface evolution and loss of normality after biaxial-to-shear
loading path change, several simulations were performed for aluminum A6XXX-T4 and
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SPCE steel, respectively, by altering the parameters of the reference parameter set (Ref) by
a selected factor (0.5 × Ref, 1.5 × Ref, 2 × Ref . . . ). The reference material parameters
of MTHH model that have been identified in [5], are given in Tables 2 and 3 for the two
investigated materials in this work.

Table 1. Mechanical parameters of SPCE and A6XXX-T4 used in elasto-visco-plastic model for
biaxial-to-shear simulation [32,39].

Materials E (GPa) Y0 (MPa) .
ε

# k#

A6XXX-T4 70 125 0.1 20
SPCE 210 180 0.2 36

Table 2. Cross-hardening parameters used in the investigations of the apparent yield locus evolution
and normality loss for aluminum A6XXX-T4.

Parameters K.
(MPa) ε0 n Cx

X0
(MPa) f CSD CSL nL

Ssat
(MPa) CP np r

Ref

600 0.02 0.4 100 150

0.4 3.9 1.1 0 247 2.2 28 1.9

0.5 × Ref 0.2 1.95 0.55 0 123.5 1.1 14 0.95

2 × Ref 0.8 7.8 2.2 0 494 4.4 56 3.8

3 × Ref 1.2 11.7 3.3 0 741 6.6 84 5.7

Table 3. Cross-hardening parameters used in the investigations of the apparent yield locus evolution
and normality loss for steel SPCE.

Parameters K
(MPa) ε0 n Cx

X0
(MPa) f CSD CSL nL

Ssat
(MPa) CP np r

Ref

520 0.004 0.2 90 200

0.8 2.85 1.2 0 565 0.67 890 0.8

0.5 × Ref 0.4 1.43 0.6 0 282.5 0.34 445 0.4

1.5 × Ref 1.2 4.28 2.8 0 847.5 1 1335 1.2

The apparent yield locus evolution and normality loss after biaxial-to-shear loading
path changes using different cross-hardening parameters for aluminum A6XXX-T4 are
shown in Figure 3. The equi-biaxial tension stress reaches 163.3 MPa when the biaxial-to-
shear loading path change occurs. It is worth noting that the biaxial stress states before the
loading path change in the four simulations are rigorously identical, which is independent
on the choice of different cross-hardening related parameters. Overall, the apparent shape of
the four yield loci in the second loading path shows several differences as the accumulated
plastic strain increases. For the largest cross-hardening case 3 × Ref, the apparent yield
surface firstly deviates outwards (up to 5 MPa) and then shrinks inwards more rapidly,
which induces a difference of around 25 MPa at σ22= 0 compared with the yield surface
prediction using Ref values. However, for the cross-hardening case 2 × Ref, the predicted
yield surface is almost the same as the referenced simulation result until the stress state in
second loading path becomes (σ11 = 160 MPa, σ22 = 120 MPa). Subsequently, the predicted
yield surface using 2 × Ref cross-hardening gradually shrinks inwards, which deviates
nearly 18 MPa when σ22=0. On the contrary, for the smaller cross-hardening case 0.5 × Ref,
the predicted yield surface deviates slightly outwards (maximum 3MPa) compared with
the Ref yield surface. Then, the 0.5 × Ref yield locus returns back to the Ref yield surface
until the stress state in second loading path evolved at (σ11 = 170 MPa, σ22 = 80 MPa),
which causes the evolutions of two compared yield surfaces (0.5 × Ref, Ref) are almost
identical despite the accumulated plastic strain level will be continuously increased. It is
noteworthy that the trace of the stress history represented in Figure 3, only coincides with
the yield surface in the particular case of isotropic hardening [12]. When more advanced
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models are used, this trace in stress space combines the effect of the yield surface shape
and its evolution, even though the plastic stain cumulated during this transition stage is
negligible [33]. These results were obtained with a simple symmetric von Moses yield
surface, which highlight the necessity to consider not only the yield surface but also the
hardening model when interpreting the apparent normality loss after biaxial-to-shear
loading-path change.

Figure 3. Prediction of yield surface evolution and apparent loss of normality situation after biaxial-to-
shear loading path changes with using different cross hardening parameters for aluminum A6XXX-T4.

The short black lines located on the yield surface after the biaxial-to-shear loading
path change represent the direction of plastic strain. Figure 4 describes the evolution of
β angle, which demonstrates that the apparent deviation from normality was affected by
the different cross-hardening parameters. The angle β after the biaxial-to-shar strain-path
change was 150.9◦ for all simulated cases, which was solely due to the viscous effect. In all
simulations, angle β tended to converge to a value around 55◦ but the decrease in angle β
was neither linear nor monotonic. The moment and rate of convergence of β angle strongly
relied on the cross-hardening parameter. The α − β curve using Ref value shows the
largest rate of loss of normality. However, for the other three α− β curves determined by
(0.5 × Ref, 2 × Ref, 3 × Ref), the rate of loss of normality was decreased with the increasing
of cross-hardening parameters. Compared with the experimental observed non-normality
result β = 70◦ for aluminum A6XXX-T4, 3 × Ref predicted α− β result underestimated
the loss of normality when α was smaller than 35◦. In turn, α− β relationships given by
(0.5 × Ref, Ref and 2 × Ref) overestimated the biaxial-to-shear strain-path change and
induced non-normality. Clearly, the evolution of angle β for small α values (<15◦ . . . 20◦)
needs deeper investigation. However, it appears that its subsequent evolution is strongly
related to the cross-hardening behavior.

Similarly, the apparent yield locus evolution and normality loss situation after the
biaxial-to-shear loading path changes, using the three groups’ cross-hardening parameters
(0.5× Ref, Ref, 1.5× Ref) for mild steel SPCE, are given in Figure 5. The equi-biaxial tension
stress is (σ11 = 248.8 MPa, σ22 = 248.8 MPa) at the end of the first biaxial pre-loading point
in all cases. Overall, the determined shape of the three apparent yield surfaces in the
second loading path does not show significant differences as the accumulated plastic
strain increasing. For the larger cross-hardening 1.5 × Ref, the determined yield surface
slightly deviates outward (maximum 2 MPa), and then more severely evolves inward
approximately 18 MPa, when σ22 = 0 compared with the predicted yield surface via
Ref value. The influence trend of smaller cross-hardening 0.5 × Ref on the yield surface
evolution is different compared with that for the larger 1.5 × Ref. The predicted yield
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surface using 0.5 × Ref is nearly identical to the referenced simulation result until the stress
state in second loading path becomes (σ11 = 220 MPa, σ22 = 100 MPa). Soon after, the
evolution of yield surface deviates slightly outwards maximum 3 MPa to the Ref yield
surface at the moment σ22 = 0.

Figure 4. Normality loss confrontations of experimental and simulation results after biaxial-to-shear
loading path changes with using different cross hardening parameters for aluminum A6XXX-T4.

Figure 5. Prediction of apparent yield locus evolution and normality loss situation after biaxial-to-
shear loading path changes with using different cross hardening parameters for steel SPCE.

Subsequently, the confrontations of normality loss between experimental and simula-
tion results when using different cross-hardening parameters for steel SPCE is shown in
Figure 6. The value of angle β after the biaxial-to-shear loading path change was 151.4◦

for all simulated cases. Overall, the decreasing tendency of angle β was neither linear nor
monotonic, compared with the results for aluminum in Figure 4. In all simulations, angle β
tended to converge to a value near 55◦ for 0.5 × Ref and 1.5 × Ref cases, and 58◦ for the
1.5 × Ref case. The α− β curves using 0.5 × Ref and Ref values does not present obvious
difference for the loss of normality, which means that the loss of normality is not sensitive
to the smaller cross hardening values. The larger cross-hardening 1.5 × Ref determined
α− β curve indicates that the rate of loss of normality was decreased as the increasing of
cross hardening values. Furthermore, the predicted α− β results from 0.5 × Ref and Ref
are comparative closer to experimental results among the three predicted curves. In addi-
tion, all of these three cross-hardening cases overestimated the biaxial-to-shear strain-path
change induced loss of normality.
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Figure 6. Normality loss confrontations of experimental and simulation results after biaxial-to-shear
loading path changes with using different cross hardening parameters for steel SPCE.

4. Conclusions

In this paper, the influence of cross hardening on the apparent yield locus evolution
and normality loss after biaxial-to-shear loading path change was discussed. An elasto-
visco-plastic constitutive model framework using a modified Teodosiu–Hu hardening
model was employed. The apparent non-normality observed in two-step loading investiga-
tions was shown to depend on the cross-hardening responses of two materials within a
classical plasticity modeling context. The cross hardening had a significant influence on the
evolution of the β angle and led to results showing some agreements with the experiments
in the literature, in particular for α angles larger than 20◦. It can be concluded that cross
hardening has an important effect on the apparent yield locus evolution and normality loss.
The FE implementation of the proposed generic model is expected to improve forming
process predictions such as springback and forming limits, etc.
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