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Abstract: The complexity of network intrusion detection systems (IDSs) is increasing due to the
continuous increases in network traffic, various attacks and the ever-changing network environment.
In addition, network traffic is asymmetric with few attack data, but the attack data are so complex that
it is difficult to detect one. Many studies on improving intrusion detection performance using feature
engineering have been conducted. These studies work well in the dataset environment; however,
it is challenging to cope with a changing network environment. This paper proposes an intrusion
detection hyperparameter control system (IDHCS) that controls and trains a deep neural network
(DNN) feature extractor and k-means clustering module as a reinforcement learning model based
on proximal policy optimization (PPO). An IDHCS controls the DNN feature extractor to extract
the most valuable features in the network environment, and identifies intrusion through k-means
clustering. Through iterative learning using the PPO-based reinforcement learning model, the system
is optimized to improve performance automatically according to the network environment, where
the IDHCS is used. Experiments were conducted to evaluate the system performance using the
CICIDS2017 and UNSW-NB15 datasets. In CICIDS2017, an F1-score of 0.96552 was achieved and
UNSW-NB15 achieved an F1-score of 0.94268. An experiment was conducted by merging the two
datasets to build a more extensive and complex test environment. By merging datasets, the attack
types in the experiment became more diverse and their patterns became more complex. An F1-
score of 0.93567 was achieved in the merged dataset, indicating 97% to 99% performance compared
with CICIDS2017 and UNSW-NB15. The results reveal that the proposed IDHCS improved the
performance of the IDS by automating learning new types of attacks by managing intrusion detection
features regardless of the network environment changes through continuous learning.

Keywords: intrusion detection system (IDS); reinforcement learning (RL); proximal policy optimiza-
tion (PPO); deep learning (DL); deep neural network (DNN); k-means; CICIDS2017; UNSW-NB15;
network security; feature extraction

1. Introduction

As the use of large-scale high-performance systems, such as cloud systems, increases,
the number of network packets also rapidly increases. Network traffic is asymmetric,
as normal data are more numerous than the attack data. In addition, due to the high
complexity of attack data, it is difficult to distinguish them from normal data, making
it challenging to detect attack data. As a result, the network intrusion detection system
(IDS) [1], which analyzes network attacks, has become more complex.

A network IDS belongs to one of two types based on the detection technique [2]. The
misuse-based IDS targets a specific pattern, and if the pattern is included in the network
traffic, it is regarded as an attack. This technique has the advantage of reliably detecting
specific attacks. The existing system environment has the advantage of having a high true-
positive detection rate for known attacks. However, this technique has the disadvantage
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that a new type of attack cannot be detected, and the detection speed is significantly lower
in a big data environment than in the existing environment.

In contrast, an abnormal behavior-based IDS detects intrusions by analyzing traffic
patterns. An abnormal behavior-based IDS analyzes the normal network traffic and consid-
ers operations that deviate from normal behaviors to be intrusions. Although this method
can detect new types of attacks, it has the disadvantage of having a high false-positive
detection rate, as it is difficult to set a threshold for normal data.

Recently, many studies in which artificial intelligence (AI) technologies are combined
have been conducted to further develop the various fields [3,4], as well as IDS. In early
studies, intrusion detection research used machine learning models, such as the decision
tree, support vector machine (SVM) and artificial neural network (ANN) [5–7]. As interest
in and research on deep learning has increased, studies that use deep learning techniques,
such as deep reinforcement learning, the recurrent neural network and the deep neural
network (DNN), have been conducted [8–10]. Although these studies have displayed high
performance on low-complexity datasets, such as KDDCUP-99 and NSL-KDD, they have
had difficulty detecting recent high-complexity attacks, such as those in the UNSW-NB15
dataset [11].

Various hybrid studies have been conducted to detect attacks with high complexity.
In [12], spark machine learning and convolutional long short-term memory hybrid algo-
rithms were used to analyze the ISCX-UNB dataset. A hybrid machine learning technique
using the k-means algorithm and SVM was proposed in [13].

Reinforcement learning is a trial-and-error-based learning system, and the number of
studies that apply reinforcement learning to IDSs is increasing. An evaluation using a deep
Q network-based algorithm was conducted on the NSL-KDD and UNSW-NB15 datasets
in [14]. In [15], an IDS was built with adversarial/multiagent reinforcement learning using
a deep Q-learning algorithm. Although these hybrid IDSs exhibited good performance on
complex datasets, such as ISCX-UNB and UNSW-NB15, the performance varied widely in
some cases, depending on the dataset.

In the study of the IDS to which reinforcement learning is applied, the learning subject
was intrusion detection data. Reinforcement learning is often used in games, autonomous
driving and smart factories as a structure to learn how to gain benefits through system
control [16–19]. This study introduces a learning method that takes advantage of the
system operation structure by applying reinforcement learning to the control part of the
IDS—a different direction from previous studies.

Because intrusion detection data have many features, they are greatly influenced by
learning. Speed degradation may occur when many features exist, and performance may be
degraded due to overfitting [20]. Thus, it is important to reduce the number of features ap-
propriately through feature engineering. Feature selection and feature extraction are widely
used in feature engineering. Feature selection simplifies features by removing features
that have no value or that overlap from the full-feature set. Feature extraction combines
the existing full-feature set to create new features. Many studies have improved the intru-
sion detection speed or increased the detection rate through feature engineering [21–23].
Prasad et al. [24] demonstrated that the effective feature selection set differs for different
attack patterns through different feature selection, even within the same dataset. However,
it is costly and challenging to perform feature extraction according to the various attack
patterns in a real environment.

Selecting valid features for feature engineering is a challenging task. An expert
who can understand and analyze the characteristics of packets should analyze the net-
work environment and select features relevant to the attack. If the network environment
changes even a little, it may be necessary to select other features. These tasks can be very
time-consuming. Moreover, the expert may respond too late to new attacks because the
environment changes quickly.

In addition, the dataset used in IDS research is quite important to the direction of
the research. Datasets used for the network packet analysis of commercial products are
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difficult to use for research due to privacy issues. Therefore, published datasets are used in
many studies as a benchmark to evaluate the IDS. Various types of datasets are used for
intrusion detection, each with its own characteristics. As the attack scenarios and types
are also different, the results of a learning algorithm are quite diverse, depending on the
dataset. In addition, because these studies are trained according to a specific dataset, there
are cases in which the results are inferior for other types of datasets [25]. Therefore, many
attacks may not be detected if an algorithm with high performance only in a specific dataset
is used without considering the network environment when introducing the IDS. Therefore,
a method that improves the IDS performance regardless of the dataset is required when
introducing the IDS in a real environment.

In this study, we propose an intrusion detection hyperparameter control system (ID-
HCS) based on reinforcement learning to solve the above problems. The IDHCS consists of
a DNN-based feature extractor and k-means-based clustering. In the IDHCS, feature extrac-
tion is performed using a deep learning system based on the DNN to respond to rapidly
changing features in each network environment. The DNN quickly analyzes characteristics
and extracts valuable data for intrusion detection. Next, clustering is performed with the
k-means algorithm to distinguish the attack data from the normal data. In addition, to
build an IDS that can quickly respond to a changing network environment, a method to
control intrusion detection hyperparameters based on reinforcement learning is developed.
The IDS studies that use reinforcement learning have generally learned using intrusion
detection datasets. However, the proposed reinforcement learning system controls and
learns the algorithm that operates the IDS.

In machine learning modeling, the value set by the user is called a hyperparameter.
Reinforcement learning controls and learns the feature extraction and clustering hyper-
parameters and immediately analyzes the dataset features. Even when the DNN feature
extractor and k-means clusters are not trained using reinforcement learning, good results
can be obtained when training targets on a specific dataset and detecting intrusions. How-
ever, good performance cannot be expected on datasets with even slightly different attack
patterns. Therefore, the performance of the feature extractor and k-means cluster must be
continuously adjusted through the hyperparameter control system proposed in this study.
Using this approach, the IDS automatically adapts according to the changes in the net-
work environment, and it can respond to attacks without user involvement. Performance
improvement is possible because the IDHCS finds and learns the optimal value.

The structure of this manuscript is as follows. Section 2 examines IDS studies using
machine learning. Next, Section 3 examines the structure and dataset of the proposed
system. Section 4 evaluates the performance of the proposed system and Section 5 concludes
the study.

2. Related Work

The latest network attacks take various forms, and have very high complexity as
their patterns are very similar to those of normal network traffic. The system performance
must be verified using a dataset that includes the latest attack types to respond to these
network attacks. In addition, CICIDS2017 and UNSW-NB15 are representative intrusion
detection datasets that include the latest attack types. Various studies have analyzed the
above datasets using AI algorithms.

In [26], the CICIDS2017 dataset was classified using the decision tree, naïve Bayes,
random forest and SVM methods. The experiment was conducted by extracting ten high-
value features. Naïve Bayes exhibited the best performance with an F1-score of 0.92481.
In [26], the information gain for each feature was measured by evaluating feature-based
entropy for feature selection. However, not all ten high-value features perform best in all
environments. In contrast, the proposed system uses a DNN to extract new features from
the full-feature set according to the changing environment, so there is no need to select
specific features according to the attack type. It also extracts the optimal number of features
that can detect intrusions using reinforcement learning.
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In [27], a system optimized for distributed denial of service (DDoS) detection was de-
signed by combining an autoencoder (AE) and a DNN. The AE performed hyperparameter
optimization using sparsity, unit standardization, orthogonality and a grid search, and the
DNN performed intelligent learning rate determination and optimization using hyperband
tuning. The F1-scores of 0.9835 on CICIDS2017 and 0.9857 on NSL-KDD were obtained
from training the DNN based on 25 main features obtained by the AE. In contrast, in the
proposed system, the number of features extracted from the DNN may vary, considering
that the importance of the features depends on the network environment.

In [28], an F1-score of 0.8183 was obtained on CICIDS2017 using AdaBoost, principal
component analysis (PCA) and the synthetic minority oversampling technique (SMOTE).
In addition, SMOTE was used to solve the imbalance in the training data, and the PCA and
ensemble feature selection techniques were used to select the main features.

In [29], feature selection was performed using recursive feature elimination and ran-
dom forest. The selected features classified the UNSW-NB15 dataset using the decision tree,
naïve Bayes and SVM. Naïve Bayes achieved the best F1-score of 0.824. In [27], the binary
classification technique classified even detailed attacks using the polynomial classifier. In
the proposed system, only normal and attack data are classified through clustering.

In [30], 45 features of the UNSW-NB15 dataset were extracted into four features using a
combined random forest and decision tree algorithm. An F1-score of 0.92018 was obtained
as a result of classifying the extracted features using an ANN. In this paper, as in [30],
we propose reducing the dimensionality of the data to improve detection performance.
However, the number of extracted features is not fixed to cope with the active network
environment. In addition, new features are generated through deep learning rather than by
using the importance of the features as determined by the classifier.

In the feature engineering applied in the above studies, many papers use a specific
number of features determined to achieve good efficiency in a specific dataset. As in [25],
studies focused on a specific dataset may exhibit good performance on that dataset but
may have poor results when using other datasets. However, due to the nature of IDS
research, the types of datasets used are not very diverse, so it can only be considered a
limitation. In this paper, we examine how to automate the IDS using reinforcement learning
to respond to changes in the network environment and overcome dataset limitations by
merging datasets.

3. Intrusion Detection Hyperparameter Control System

In this section, we investigate the overall structure of the IDHCS. We examine the
modules composing the IDS and main algorithms that operate each module. In addition,
we assess the characteristics of the dataset used to evaluate the IDS.

3.1. Hyperparameter Control System

We review an IDS consisting of a DNN feature extractor, a k-means clustering intru-
sion detection module and an intrusion detection hyperparameter control module using
proximal policy optimization (PPO). The configuration of the IDS is presented in Figure 1.
The preprocessing stage refines packet data and applies feature extraction, and the intru-
sion detection module identifies intrusion by clustering data. The IDS also consists of
a reinforcement learning agent that controls the preprocessor and clustering module to
improve system performance and automation. The reinforcement learning agents improve
performance by updating the policies in the preprocessors and clustering module. The
preprocessor, clustering module and reinforcement learning agent run repeatedly until a
suitable performance is achieved.
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Figure 1. Process for intrusion detection hyperparameter control system.

3.1.1. Feature Extraction Using Deep Neural Network (Preprocessor)

In the preprocessing stage, data refinement is performed to cluster incoming packet
data. The intrusion detection dataset consists of many features. When intrusion detection is
performed using all features, performance may deteriorate due to overfitting problems. As
in [24], it can be challenging to cover all attack patterns through feature selection because the
feature groups that are easy to detect for each attack type are different. Therefore, existing
features are combined and used in the proposed system through feature extraction. Many
studies have proved that using feature extraction improves intrusion detection performance
compared with using all features [31–33]. However, the number of features to extract
inevitably varies from situation to situation. Therefore, through the reinforcement learning
control algorithm, the above feature extraction conditions are controlled and features
appropriate to the situation are extracted. As illustrated in Figure 2, In the preprocessing
stage, feature extraction is performed using the DNN. The reinforcement learning algorithm
adjusts N output stages according to the learning result and extracts the optimal features
for intrusion detection. The number of features input into the preprocessor depends on the
dataset used. For example, CICIDS2017 uses 78 features and UNSW-NB15 uses 48 features.
The input data go through the hidden layer of the DNN and come out as the N output
value. The N value is determined by reinforcement learning, and is used to determine the
intrusion in the clustering algorithm through the extracted features.

Figure 2. Deep neural network (DNN)-based feature extractor.
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3.1.2. k-Means Cluster Module

In the clustering intrusion detection module, the attack and normal data are clustered
using features extracted from the DNN. The k-means [34] method is used as the clustering
algorithm and the characteristics of features are analyzed and classified into k clusters.
Additionally, k-means is divided into k clusters according to the similarity of the given data.
Through continuous learning, new data can be quickly classified if a well-established center
point exists for attack and normal data. This paper aims to respond quickly to the rapidly
changing network environment. Other supervised learning-based systems detect intrusion
based on the learned network pattern. It can be used in a single system where the network
environment does not change quickly, such as an IDS dedicated to a web or search server.

In this study, however, similar data are clustered using the unsupervised k-means
clustering algorithm to cope with the rapidly changing network environment. The most
important thing in k-means is to set the number of clusters. Data in the IDS can be classified
into two types, attack and normal data, but upon close examination, several patterns exist
in attack and normal data. Normal activities, such as database access and log searches,
have different characteristics and attack patterns, such as a port scan and denial of service
(DoS), which also have different characteristics. If there is attack data between different
normal patterns, the attack cannot be detected if it is clustered into two groups.

Therefore, it is necessary to find the optimal number of clusters to classify the attack
and normal patterns in detail according to the network environment. As the number of
clusters increases, the probability of detecting an intrusion may increase as data can be
classified more precisely, but this is not necessarily the case. In addition, it is challenging to
determine the optimal number of clusters as the detection time can increase significantly as
the number of clusters increases. In this study, the number k of the clustering algorithm is
controlled and learned through the PPO algorithm to determine the optimal value.

3.1.3. Intrusion Detection Hyperparameter Condition Controller

The intrusion detection control algorithm proposed in this study is a method that
enables the automation and improved performance of the IDS by controlling feature extrac-
tion and clustering methods using PPO. The reinforcement learning algorithm is based on
trial and error, and is divided into model-based and model-free methods depending on the
existence of an environmental model [35]. Reinforcement learning in model-based methods
is a learning method that enables efficient behavior, knowing how the environment will
change according to the behavior. The model-free method is used when it is difficult to
build a model for the environment, and it is a model that learns with higher rewards by
passively acquiring the next state and reward.

In this study, we introduce a model-free method so that the reinforcement learning
environment can learn how to receive a high reward through manipulation the IDS. In
addition, the model-free-based reinforcement learning algorithm can be classified into a
policy optimization method and a Q-learning method. The policy optimization method
seems more suitable for stably improving the performance of the IDS.

Algorithms related to model-free based policy optimization include actor-critic [36]
and asynchronous advantage actor-critic (A3C) [37], focusing on parallel training in the
actor-critic method and advantage actor-critic (A2C) [37] to solve agent update problems
due to asynchronous A3C. In addition, such algorithms as soft actor-critic [38], which
encourages exploration by incorporating the measures of policy entropy into rewards, are
widely used. Moreover, deterministic policy gradient (DPG) [39]-type algorithms model
the reinforcement learning policy as a deterministic decision. Deep DPG (DDPG) [40]
combines deep Q network and DPG, and has been improved to learn high-dimensional
continuous action space policies. In addition, such algorithms as distributed distribution
DDPG [41] partially improve DDPG and execute it in a distributed way. The multiagent
DDPG [42] extends DDPG to an environment where multiple agents complete tasks with
only local information.
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The trust region policy optimization (TRPO) [43] algorithm was created to reliably train
DNN policies in a controlled state. It is a method of learning complex policies through an
objective function called a surrogate. However, TRPO is complex and difficult to implement.
To solve this problem, Schulman [43] developed a simpler and more generalized PPO
algorithm [44] than TRPO. This PPO algorithm is similar to TRPO, but is relatively simple
and easy to implement. In this study, The PPO algorithm was introduced for the stable
operation and performance of the IDS. The PPO algorithm, which performs well in many
environments [45,46], was expected to perform well in the operation of the IDS.

Algorithm 1 increases the performance of the IDS by manipulating the DNN feature ex-
tractor and k-means cluster module using the tuned PPO. The policy optimizes the number
of features extracted by the DNN feature extractor and the k value of the k-means cluster
module. The objective function for policy optimization is obtained in Equation (1) [44]:

LCLIP+VF+S
t (θ) = Êt

[
LCLIP

t (θ)− c1LVF
t (θ) + c2S[πθ ](St)

]
(1)

Algorithm 1: Update IDHCS policy Using PPO

Input: D//Intrusion Detection Dataset (CICIDS2017 or UNSW-NB15 or both)
Begin
Initialize: I//The number of features to extract.
Initialize: K//The number to cluster.
for iteration = 1,2, . . . do
F(F0, F1, . . . , Fn−1 ) = DNNFeatureExtractor(D, I)//A extracted features by DNN.
S = KmeansCluster(F, K)//F1 score obtained by k-means Cluster
for actor = 1,2, . . . ,M do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt, θ, with K epochs and minibatch size M ≤ NT
θold ← θ

I, K = updatepolicy(θ)
end for
end;

3.2. Datasets

We used several intrusion detection dataset types verified and published for evaluating
IDSs. Datasets can be classified according to whether complete packets, real data, zero-day
attacks and modern attacks are included [47]. The KDDCUP-99 and NSL-KDD datasets
produced by defense advanced research projects agency have been used in many studies
in IDS research on abnormal behavior [48]. The above datasets have had a tremendous
influence on the development of IDSs, but many parts are unsuitable for use now due to
outdated attacks, lack of attack data complexity and lack of attack variety two decades
after they were published. In addition, the University of New Brunswick (UNB) published
datasets such as CICIDS2017, which include the latest attacks. Old datasets are unsuitable
for use due to their limitations in traffic diversity and volume, lack of anonymized packet
information and payload and restrictions on a diversity of attacks [49]. Therefore, we built
an IDS that can detect various attacks by reducing dependency on the dataset using two
reliable datasets that include the latest attacks.

The datasets in this study are CICIDS2017 and UNSW-NB15. The experiment was
conducted using each dataset independently. In addition, the two datasets were merged
and tested to confirm whether the reinforcement learning algorithm is trained to determine
an intrusion according to a change in the network environment. The characteristics of each
dataset are discussed as follows.
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3.2.1. CICIDS2017 Dataset

The UNB published 11 intrusion detection datasets between 1998 to 2016, which
helped many IDS studies. However, it was recognized that these datasets were insuffi-
cient in analyzing modern network patterns due to their lack of data volume and attack
diversity. Therefore, according to modern network trends, UNB published CICIDS2017,
which includes seven attack types: brute force, DoS, Heartbleed, web attack, infiltration,
botnet and DDoS. In addition, CICIDS2017 was produced by capturing packets based on
the contents of the attacks during working hours from 9:00 a.m. to 5:00 p.m. for five days
from Monday, 3 July to Friday, 7 July 2017. Moreover, CICIDS2017 established ten criteria
(listed in Table 1) to evaluate the reliability of the dataset.

Table 1. Criteria of CICIDS2017 [50].

Criteria Explanation

Complete network configuration The complete network topology includes modems, firewalls, switches, routers and various
operating systems such as Windows, Ubuntu and Mac OS X.

Complete traffic Deploy a user profiling agent and 12 different systems into real attacks from the victim and
attack networks.

Labelled dataset Details of attack timing are published in the dataset document

Complete interaction CICIDS2017 covers both internal local area networks through two different networks and
Internet communication

Complete capture CICIDS2017 log all traffic to the storage server using a taping system and mirror port.

Available protocols All available common protocols such as HTTP, HTTPS, FTP, SSH and email protocols,
are provided.

Attack diversity Includes the most common attacks, such as web-based, brute force, DoS, DDoS, infiltration,
Heart-bleed, bot and port scan, based on a 2016 McAfee report.

Heterogeneity During the attack execution, network traffic is captured from the main switch and memory
dump and system calls are captured from all targeted systems.

Feature set CICIDS2017 uses CICFlowMeter to extract more than 80 network flow features from
generated network traffic and pass the network flow dataset as a CSV file.

Meta data Fully described dataset with time, attack, flow and labels in the published article.

Additionally, CICIDS2017 consists of eight files and attacks were carried out on each
day of the week. The composition of each file is presented in Table 2. In this experiment, all
files were integrated and the experiment was conducted as one file.

Table 2. CICIDS2017 components.

Filename No. Benign No. Malicious

Monday-WorkingHours 529,918 0
Tuesday-WorkingHours 432,074 13,835

Wednesday-WorkingHours 440,031 252,672
Thursday-WorkingHours-Morning-WebAttacks 168,186 2180
Thursday-WorkingHours-Afternoon-Infiltration 288,566 36

Friday-WorkingHours-Morning 189,067 1966
Friday-WorkingHours-Afternoon-PortScan 127,537 158,930

Friday-WorkingHours-Afternoon-DDos 97,718 128,027
Total 2,273,097 557,646

Table 3 lists the number of data observations in CICIDS2017 by type. Of 2,830,743 data
observations, about 80% are normal data and about 20% are attack data. In addition, the
seven types of attacks consist of 14 different types of detail attacks. This dataset is suitable
for judging the performance of the IDS.
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Table 3. CICIDS2017 data by type.

Data No Data No

Benign 2,273,097 DoS Slowhttptest 5499
DoS Hulk 231,073 Bot 1966
PortScan 158,930 Web Attack Brute Force 1507

DDoS 128,027 Web Attack XSS 652
DoS GoldenEye 10,293 Infiltration 36

FTP_Patator 7938 Web Attack SQL Injection 21
SSH_Patator 5897 Heartbleed 11

DoS slowloris 5796

3.2.2. UNSW-NB15 Dataset

Unlike CICIDS 2017, UNSW-NB15 [51] is not generated from a real environment but
comprises actual modern normal activities and synthetic attack behaviors created by IXIA
PerfectStorm [52]. It includes nine attacks, including DoS, worms, backdoors and fuzzers.
The UNSW-NB15 dataset consists of four files, and each component is provided in Table 4.

Table 4. UNSW-NB15 components.

Filename No. Benign No. Malicious

UNSW-NB15_1 677,786 22,215
UNSW-NB15_2 647,252 52,749
UNSW-NB15_3 542,576 157,425
UNSW-NB15_4 351,150 88,894

Total 2,218,764 321,283

Table 5 presents the number of data observations of UNSW-NB15 by type. Among the
2,540,047 data observations, about 87% are normal data and about 13% are attack data.

Table 5. UNSW-NB15 data by type.

Data No Data No

Benign 2,218,764 Reconnaissance 13,987
Generic 215,481 Analysis 2677
Exploits 44,525 Backdoor 2329
Fuzzers 24,246 Shellcode 1511

Denial of Service 16,353 worms 174

Among the attack types in each dataset, only DoS is duplicated. In the case of CI-
CIDS2017, it is not known how similar the attack types are, because DoS attacks are divided
into four kinds of attacks. However, the above two datasets have very different attack types,
so if the two datasets are combined, they can be used to detect a wide range of attacks.
Therefore, when two dataset types are used, it is very useful in evaluating the performance
of the IDS in terms of the ability to detect new attack types.

4. Experimental Result
4.1. Experimental Overview

In this section, we measure the performance of the proposed system in terms of
the F1-score. First, the measurement elements in the experiment are explained and the
proposed system operation process and experimental results are described. The goal of
the experiment was to demonstrate that qualitative and quantitative learning is possible,
regardless of the type of dataset, using the IDHCS.
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4.2. Experimental Environment

We conducted experiments in the following environments to evaluate the IDHCS. The
proposed IDHCS was implemented in the Keras [53] environment with a 3.2 GHz CPU
(AMD Ryzen 7 2700 8-Core) with a 32 GB RAM, RTX-2080Ti GPU, using Python 3.7.3 and a
64-bit Ubuntu 18.04.2 LTS operating system. All experiments were conducted in python
code, and the machine learning algorithm was implanted using Keras.

4.3. Performance Metrics

The F1-score is used as a factor to evaluate the performance of the IDHCS. Accuracy
and recall indicators can evaluate prediction rates, but the performance evaluation is
unreliable if the data are asymmetric. The ratio between the normal and attack data in the
dataset in this experiment is unbalanced: in CICIDS2017, it is 80:20 and in UNSW-NB15, it
is 87:13. In the real environment, like datasets, all data have an unbalanced shape. Thus,
the F1-score was used to evaluate the model performance more accurately in this study.
The F1-score is obtained through Equations (2)–(4) based on Table 6:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Table 6. Confusion matrix.

Real Answer

True False

Classification result
True True positive False positive
False False negative True negative

4.4. Experimental Method

The experiment in this study was conducted as depicted in Figure 3. The reinforcement
learning agent consists of the PPO. The reinforcement learning environment refers to
IDS comprising the DNN-based feature extractor and k-means clustering module. The
environment is the target that the agent requests for action and it receives the result. The
agent sends several features extracted from the DNN feature extractor and the number of
clusters to the clustering module as actions. In the environment, the F1-score is reported to
the agent by performing feature extraction and clustering based on the actions received
from the agent. The agent improves the performance of the IDS through repeated learning
policy evaluations and updates.

Figure 3. Experimental operation process.
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The experiment was repeated in three different environments. In the first experiment,
only the CICIDS2017 dataset was used. In the second experiment, only the UNSW-NB15
dataset was used. Finally, the CICIDS2017 and UNSW-NB15 datasets were merged and
used in the third experiment. The dataset merger was performed by integrating features
extracted from the DNN feature extractor into one file. When the agent passes the new
number of features in each experiment, the features are extracted again and an integrated
file is produced. Because the two datasets contain different attack types, the two datasets
were combined to verify whether the proposed IDS used with the reinforcement learning
control algorithm can cover a wide range of attacks. Combining the two datasets is difficult
to represent all of the rapidly changing network environments. However, due to the
diversity of attack and normal patterns in the two datasets, they appear to be sufficient
to exhibit changes in the network environment. The PPO improves the performance by
iterating policy improvement, policy evaluation and replay buffers until an appropriate
performance is achieved.

4.5. Experimental Evaluation

Table 7 lists the results of experiments using CICIDS2017 and UNSW-NB15. The
experiments using the IDHCS resulted in F1-scores of 0.96552 on CICIDS2017 and 0.94268
on UNSW-NB15. In the experiment that merged the datasets, an F1-score of 0.93567
was obtained. Each experiment resulted in better or similar performance compared to
other studies [24–28]. Despite the wide range of attack types, mixing the two types of
data provided excellent results. Both CICIDS2017 and UNSW-NB15 datasets contain the
latest attacks, but they have different characteristics. Different dataset types may perform
relatively poorly, as the IDS is trained to classify a specific dataset, as demonstrated in [23].
However, the proposed system exhibited high performance in terms of the F1-score, which
suggests the possibility of overcoming the limitations of the IDS due to the dependency on
the dataset.

Table 7. Comparative performance verification table.

Reference Algorithm Dataset F1 Score

Our Proposed PPO + DNN + k-means CICIDS 2017 0.96552
Our Proposed PPO + DNN + k-means UNSW-NB15 0.94268

Our Proposed PPO + DNN + k-means CICIDS2017 +
UNSW-NB15 0.93567

[24] C5.0 CICIDS 2017 0.92303
[24] Naïve Bayes CICIDS 2017 0.92481
[24] Random forest CICIDS 2017 0.88003
[24] Support vector machine CICIDS 2017 0.88219
[25] AE + DNN CICIDS 2017 0.98570
[26] AdaBoost + PCA + SMOTE CICIDS 2017 0.81830
[27] Decision trees (C5.0) UNSW-NB15 0.86
[27] Naïve Bayes UNSW-NB15 0.824
[27] Support vector machine UNSW-NB15 0.755
[28] ANN UNSW-NB15 0.92018

Figures 4–6 present the training results for 1000 epochs for each dataset on the IDHCS.
Figure 4 displays the results using the CICIDS2017 dataset, revealing a curve in which the
F1-score rises from a minimum of 0.86831 to a maximum of 0.96552. Figure 5 depicts the
results using the UNSW-NB15 dataset, exhibiting a curve in which the F1-score rises from
a minimum of 0.58132 to a maximum of 0.94268. Figure 6 illustrates the results of using
the merged dataset and demonstrates that the F1-score rises from a minimum of 0.56436
to a maximum of 0.93567. The dotted red line in each figure is the log trend line. The
trend line reveals a gentle upward curve. The F1-score has a range of fluctuations due to
the exploration process of reinforcement learning. As time goes by, however, the F1-score
continuously increases and the range of fluctuations also decreases, indicating that it is
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stabilizing. Due to the nature of PPO, stability is pursued and the policy is updated, so it is
expected that a very stable F1-score is obtained when more learning is conducted.
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5. Conclusions

In this study, we proposed an IDHCS that automatically updates the intrusion de-
tection process and improves performance by controlling the hyperparameters of the
DNN-based feature extractor and the k-means cluster module using the PPO algorithm.
The CICIDS2017 and UNSW-NB15 datasets were used individually and merged to conduct
the experiment and verify the performance. An F1-score of 0.96552 for CICIDS2017, an
F1-score of 0.94268 for UNSW-NB15 and an F1-score of 0.93567 for the merged experiment
were obtained, with high F1-scores in all experiments.

Feature engineering is an important factor in intrusion detection data preprocessing.
Classifying an intrusion is easy if the datasets are carefully analyzed and their characteristics
are well understood. In a real environment, however, it is difficult to quickly analyze all
data and extract valuable features of the attack as data characteristics change quickly.

The IDHCS proposed in this paper demonstrates the automation and performance
improvement of the IDS by controlling the conditions of a hybrid IDS, such as feature
extraction and clustering with the PPO algorithm. The IDHCS exhibited high performance
for each dataset and the merged dataset. When a testbed is used, various AI algorithms
can be applied and explored to demonstrate a high level of performance. In a real en-
vironment, however, more complex situations are encountered. The proposed IDHCS
demonstrates the ability to solve these complex problems by iteratively learning through
reinforcement learning.

We plan to study a system that considers the automation and stability pursued in
this study and fast-processing capability in future work. Although PPO indicates stable
policy update ability, there is room for improvement in learning speed. In addition, a more
diverse dataset could be considered to reflect a more realistic network environment.
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