
����������
�������

Citation: Phyo, P.-P.; Byun, Y.-C.; Park,

N. Short-Term Energy Forecasting

Using Machine-Learning-Based

Ensemble Voting Regression.

Symmetry 2022, 14, 160. https://

doi.org/10.3390/sym14010160

Academic Editor: Alexander

Zaslavski

Received: 5 November 2021

Accepted: 27 December 2021

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Short-Term Energy Forecasting Using Machine-Learning-Based
Ensemble Voting Regression

Pyae-Pyae Phyo 1 , Yung-Cheol Byun 1,* and Namje Park 2,*
1 Department of Computer Engineering, Jeju National University, Jeju-si 63243, Korea;

d6022300211@g.siit.tu.ac.th
2 Department of Computer Education, Teachers College, Jeju National University, 61 Iljudong-ro,

Jeju-si 63294, Korea
* Correspondence: ycb@jejunu.ac.kr (Y.-C.B.); namjepark@jejunu.ac.kr (N.P.)

Abstract: Meeting the required amount of energy between supply and demand is indispensable
for energy manufacturers. Accordingly, electric industries have paid attention to short-term energy
forecasting to assist their management system. This paper firstly compares multiple machine learning
(ML) regressors during the training process. Five best ML algorithms, such as extra trees regressor
(ETR), random forest regressor (RFR), light gradient boosting machine (LGBM), gradient boosting
regressor (GBR), and K neighbors regressor (KNN) are trained to build our proposed voting regressor
(VR) model. Final predictions are performed using the proposed ensemble VR and compared with
five selected ML benchmark models. Statistical autoregressive moving average (ARIMA) is also
compared with the proposed model to reveal results. For the experiments, usage energy and weather
data are gathered from four regions of Jeju Island. Error measurements, including mean absolute
percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE) are computed
to evaluate the forecasting performance. Our proposed model outperforms six baseline models in
terms of the result comparison, giving a minimum MAPE of 0.845% on the whole test set. This
improved performance shows that our approach is promising for symmetrical forecasting using time
series energy data in the power system sector.

Keywords: energy consumption; energy forecasting; extra trees regressor; ensemble voting regressor;
forecasting accuracy; K neighbors regressor; gradient boosting regressor; light gradient boost machine;
random forest regressor

1. Introduction

The energy sector is one of the influential factors affecting the economic development
of a country. The economy might go down if there is not sufficient energy to provide to the
end users [1]. Therefore, energy industries have to produce enough energy by balancing
supply and consumption, making energy forecasting essential in the energy management
system. Moreover, it also helps reduce operating and generating costs and conduct short-
term scheduling functions in the power system. Forecasting can be divided into three terms
based on predictive duration: short term, medium term, and long term [2]. This research
mainly focuses on short-term energy forecasting because it considers next-hour prediction
using hourly energy data.

Research on short-term energy forecasting has been conducted using different models
that classify statistical time series and ML models. Autoregressive (AR), moving average
(MA), autoregressive moving average (ARMA), etc., are included in the first group [3].
These models are beneficial for non-real-time forecasting, but they cannot handle nonlinear
load consumption. Thus, ML algorithms have been widely used in forecasting to overcome
nonlinear problems in energy data. They can be split into two groups: regression analysis
and neural-network-based models. Many ML regressors such as decision trees regressors,
boosting regressors, and bagging regressors have been investigated [4]. Among them, tree-
based regressors such as extra trees regressor (ETR) [5], random forest regressor (RFR) [6],
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and classification and regression tree (CART) [7] have been commonly applied in energy
forecasting because of their simple tree structure and easy understanding.

The random forest (RF) algorithm, proposed by Leo Breiman, is one of the ML al-
gorithms that can predict a large amount of data [8]. The four main processes of the RF
algorithm are bootstrap resampling, random feature selection, out-of-bag (OOB) error
estimation, and a fully grown decision tree [9]. This algorithm generates multiple decision
trees (so-called weak learners) from the given training samples. Each tree’s exact number
of samples is randomly chosen to form a new training sample using bootstrap resampling.
The unselected samples are defined as out-of-bag samples during the training process.
Afterward, the RF tree is grown entirely using the selected new training sample without
pruning. Unlike the CART, the RF determines only a small number of features randomly
instead of all predictor features. After training multiple times, the decision trees are then
created randomly as a forest. The RF algorithm estimates the OOB error during the forest
construction instead of using cross-validation like other tree-based models. Finally, it
collects predictions from all weak learners and combines them using the bagging ensemble
method to perform the final predictions. Lahouar et al. conducted a day-ahead load fore-
casting using the RF technique [10]. Their research highlighted that the RF was flexible with
expert selection, load profiles, and complex customer behaviors and proved to have better
performance in all season and calendar effects. Dudek also investigated the RF algorithm,
combining regression trees with only a few parameters for short-term load forecasting
(STLF). His research also revealed that the RF had the benefit of eliminating nonstationarity
and filtering trends and seasonal cycles longer than the daily cycle [11].

The ETR algorithm, also known as extremely randomized trees, was proposed by
Geurts et al. [5]. It is also related to the class of tree-based ensemble methods for imple-
menting classification and regression tasks. The ETR algorithm extends the randomization
of the RF algorithm. ETR uses all the training samples to train each ensemble member,
while RF uses the tree-bagging step to generate a training subset for each tree. When
splitting the tree, ETR randomly selects the best feature and its corresponding value to
reduce overfitting and obtain better performance than RFR [12]. Gabriel analyzed electric
load forecasts using ETR, XGBoost, and statistical time series models. In their research,
ETR provided the best forecasting performance over traditional time series methods in the
case of lengthier historical load data [13]. Alawadi et al. also proved that the increment
in forecasting time does not affect the accuracy of ETR after comparing it with multiple
ML algorithms on indoor temperature forecasting, considering user comfort levels, and
reducing energy consumption [14].

Among the most prominent ensemble ML algorithms, gradient boosting machine
(GBM) algorithms are also popular because of their high flexibility and interpretability
achieved by transforming weak learners into strong learners. In the case of regression
or classification, their procedures involve multiple weak learners trained sequentially by
reweighting the original training data. The final prediction is performed using a weighted
majority vote of sequentially trained learners. Friedman proposed a statistical view of
boosting as an additive logistic regression model in the early 20th century [15]. Subse-
quently, it was extended as the estimation of a function by optimizing a loss criterion via a
steepest gradient descent in the function space [16,17]. Some recent boosting variants such
as extreme gradient boosting (XGBoost) [18], light gradient boosting machine (LGBM) [19],
and categorical boosting (CatBoost) [20] have been developed by focusing on the increment
of speed and predictive performance, and achieved robustness results in real applications
and forecasting competitions. In recent years, boosting-tree-based algorithms have been
widely applied in many areas, namely, computer vision [21], biology [22], chemistry [23],
energy [24], etc. In particular, boosting has provided great advances in the energy sector in
terms of highest predictive performance [25–27].

Fix and Hodges first introduced the nearest neighbor method as nonparametric clas-
sification, one of the most straightforward techniques in predictive mining [28]. This
method provides the actual regression function without making strong assumptions for
the estimation. It is easily understandable as kernel and nearest neighbors regression
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estimators are local univariate estimators. The K-nearest neighbors (KNN) algorithm was
proposed to find K training samples closest to the target in the training set [29]. The most
relative K value is chosen based on the nearest distance to classify the input features. The
majority of K-nearest neighbors then gather a similar group of the specific input training
set. Therefore, the KNN algorithm mainly depends on the distance and voting function of
the selected optimal value of K. Fan et al. applied the KNN algorithm to classify Chinese
load patterns to improve the accuracy of STLF [30]. In their research, the Euclidean distance
function was used as the weight of KNN for a better load classification. Moreover, the
KNN algorithm was utilized to classify and predict hourly energy consumption data in
the work of Wahid and Kim. They revealed the effectiveness of the KNN algorithm by
observing hyperparameters [31].

It is hard to make a reliable prediction of the decision-making process in the energy
sector because of asymmetric information. The proper forecasting method with symmetric
errors must be selected to obtain better predictions to overcome this. Accordingly, in this
paper, seventeen ML were trained and their forecasting performances compared using
error measurements. After comparing seventeen ML algorithms, this research aimed to
fit a voting regressor, which combined the five best ML models, including ETR, RFR,
LGBM, GBM, and KNN. We included meteorological data to train all ML algorithms,
including temperature, humidity, wind speed, etc. These features primarily affect energy
consumption due to seasonal effects along with meterological conditions. Our ensemble
proposed model could improve forecasting error using the five best ML models.

1.1. Contribution

The highlighted contributions of this research are as follows:

1. A forecasting performance comparison of seventeen ML algorithms on a training set
using error metrics was conducted during the training process.

2. The top five ML algorithms, namely ETR, RFR, LGBM, GBR, and KNN, that had
minimum errors were selected and combined to build the proposed VR algorithm.

3. To conduct final predictions and improve accuracy, our ensemble VR model performed
a majority voting and selected the best predictions among the five ML algorithms.

4. The performance evaluation was finally conducted by comparing the proposed model
and the five standalone ML and ARIMA models.

1.2. Paper Structure

The arrangement of this paper is described as follows. Existing researches on energy
forecasting using different forecasting models are reviewed in Section 2. In Section 3, the
primary proposed system is presented, which involves information about data collection,
data analysis, input selection, and system modeling. Generated results of all models are
discussed and compared in Section 4. The conclusion of this paper takes place in Section 5.

2. Prior Works

In recent years, ML algorithms have been commonly used in many research areas to
lessen the workload. For instance, the GBM model has been proposed in many applica-
tions using different data such as image processing, bilogical data, chemical data, energy
data [21–24]. In the study of Wu et al., the GBM-based multiple kernel learning (MKL)
was proposed with the extension of transfer learning algorithms, including antagonistic,
homogeneous, and heterogeneous. Their proposed framework on STLF provided better
results than baseline models [32]. During the global energy forecasting competition 2012,
Lloyd also applied the GBM algorithm and Gaussian process regression with three different
kernel functions that were proven very effective for predictive modeling and load forecast-
ing [33]. In the work of Friedrich and Afshari, the transfer function model was applied
using load data from Abu Dhabi for one-day and two-day forecasting, and results were
compared with autoregressive integrated moving average (ARIMA) and artificial neural
network (ANN) [34].
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The principles of similar pattern-based methods affecting short-term load forecasting
(STLF) were presented by Dudek. Afterward, similar pattern-based local linear regression
models were proposed using Polish power system data for STLF. His proposed stepwise
and lasso regressors outperformed other benchmark models: ARIMA, ANN, exponential
smoothing, and Nadaraya–Watson estimator [35–37]. For load forecasting, KNN and
support vector machine (SVM) methods were implemented, whereas the feature selection
was conducted by a DT regression and recursive feature elimination (RFE) [38]. Even
though these above-mentioned ML standalone algorithms provide good results for energy
forecasting, some algorithms often can not handle complex nonlinear relationships and
have computational efficiency. Considering the weakness of ML algorithms, hybridizing
two or more advanced algorithms can be considered to generate reliable forecasts by
enhancing their performance.

The ensemble method based on two ML algorithms, such as variational mode decom-
position (VMD) and extreme learning machine (ELM) was proposed for multi-step ahead
load forecasting. This proposed model was optimized by differential evolution algorithms
using two electric load series [39]. Likewise, the combination of DT and SVM using smart
meter data was proposed for one-week test predictions by Zhang et al. and obtained better
forecasting performance [40]. Jihoon et al. also performed a hybrid method that combined
RFR and multilayer perceptron (MLP) using power consumption data to predict one week
ahead. Better forecasting accuracy was obtained by using their hybrid model over stan-
dalone forecasting ML models [41]. The ensemble model including cat-boost (CB), GBM,
and MLP joined along with feature selection by genetic algorithm (GA) was conducted and
compared with other ML baseline models in the work of Khan and Byun. Moreover, they
also hybridized XGBoost, SVM regression, and KNN regressor algorithms. Their results
showed that the ensemble approach could improve the forecasting accuracy [42].

In addition, some authors created ensembles in two ways, averaging and stacking,
by combining SVM, RFR, and deep belief network (DBN) forecasting models in solar
power forecasting [43]. The SVM model was used to generate forecasts, and these results
were combined by using the RFR model for solar power forecasting in the cited work [44].
Similarly, three different ensemble methods, namely, linear, normal distribution, and
normal distribution with additional features, using seven ML algorithms were proposed
by Mohammed and Aung. Their proposed methods were compared and outperformed
statistical models [45]. Tree-based ensemble methods such as RFR and ETR were applied to
the prediction of photovoltaic generation output, and their predictive results were better
than SVM [46]. According to the improved accuracy and the confidence level of the forecasts
from the above-mentioned cited papers, combining two or more forecasting models is a
noticeably better approach than applying single algorithms. Therefore, this paper also
adopts an ensemble technique, which votes among five ML algorithms to improve the
forecasting accuracy.

3. Proposed System

This section mainly presents a detailed explanation of our proposed system, including
data collection, data analysis, input selection, and system modeling.

3.1. Data Collection

Our energy consumption data was collected from four primary energy sources such
as fossil-fuel-based energy (FF), behind-the-meter (BTM), photovoltaic (PV), and wind
power sources (WP). We denoted our actual energy data as Total_Load in MW, which were
used for target variables. Jeju Island has four regions, the so-called JEJU-SI, SEOGWIPO,
SEONSAN, and GOSAN. Each area has its own weather station that provides nine weather
features. As we used Total_Load for the whole Jeju Island, we also aggregated all weather
information by averaging the percentages of the whole island corresponding to each region.
Accordingly, 50% of JEJU-SI, 30% of SEOGWIPO, 10% of SEONSAN, and 10% of GOSAN
data were used. Therefore, nine weather features were considered: three temperature
features, including the average temperature (Total_TA), the temperature of dew point
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(Total_TD), and the sensible temperature (Total_ST) measured in degree Celsius (◦C), the
humidity (Total_HM) in %, the wind speed (Total_WS) in m/s, the wind direction degree in
degree (◦), the atmospheric pressure on the ground (Total_PA) in hPa, the discomfort index
(Total_DI), and the solar irradiation quantity (Total_SI) in (Mj/m2). The source information
of collected load and weather data is described in Figure 1.

Figure 1. The source information of collected load and weather data.

3.2. Data Analysis and Input Selection

The descriptive statistics for each variable are indicated in Table 1. As our target
variable is Total_Load, we considered the load from yesterday (Yes_Load) as one of the
independent variables. Consequently, there were ten input variables, including Yes_Load
and nine weather variables, to forecast the next day’s load. The minimum (Min), maximum
(Max), mean (µ), standard deviation (SD), and coefficient of variation (CV) were calculated
to see the extent of our variables. The mathematical expressions of µ, SD, and CV are:

µ = ∑ x/n (1)

SD =
√

∑ (x− µ)2/(n− 1) (2)

CV = SD/µ (3)

where x are the observations and n is the number of observations.
In terms of CV in Table 1, all input variables except Total_SI obtained CV values

less than 1, meaning a low variance in the data. However, the last variable had a high
variance, showing a 1.67 CV value. To better understand the data, the correlation coefficient
(ρ) of Spearman was determined to catch nonlinear monotonic correlation between two
variables, as represented in Figure 2. It indicates a value between −1 and +1 and assumes a
negative ρ is negatively correlated, while a positive one is positively correlated. There is no
correlation between the two variables if the correlation coefficient is zero. Regarding the
correlation diagram, Total_Load has a positive correlation with Yes_Load and vice versa.
It is negatively correlated with Total_TA, Total_TD, Total_HM, Total_DI, and Total_ST,
whereas there is close to zero correlation with Total_WS, Total_WD, Total_PA, and Total_SI.
The Spearman’s rank correlation coefficient (ρ) can be formulated as follows:

ρ = 1− (6 ∑ d2
i )/n(n2 − 1) (4)

where di is the difference between the two ranks of each observation and n is the number
of observations.
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Table 1. Descriptive statistics of input variables.

No Variables Min Max Mean SD CV Unit

1 Total_Load 233 951 629.56 103.32 0.16 MW
2 Yes_Load 233 951 629.56 103.32 0.16 MW
3 Total_TA −2.40 33.80 16.81 7.98 0.47 ◦C
4 Total_TD −10.70 28.30 11.46 9.48 0.83 ◦C
5 Total_HM 21 99.20 72.33 14.67 0.20 %
6 Total_WS 0 22.40 3.04 1.46 0.48 m/s
7 Total_WD 0 360 190.55 84.52 0.44 ◦

8 Total_PA 704.30 1032.40 1011.90 11.68 0.01 hPa
9 Total_DI 30.10 86.50 61.97 12.35 0.20 -
10 Total_ST −7.40 33.80 16.24 8.81 0.54 ◦C
11 Total_SI 0 2.40 0.32 0.54 1.67 Mj/m2

Figure 2. Correlations for all variables.

3.3. System Modeling

The overall workflow of the proposed system is revealed in Figure 3. Initially, three-
year raw data, including load and meteorological features, were loaded into the training
process. Secondly, feature engineering involved data cleaning, data arrangement, and
data splitting. In the process of data cleaning, we checked missing values and outliers
in the raw data and then replaced outliers by moving averages. Cleaned data were then
arranged according to ten independent variables and one target variable in order to train
the ML algorithms. The next step consisted in splitting the arranged data into two sets,
training and testing, based on predefined duration. The training data were provided to
the training process of the model selection that was conducted using the so-called function
compare_models from the PyCaret open source package. From this stage, seventeen ML
models were generated from the training data, and error metrics among all models were
compared. We then selected the five top ML algorithms with minimum errors and trained
them to perform test predictions. Each single ML model performed predictions using one-
year testing data. In Figure 3, ŷETR, ŷRFR, ŷLGBM, ŷGBR, ŷKNN represent the predictions of
each ML model. Afterward, these five algorithms were combined to build a voting regressor
(VR) algorithm that voted the best predictor among them, to fit the final trained VR. Final
predictions of the trained VR (ŷVR) on the testing set were executed. The evaluation of the
proposed model was finally accomplished using error measurements. Five ML algorithms
and the ARIMA model were compared with the proposed model with the purpose of a
monthly result comparison.
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The detailed error comparison of seventeen ML algorithms during the training process
is indicated in Table 2. The computation time of each trained algorithm was also evaluated
and is shown in the comparison table. The error performance on each algorithm was
checked, and then we selected the top five algorithms with minimum errors among all.
ETR, RFR, and LGBM models provide forecasting MAPEs of approximately 3% regardless
of computing time. GBR and KNN have MAPEs of 3.7% and 4%, respectively. All the other
ML models except Ada, PAR, and LLAR achieve MAPEs over 4% in energy forecasting.
Ada and PAR obtain MAPE of about 5% and 6%, which can be considered acceptable
performance. However, the LLAR algorithm is unsuitable for energy forecasting because it
has the highest errors in all measurements.

During the training module, each trained forecasting model was fitted together with
different parameters. Both ETR and RFR algorithms were trained with the number of trees
in the forest (n_estimators = 100) and split criteria (MSE). Likewise, the LGBM and GBR
algorithms used the same parameters and a 0.1 boosting learning rate. The alpha-quantile
of the Huber loss function was fixed at a value of 0.9 for the GBR algorithm. Unlike the first
four algorithms, the KNN model uses a local interpolation of the targets associated with the
nearest neighbors in the training set to predict the target. Therefore, five neighbors, a leaf
size of thirty, and standard Euclidean metric functions were tuned in the KNN algorithm.
The order of the AR model (p), degree of differentiating (d), and order of the MA model (q)
were, respectively, defined as one, zero, and one, to train the time series ARIMA model.
The main criterion of the ARIMA model was Akaike’s information criterion (AIC) that
estimates the relative quality of statistical models for a given set of data. In this research,
all experiments were conducted with Google Colab Jupyter using a desktop machine with
the following specifications: 11th Gen Intel Core i7 5.00 GHz processor, 16 GB RAM, 64-bit
operating system, x64-based processor.

Figure 3. The workflow of the proposed ML-based ensemble voting regression mechanism.



Symmetry 2022, 14, 160 8 of 13

Table 2. Comparison of error metrics and computation time for all trained ML algorithms.

No ML Algorithm MAPE
(%)

MAE
(MW)

MSE
(MW2)

Time
(s)

1 Extra trees regressor (ETR) 3.10 19.37 726.74 2.79
2 Random forest regressor (RFR) 3.20 20.05 771.27 5.88
3 Light gradient boosting machine (LGBM) 3.40 20.88 808.37 0.40
4 Gradient boosting regressor (GBR) 3.70 22.71 947.63 1.40
5 K neighbors regressor (KNN) 4.00 25.06 1175.54 0.08
6 Bayesian ridge (BR) 4.20 25.77 1281.17 0.02
7 Linear regression (LR) 4.20 25.78 1281.17 0.16
8 Lasso regression (Lasso) 4.10 25.73 1286.85 0.03
9 Ridge regression (Ridge) 4.20 25.78 1281.17 0.02
10 Huber regressor (Huber) 4.10 25.44 1300.88 0.19
11 Elastic net (EN) 4.20 25.83 1305.45 0.03
12 Orthogonal matching pursuit (OMP) 4.30 27.07 1427.19 0.02
13 AdaBoost regressor (Ada) 5.20 30.61 1474.62 0.72
14 Decision tree regressor (DT) 4.40 27.26 1549.40 0.10
15 Least angle regression (LAR) 4.80 29.66 1648.04 0.02
16 Passive aggressive regressor (PAR) 6.60 41.37 2890.09 0.03
17 Lasso least angle regression (LLAR) 13.20 79.50 9831.52 0.02

4. Result and Discussion

In this section, the accuracy of each model is computed on test predictions to compare
monthly forecast results. To measure the accuracy of each month, MAPE, MAE, and MSE
were chosen, and their mathematical expressions are as below:

MAPE = 1/t(
24

∑
t=1
|yt − ŷ|/yt)× 100% (5)

MAE = 1/t
24

∑
t=1
|yt − ŷ| (6)

MSE = 1/t
24

∑
t=1

(yt − ŷ)2 (7)

where,
yt = actual energy value at time t,
ŷ = predicted energy value of y at time t,
t = hourly period per day.

The forecasts of the proposed model are discussed and compared with the results of the
six benchmark models. Correspondingly, the comparisons of monthly MAPE, MAE, and
MSE are indicated in Tables 3–5, respectively. Overall, the proposed VR model outperforms
other forecasting baseline models in all error measurements, with an MAPE of 4.28%, MAE
of 29.33 MW, and MSE of 1549.51 MW2. We can rank LGBM and GBR models as second
because they provide better accuracy than others, showing a MAPE around 4.3%, MAE
of 29 MW, and MSE of 1580 MW2 each. Next, both ETR and RFR models have an MAPE,
MAE, and MSE of about 4.4%, 30 MW, and 1650 MW2, respectively. The KNN model is
ranked last among all ML algorithms, with an MAPE of 4.66%, MAE of 31.66 MW, and
MSE of 1854.29 MW2. Against our proposed VR and other ML models, the statistical time
series ARIMA model has the worst performance, with an MAPE, MAE, and MSE of over
12%, 87 MW, and 12,000 MW2, respectively. Therefore, all ML models generally provided
adaptable accuracy performance because five ML benchmark models were chosen from the
top performing among seventeen ML models during the training process.



Symmetry 2022, 14, 160 9 of 13

Table 3. Monthly MAPE comparison between the proposed model and six baseline models in percent.

ETR RFR LGBM GBR KNN ARIMA Proposed VR

June 3.59 3.62 3.28 3.31 3.77 11.48 3.31
July 4.50 4.59 4.47 4.38 4.25 16.97 4.24
August 4.35 4.33 4.58 4.56 5.09 18.73 4.36
September 4.48 4.52 4.38 4.20 4.70 13.41 4.20
October 3.34 3.24 3.03 3.11 3.60 11.15 3.14
November 3.40 3.41 3.35 3.43 3.71 8.07 3.32
December 4.85 4.83 4.70 4.70 5.16 12.59 4.71
January 5.34 5.33 5.26 5.27 5.44 18.05 5.20
February 6.04 6.23 6.02 6.20 6.66 15.39 6.10
March 5.08 5.23 4.91 4.81 5.11 10.68 4.89
April 4.58 4.67 4.45 4.40 4.67 7.44 4.43
May 3.64 3.70 3.46 3.54 3.92 8.14 3.52

Average 4.42 4.46 4.31 4.32 4.66 12.68 4.28

All forecasting models except ARIMA react with almost similar accuracy in terms
of all error metrics for all months. Consequently, the proposed ensemble VR model was
mainly selected to analyze MAPE measurements of each month. A lower MAPE at around
3% is observed in June, October, and November, followed by 3.5% in May, which has many
holidays. The MAPEs increase to just over 4% in July, August, September, and April and
approximately 5% in December, January, and March. The highest MAPE in all ML models
occurs at around 6% because of holidays and heat consumption in February, while the
ARIMA model obtains 15.39%.

Table 4. Monthly MAE comparison between proposed model and six baseline models in MW.

ETR RFR LGBM GBR KNN ARIMA Proposed VR

June 22.24 22.46 20.25 20.32 22.75 62.16 20.38
July 33.47 34.09 33.35 32.58 30.77 127.91 31.50
August 34.22 33.86 36.19 36.26 40.13 151.54 34.56
September 28.22 28.56 27.53 26.08 29.09 77.94 26.27
October 19.25 18.75 17.48 17.98 20.75 57.60 18.20
November 20.57 20.63 20.34 20.83 22.42 46.02 20.16
December 34.05 34.00 33.22 33.27 36.37 92.02 33.27
January 41.16 40.97 40.55 40.71 41.54 141.64 40.01
February 44.25 45.57 43.98 45.27 48.40 116.95 44.57
March 35.48 36.66 34.12 33.58 35.34 77.44 34.11
April 29.46 36.66 28.52 28.16 29.81 48.49 28.41
May 21.94 22.04 20.85 21.29 23.44 45.37 21.23

Average 30.30 30.57 29.64 29.63 31.66 87.16 29.33
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Table 5. Monthly MSE comparison between proposed model and six baseline models in MW2.

ETR RFR LGBM GBR KNN ARIMA Proposed VR

June 925.66 957.60 811.24 834.40 919.92 6202.86 790.07
July 1925.44 2018.45 1910.07 1831.40 1786.87 24,061.93 1737.92
August 2112.71 2050.42 2348.14 2309.57 3165.23 33,180.54 2186.10
September 1356.39 1381.26 1263.88 1180.53 1502.92 8314.91 1175.74
October 679.66 662.24 555.97 567.94 772.93 5604.40 603.30
November 724.45 739.55 704.54 728.45 887.75 3226.72 701.97
December 1778.52 1803.59 1733.20 1736.54 2115.47 12,465.83 1732.65
January 2729.31 2682.77 2618.84 2648.64 2908.46 24,611.42 2582.60
February 3289.47 3452.91 3228.47 3345.29 3930.38 18,199.15 3305.67
March 2039.32 2173.71 1890.86 1859.06 2049.58 9063.55 1881.25
April 1330.22 1399.04 1253.99 1264.37 1429.82 4048.37 1257.31
May 790.84 801.67 732.51 734.64 895.44 3204.19 735.05

Average 1632.80 1668.55 1580.60 1578.79 1854.29 12,715.92 1549.51

Furthermore, we also calculated the seasonal MAPE to check whether season effects
affected energy consumption as Korea has four seasons: spring, summer, fall, and winter.
The seasonal MAPE comparison between the proposed VR and baseline models is indicated
in Table 6. Regardless of the models, it can be observed that the fall season has the lowest
MAPE with 3.5% for all ML models because of less energy consumption. In the winter,
people consume more electricity than usual due to the cold weather and heating system,
showing an MAPE of about 5%. Spring is the season between winter and summer, so the
MAPE is a little higher than summer because of weather effects. The KNN and ARIMA
models provide a worse MAPE than that of the other models in all seasons.

Table 6. Seasonal MAPE comparison between our proposed model and six baseline models in percent.

ETR RFR LGBM GBR KNN ARIMA Proposed VR

Spring 4.44 4.52 4.27 4.25 4.57 8.77 4.28
Summer 4.15 4.19 4.12 4.10 4.38 15.78 3.98
Fall 3.74 3.72 3.58 3.58 4.00 10.88 3.56
Winter 5.39 5.44 5.31 5.37 5.72 15.35 5.32

The difference between actual energy and predictions of all ML models for the best
week is shown in Figure 4. The best week predictions of all models can be observed in the
second week of October 2018. Thus, it is evident that predictions of all models perform very
well. In the Figure, the actual energy and prediction of the proposed model are shown as a
blue line and red dash line, respectively. In contrast, the predictions of other benchmark
models are denoted as a green line for ETR, a black line for LGBM, a purple line for RFR,
an aqua line for GBR, and an orange line for KNN. All models predict almost precisely the
actual energy, although some gaps occur on 8 October and 10 October. The predictive load
fluctuation varies from 450 MW to over 600 MW.
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Figure 4. The comparison between actual and prediction on best predicted week of all models.

Moreover, the best predicted day was excluded from all tested days to explore how
the minimum accuracy of our proposed voting regressor performs. It is presented in
Figure 5, where individually, blue, red, and orange-dashed lines represent the actual energy,
prediction, and MAPE, respectively. On 17 October 2018, the proposed model obtained an
average MAPE of around 0.845%. MAPEs of less than 1% are achieved during the whole
day, except for high MAPEs at night. Subsequently, our proposed model could improve
the forecasting performance based on the generated relevant results.

Figure 5. The best predicted day of the proposed model.

5. Conclusions

This paper primarily targeted multiple ML algorithms on a training set and compared
them using error metrics. Five ML regressors with minimum errors were then chosen to
build the proposed VR model during the training process. Our proposed ensemble VR
model voted the best predictor on each test point among five ML algorithms and predicted
the outcomes on the whole testing set. In the experiment, three-year hourly based energy
data were applied along with meteorological data collected from four different stations.
The duration of the test predictions for all forecasting models ranged from June 2018
to May 2019. Three error metrics, MAPE, MAE, and MSE, were measured monthly to
test the predictions of all models. According to the error measurements, our proposed
model provided a higher accuracy than the other five standalone ML models and statistical
ARIMA model, contributing to an average MAPE of 4.28%. Thus, we could improve the
forecasting accuracy by applying our ensemble model trained on different datasets in
other areas.
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