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Abstract: Today, research on healthcare logistics is an important challenge in developing and de-
veloped countries, especially when a pandemic such as COVID-19 occurs. The responses required
during such a pandemic would benefit from an efficiently designed model for robust and sustainable
healthcare logistics. In this study, we focus on home healthcare logistics and services for planning the
routing and scheduling of caregivers to visit patients’ homes. Due to the need for social distancing
during the COVID-19 pandemic, these services are highly applicable for reducing the growth of the
epidemic. In addition to this challenge, home healthcare logistics and services must be redesigned
to meet the standards of a triple bottom line approach based on sustainable development goals. A
triple bottom line approach finds a balance between economic, environmental, and social criteria for
making a sustainable decision. Although, recently, the concept of green home healthcare has been
studied based on the total cost and green emissions of home healthcare logistics and services, as far
as we know, no research has been conducted on the formulation of a triple bottom line approach for
home healthcare logistics and services. To achieve social justice for caregivers, the goal of balancing
working time is to find a balance between unemployment time and overtime. Another contribution
of this research is to develop a scenario-based robust optimization approach to address the uncer-
tainty of home healthcare logistics and services and to assist with making robust decisions for home
healthcare planning. Since our multi-objective optimization model for sustainable and robust home
healthcare logistics and services is more complex than other studies, the last novel contribution of
this research is to establish an efficient heuristic algorithm based on the Lagrangian relaxation theory.
An initial solution is found by defining three heuristic algorithms. Our heuristic algorithms use a
symmetric pattern for allocating patients to pharmacies and planning the routing of caregivers. Then,
a combination of the epsilon constraint method and the Lagrangian relaxation theory is proposed to
generate high-quality Pareto-based solutions in a reasonable time period. Finally, an extensive analy-
sis is done to show that our multi-objective optimization model and proposed heuristic algorithm are
efficient and practical, as well as some sensitivities are studied to provide some managerial insights
for achieving sustainable and robust home healthcare services in practice.

Keywords: home healthcare logistics; multi-objective robust optimization; sustainable logistics; triple
bottom line; Lagrangian relaxation; Pareto-based analysis; heuristics

1. Introduction

The triple bottom line approach aims to redesign logistics and supply chains for
implementation of sustainable development goals based on economic, environmental,
and social criteria. Taking these factors into consideration creates a sustainable network
design [1,2]. Based on international standards such as ISO (International Organization for
Standardization (ISO).) 14000 and ISO 26000, respectively, for environmental sustainability
and social responsibility [3,4], a sustainable integrated logistics network ensures that all
decision-makers focus on economic, environmental, and social aspects simultaneously [5,6].
Simultaneous consideration of these factors is the formulation of sustainability for economic
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equity, environmental preservation, and social justice criteria. A long-term process to
improve a logistics network relies on individuals’ abilities and their actions to perform
recent advancements in global logistics sustainability [4,5]. To cope with this new trend in
logistics, in this paper, we deploy sustainable home healthcare logistics and services that
meet global logistics sustainability.

Nowadays, another main challenge is to create a suitable response and action to an
epidemic virus, i.e., COVID-19, for all healthcare practitioners and international associ-
ations. Home healthcare services have a significant role in optimizing the cost of public
health and reducing the rate of growth by social distancing [6]. Home healthcare services
are performed at patients’ homes [7], starting from a pharmacy, then, visiting a group of
patients, and then returning to a laboratory to check patient treatments to update patients’
health records. According to the European Commission reports [8], the population of
people older than 60 years will increase to 32% in 2030 and reach around 54% by 2060.
Therefore, the demand for home healthcare services is growing, as demonstrated in recent
decades. It goes without saying that these services are more efficient and cheaper than the
same services in hospitals and retirement homes [9]. The best way to reduce the pandemic
growth is to perform the care services in homes instead of at public places. It is difficult to
consider the social distancing in hospitals and public health services. Therefore, promotion
of these services for all patients is an important goal to save patients and to address the
COVID-19 pandemic.

To perform home healthcare services, caregivers face different challenges such as
the unavailability of patients based on patients’ time windows. In this regard, travel
and service times are clearly uncertain. A caregiver must meet a patient’s time window
if they want to keep the patient’s appointment; otherwise, a new appointment for this
patient is scheduled. There are many factors that impact the uncertainty of travel and
service times as well as the time window for patients. For example, road conditions, traffic,
driving skills, and caregiver skills can lead to uncertainty for caregivers’ availability and
travel and service times [7,9,10]. To simulate this uncertainty, a scenario-based approach
is one alternative to consider all pessimistic, optimistic, and realistic scenarios for these
parameters. A scenario-based model can formulate all these uncertainties with probabilistic
scenarios in order to make a robust decision based on the expected value and deviation of
each scenario. To this end, in this study, we propose a multi-objective robust optimization
approach for a sustainable home healthcare logistics network problem.

One significant contribution of this research is to shift from a green home healthcare to
a sustainable home healthcare logistics network considering economic equity, environmen-
tal preservation, and social justice criteria. These factors are based on a triple bottom line
approach for our home healthcare logistics network. Formulation of these factors requires
a multi-objective robust optimization model for our proposed home healthcare logistics
network. Figure 1 shows the goals of this study aimed at achieving sustainable home
healthcare logistics and services. In addition to the total cost and environmental pollution,
this study contributes to social justice for home healthcare services with working time
balancing constraints to optimize both unemployment time and overtime. These objectives
and constraints make our sustainable and robust home healthcare logistics network more
complex than other studies and this fact highlights the need for an intelligent solution
algorithm for this problem.
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Figure 1. Goals of this study to develop sustainable home healthcare logistics and services.

Home healthcare logistics and services are an extension to the problem of route
optimization [11–14]. Classically, home healthcare logistics have been shown to be an
NP-hard problem in the strong sense [15,16]. This study applies an efficient and strong
heuristic algorithm based on the Lagrangian relaxation theory and Pareto-based analysis.
Initial solutions are generated by heuristic algorithms. Then, the lower and upper bounds
are updated by the Lagrangian relaxation theory. Based on the epsilon constraint method,
Prato-based solutions are generated. To confirm the high performance of our Lagrangian
relaxation-based heuristic algorithm, a comparison is done by the epsilon constraint method
using the exact solver.

In conclusion, this study highlights the following contributions:

• A multi-objective robust optimization model for home healthcare logistics is devel-
oped.

• A triple bottom line approach is proposed to model sustainable home healthcare
logistics based on (1) total cost as the economic factor, (2) environmental emissions
of the home healthcare logistics for the environmental sustainability factor, and (3)
caregivers’ unemployment times for balancing the working time of caregivers as the
social factor.

• A scenario-based robust optimization approach is devoted to address uncertainty and
a response to the COVID-19 pandemic.

• Three heuristic algorithms for decisions are proposed based on symmetric patterns for
the allocation of patients and routing of caregivers.

• A Lagrangian relaxation-based heuristic algorithm based on a Pareto analysis is
developed for the first time.

This paper is organized as follows: In Section 2, we study the background of this
research topic and identify the research gaps to confirm our contributions; in Section 3, we
propose our multi-objective robust optimization model for our sustainable home healthcare
logistics; in Section 4, we create an innovative and intelligent solution algorithm for the
proposed optimization model; in Section 5, we provide a set of simulated test studies for
analyzing our optimization model and heuristic algorithm, and following comparisons and
sensitivity analyses, we discuss and explain managerial insights from the results; finally, in
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Section 6, we provide a summary of our findings, as well as limitations and future research
recommendations.

2. Literature Review

Since home healthcare services have recently become important as a solution for
hospitalization problems, researchers have proposed optimization techniques to help
practitioners in this industry [13–16]. Although there are some review papers on this
research area [17–33], in this review, we provide the most important and recent studies
which have made a significant contribution to home healthcare services and logistics.

Optimization models for home healthcare logistics have been studied from 1977 [17]
to 2021 [18–28]. A special decision support system (SDSS) was proposed by Begur et al. [17].
Later, such techniques were considered by some other studies such as Eveborn et al. [19].
The impact of transportation costs on the economic performance of home healthcare
companies is undeniable and important; the earliest studies such as Cheng and Rich [29]
in 1998, for the first time, applied a routing optimization with time windows for the
application of home healthcare logistics. There is no doubt that routing and scheduling
optimization problems are difficult, and many studies have contributed various heuristic
and metaheuristic algorithms [30].

One of these popular algorithms was the particle swarm optimization (PSO) algorithm.
Akjiratikarl et al. [15] applied this swarm-based heuristic algorithm to find a model for
efficient scheduling of caregivers in Ukraine. Trautsamwieser et al. [20] proposed a variable
neighborhood search (VNS) algorithm to address home healthcare logistics faced with a
flood in Austria. A fast heuristic algorithm based on the Lagrangian relaxation theory was
first proposed by Kergosien et al. [31] for routing and scheduling in a home healthcare
logistics network. Different heuristic approaches with the Tabu search (TS) algorithm and
genetic algorithm (GA) were implemented in the model proposed in [29] by Liu et al. [11].
In another work, Liu et al. [12] also offered a hybrid metaheuristic algorithm as a variation
of TS based on the strategies of local searches in another paper.

In 2012, a study by Rasmussen et al. [21] presented another single-depot, single-period
home healthcare scheduling model to minimize the total cost of caregiver routes. They
considered a branch-and-price algorithm to solve this complicated model. Nickel et al. [32],
as one of the first studies, proposed a multi-period home healthcare model under uncer-
tainty. To create a plan for caregivers’ routing and scheduling, they considered policies for
master and operational scheduling based on a case study in Germany. In 2014, a model for
a multi-service home healthcare problem was proposed by Mankowska et al. [22]. Their
model, in a multi-period environment, provided the possibility of different caregivers visit-
ing patients. They also assumed that each caregiver had two different skills simultaneously.
In 2015, different types of vehicles such as cars and public transportation were proposed
for a multi-service home healthcare system addressed by Hiermann et al. [26]. By solving a
case study in Austria and a set of random tests, they offered a two-stage solution algorithm.
The first step was a heuristic algorithm based on constraint programming and the second
one was three capable metaheuristic algorithms, i.e., memetic algorithm (MA), simulated
annealing (SA), and scatter search (SS). In another similar paper, Fikar and Hirsch [23]
proposed a new home healthcare logistics model with different vehicles and time windows.
They assumed that the caregivers were able to visit the patients by walking. Frifita et al. [27]
introduced, for the first time, the term synchronized visits. A VNS algorithm was utilized
to solve their home healthcare problem.

Recently, in addition to the problem of total cost, new objectives have been considered
in the literature [31–36]. As one of the earliest works, Braekers et al. [9] proposed a bi-
objective multi-period home healthcare system with satisfaction levels for the patients. They
considered a heuristic algorithm based on dynamic programming to solve this practical
problem. Fikar et al. [36] developed a multi-objective multi-depot home healthcare logistics
model. The total cost and time of the home healthcare services were their objectives.
They showed that home healthcare decisions should be made in real time and based
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on this reason, a discreet event-driven metaheuristic algorithm was proposed. Except
Fikar et al., [36], no paper [37–63] has applied a real-time optimization to monitor and
control the home healthcare services and caregivers’ routing and scheduling decisions.

Recently, researchers have become interested in the uncertainties associated with
home healthcare logistics [7,25,28,32,48,63]. In this regard, Shi et al. [7] proposed a fuzzy
environment for home healthcare logistics. They applied a hybrid GA as their solution
method. In another work, the same authors [28] considered the stochasticity of travel
and service times. In addition to SA and the GA, they applied the bat algorithm (BA)
and cuckoo search (CS) to do a comparison among different metaheuristic approaches.
Next, [48] proposed a robust optimization model for single objective, single-depot and
single-period home healthcare routing with time windows. SA and VNS were considered
to solve their robust optimization model. [56] also added synchronized visits and green
emissions in another study that used a hybrid of TS and SA to solve the model. In another
recent work, Fathollahi-Fard et al. [59] proposed a robust optimization model and included
working time balancing and continuity of care in their home healthcare model. They
proposed different heuristic and metaheuristic algorithms including red deer algorithm,
PSO, GA, and MA for solving their model. Shahnejat-Bushehri et al. [62] developed another
robust optimization model for home healthcare routing and scheduling with temporal
dependencies to visit the patients. They integrated a Mont Carlo simulation with SA and
MA for solving their model.

Environmental sustainability is another home healthcare logistics research area, which
was first considered by Fathollahi-Fard et al. [38]. They proposed a bi-objective, single-
depot and single-period home healthcare logistics model. With four heuristic algorithms
based on routing of the caregivers, they found a tradeoff between the total cost and
environmental pollution. They also proposed a hybridization of SA and the salp swarm
algorithm (SSA). In another work, the concept of green home healthcare logistics was
studied using a location-routing model. The same authors [52] proposed clustering patients
in their home healthcare logistics model. To find Pareto-based solutions, five modifications
of SA were developed. The recommendations of both researchers encouraged studying a
triple bottom line approach for home healthcare logistics in order to consider the economic,
environmental, and social impacts in an uncertain environment, which had never been
studied in the literature.

Recent studies continue to focus on the development of new solutions for the home
healthcare logistics [37–50]. For example, Fathollahi-Fard et al. [40] proposed a solution,
based on the Lagrangian relaxation theory, for home healthcare routing with a travel
balancing supposition. Lin et al. [24] solved a multi-service home healthcare routing and
scheduling model using a combination of a harmony search algorithm (HSA) with a GA.
Decerle et al. [42] developed a hybrid MA and ant colony optimization (ACO) solution for
home healthcare logistics that considered time windows, synchronization, and working
time balancing. In another important recent study, three efficient heuristic algorithms based
on a combination of VNS and SA algorithms with the Lagrangian relaxation theory were
studied by Fathollahi-Fard et al. [45]. Their home healthcare logistics network was a single-
depot and single-period routing optimization model with travel balancing using different
types of vehicles. More recently, Frifita et al. [53] introduced a number of modified VNS
algorithms for a multi-depot home healthcare routing model with working time balancing
for the caregivers and time windows. In another interesting paper, an adaptive memory
search was applied to a recently developed metaheuristic algorithm, the so-called social
engineering optimizer, by Fathollahi-Fard et al. [54]. They considered a balance between
the total cost and satisfaction of patients. Their model was formulated using a fuzzy
algorithm. At last, but not least, Fathollahi-Fard et al. [58], in another work, applied bi-level
programming for the first time in the area of home healthcare logistics. They considered
the possibility of outsourcing home care services in a multi-depot home healthcare logistics
network. Liu et al. [64] proposed a multi-period home healthcare routing and scheduling
problem considering synchronized visits and satisfaction of patients. They proposed an
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efficient metaheuristic algorithm combining the dynamic programming method. It goes
without saying that another bi-level optimization that considered patient satisfaction was
developed by Chen et al. [65]. They proposed a three-stage metaheuristic approach that
combined an iterated local search with a large-neighborhood search and heuristic algorithm
for solving large-scale datasets.

We collected the most revenant studies by conducting a search in Scopus source
to identify research gaps and the differences between our study as compared with the
aforementioned studies, as shown in Table 1. In total, 54 studies were reviewed. The
studies were classified as: multi-objective or single objective, multi-depot or single-depot,
and multi-period or single-period home healthcare models. If the studies considered
uncertainty in their model, their model was classified to one of three groups based on
fuzzy, stochastic, or robust optimization frameworks. The main new contributions of the
aforementioned studies were classified according to the following six items: synchronized
visits, multi-service, satisfaction levels, working time balancing, patient clusters, and green
emissions of the home healthcare logistics. Finally, the solution algorithms, as one of the
main novelties in the majority of the studies, are given in Table 1. On the basis of these
criteria, the following findings are identified:

• Only nine papers ([9,36,38,41,43,52,54,59,61]) considered more than one objective
function. However, they did not consider unemployment time and green emissions as
their objectives, simultaneously.

• The simultaneous study of a multi-service, multi-period, and multi-depot home health-
care logistics model under uncertainty was rarely studied in the literature. A study by
Fathollahi-Fard et al. [59] was the only study classified in this group.

• As summarized in Table 1, only nine studies included uncertainty in their
models [7,9,25,28,32,47,48,54,56,57,59,60,62]. Among them, robust optimization was
applied by four studies [48,56,59,62]. With the exception of the study by Shi et al. [56],
no other study considered green emissions.

• The environmental sustainability for home healthcare logistics was considered by only
two studies [38,52]; both of these studies did not consider uncertainty in their home
healthcare logistics models.

• As summarized in Table 1, no study optimized green emissions, working time balanc-
ing, and multi-service suppositions, simultaneously.

• The majority of studies innovated new heuristic and metaheuristic algorithms; only
a few of them considered the Lagrangian relaxation theory [40,45,46] or Benders’
decomposition [55]. However, no study applied an efficient Lagrangian relaxation-
based heuristic approach based on the epsilon constraint method.

To fill these research gaps, in this study, we address an efficient robust optimiza-
tion model for sustainable home healthcare logistics considering working time balancing
and green emissions. To solve the proposed model, strong reformulations and heuristic
algorithms based on Pareto-based Lagrangian relaxation are generated.
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Table 1. Literature review of home healthcare services and logistics.
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3. Proposed Model for the Problem

In this study, the problem was to find a robust and sustainable solution for the design of
a home healthcare logistics and services network which included allocation, scheduling, and
routing decisions. Here, the problem statement is introduced. Next, the main assumptions
for the proposed problem are illustrated. Finally, a multi-objective robust optimization
model to deal with uncertainty in home healthcare logistics and services based on a triple
bottom line approach is developed.

3.1. Problem Statement

In line with other home healthcare studies [7,38,40,45,54], we consider a city with V
patients, P pharmacies, and L laboratories. A general statement of the proposed problem
is presented graphically in Figure 2. Regarding home healthcare logistics, the proposed
model fits with a two-dimensional geographical plan. In this regard, the distances between
the patients, pharmacies, and laboratories were defined. Before making routing and
scheduling decisions, for all periods, first, the patients were assigned to pharmacies. This
assignment creates patient clusters, which reduces transportation costs for the companies.
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This allocation is associated with the distance (AC), as noted earlier. Figure 2a shows
an example of our allocation decision problem with 24 patients and three pharmacies.
To address the needs of patients, each pharmacy employs Np caregivers composing four
categories that include some doctors, nurses, physiotherapist, and nutritionist. Therefore,
each caregiver is able to do one or more roles (βk

inp). These different caregivers create a
multi-service home healthcare system. It goes without saying that this multi-service system
confirms a full range of home care services. Accordingly, the patients need specific types of
services per period (δkt

i ). There is a variable cost for each home care service (WCkt
np), while

there is a fixed salary for each caregiver per period (FCkt
np). On each day, each caregiver’s

starting point is at a pharmacy and after some patient visits, the caregivers go back to a
laboratory. As an example, these routing and scheduling activities are drawn in Figure 2b
for period t and Figure 2c shows the period t + 1.

As our problem is an extension of routing optimization, each caregiver employs one
vehicle. As such, each route requires a vehicle with a transportation cost per distance
unit (TCn) and, in this study, this vehicle has a specific fuel consumption rate (FER), i.e.,
0.25 L and CO2 emissions rate (CER), i.e., 2.61 kg CO2/L. It should be noted that, since the
vehicle load is the same in all nodes, these rates will not change. There is no additional
passenger for each trip and the number of drugs for patients is very low and does not limit
the capacity of the vehicles.

There is overtime for a caregiver, if the caregiver works over the maximum time in each
period (OCkt

np). The maximum working time of the caregivers in each period is fixed (Wmax).
As such, the caregivers may not be available for all periods (γt

np). The main challenge of
scheduling in home healthcare logistics is the uncertainty associated with travel and service
times, as well as the time windows. With regards to the scenario s, service time is uncertain
and depends on patients’ health records and types of diseases (Wks

ki ). The travel time per
each scenario is varied (Tijs). At last, but not least, a time window limits the availability of
each patient based on the earliest (EPt

is) and the latest time (LPt
is).

Based on the aforementioned problem statement, a scenario-based robust optimization
model is developed for a multi-objective home healthcare problem considering a triple
bottom line approach.

Figure 2. Cont.
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Figure 2. Proposed multi-depot home healthcare logistics [59]: (a) The clustering of patients; (b,c) the
assigned routes in two different periods.

3.2. Assumptions

The proposed problem follows these assumptions to build a multi-objective robust
optimization model for sustainable home healthcare logistics.

• The model has three objectives, i.e., to optimize the total cost, environmental pollution
and the total unemployment time, simultaneously.

• The proposed model is also classified as a multi-depot, multi-period and multi-service
home healthcare problem.

• To deal with uncertainty, travel and service times in addition to time windows are un-
certain. To address these uncertain parameters, a scenario-based robust optimization
theory is employed.

• As a multi-service model, the caregivers include doctors, nurses, physiotherapists, and
nutritionists. In a multi-service concept, each caregiver can support one or more roles.

• The model assumes that the locations of pharmacies and laboratories are fixed. Its
number is also the same. Therefore, there is no facility location planning in our
healthcare network.

• The demand of patients must be met in their specified time window. A shortage is not
allowed for the home healthcare services.

• The caregivers are not available for all shifts (time periods). It means that each
caregiver has a rest in some time periods.

• Each patient has a time window to show their availability in each period.
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• The total cost includes a fixed fee for the employment of caregivers, a variable cost for
each home care service, transportation costs, and overtime costs. These factors help
our model to achieve economic sustainability.

• To achieve environmental sustainability, the emerged CO2 for the transportation of
caregivers is minimized by the second objective function.

• To achieve social sustainability, the model considers the working time balancing
constraints and minimizes the unemployment time and overtime of the caregivers in
each period.

3.3. Formulation

We have defined all notations in the Supplementary Materials to reduce the length of
this paper. This study deploys a novel multi-objective scenario-based, robust optimization
model. In this section, first, we introduce the concept of robust optimization. Then, we
state our objectives and constraints for our sustainable home healthcare logistics network
design problem.

• Robust optimization

In this study, we utilize the concept of robust optimization proposed firstly by Mul-
vey et al. [66]. To illustrate this method, assume a minimization model as follows:

min Zs = f y + csxs (1)

where Zs is the total cost per scenario. For binary variables (y) as the fixed costs, we
have defined the coefficient of f , while cs is the coefficients for continuous variables (xs)
which are dependent on the probabilistic scenario. Mulvey et al. [66] updated the model in
Equation (1) to the define the robust optimization as follows:

Z = min(λ ∑
s∈S

πsZs + (1− λ) ∑
s∈S

πs(Zs − ∑
s′∈S

πs′Zs′)
2
) (2)

The objective function is divided into two parts. The first part calculates the expected
total cost based on the probability of each scenario (πs), while the second part calculates
the variance of each scenario. To show the importance of each part, λ is a weight factor.
The second part of this model is nonlinear and makes it difficult. Mulvey et al. [66] called
this model robust optimization and defined the following constraints which are the budget
constraint set:

Ty + Axs ≥ bs ∀s ∈ S (3)

As given in Relation (3), for binary variables, we have defined the coefficient T, while
A is the coefficient of continuous variables. The budget as the right number is defined
as bs which is dependent on each scenario. Similar to the concept of two-stage stochastic
programming, binary variables are first-stage variables and continuous variables are second-
stage variables in the robust optimization. This classification refers to the fact that the
binary variables are not related to the scenarios. However, other variables with regards to
probabilistic scenarios are estimated by the information about the uncertain parameters
which are correlated to the occurrences of the scenarios.

One main disadvantage of the robust optimization proposed by Mulvey et al. [66], is
the nonlinear term in the objective function. In this regard, Leung et al. [67] provided an
update to the formulation of Mulvey and made it linear. They defined an objective function
which was linear with one auxiliary variable. They found that their model was easier than
the model by Mulvey et al. [66]. Their update to the robust optimization concept is:

Z = min(∑
s∈S

πsZs + λ ∑
s∈S

πs(Zs − ∑
s′∈S

πs′Zs′ + 2θs)) (4)

where θs represents an auxiliary variable.
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Based on this new objective function, our constraints are:

T′y + A′xs ≥ b′s ∀s ∈ S (5)

Zs − ∑
s′∈S

πs′Zs′ + θs ≥ 0 ∀s ∈ S (6)

Equation (5) is the budget constraint which is similar to the model by Mulvey et al. [66],
while Equation (6) ensures that there is a non-negative standard deviation for each scenario.
Using the above robust optimization framework, the proposed multi-objective model for
sustainable home healthcare logistics is established as follows:

• Economic sustainability

Equation (7) is the first objective function for achieving economic sustainability. The
goal is to minimize the total cost ( f1). This objective includes six terms; four terms are for
the first-stage variables and two other terms are for the second-stage variables. The first
and second terms are the assignment costs to generate the cluster for each pharmacy. The
transportation cost of routing caregivers is given in the third term. The fourth term is the
fixed cost of home healthcare services. The last term supports the variable cost for the
working time of the caregivers and the overtime costs which are uncertain and estimated
by the robust optimization concept.

min f1 = ∑
l∈l

∑
p∈P

AC.DL
pl .Y

L
pl

+ ∑
i∈V

∑
p∈P

AC.DP
ip.YP

ip

+ ∑
p∈P

∑
l∈L

∑
i∈V

∑
j∈V

∑
n∈Np

∑
t∈T

∑
k∈K

TCnp.DV
ij .Xtk

ijnpl + ∑
p∈P

∑
i∈V

∑
n∈Np

∑
t∈T

∑
k∈K

FCkt
np.Ykt

inp

+ ∑
s∈S

πs f1s + λ ∑
s∈S

πs

(
f1,s − ∑

s′∈S
πs′ f1,s′ + 2θ1,s

)
(7)

• Environmental sustainability

Sustainable transportation refers to vehicles which have a low impact on the environ-
ment [38,52]. Since transportation is the heart of a home healthcare logistics network, envi-
ronmental pollution should be minimized by our optimization model. In this regard, we
focus on the minimization of CO2 emissions. GEij is the amount of CO2 emissions for trav-

eling from node i to node j. The calculation of CO2 emissions
(

GEij = CER× FCR× DV
ij

)
is related to three factors, i.e., the type of fuel, the rate of fuel consumption in a vehicle,
and the travel distance between two nodes. Therefore, the second objective function ( f2),
which is not related to uncertainty, is to minimize the environmental pollution for the
transportation in our home healthcare logistics network, which is given in Equation (8):

min f2 = ∑
p∈P

∑
l∈L

∑
i∈V

∑
j∈V

∑
n∈Np

∑
t∈T

∑
k∈K

GEij.Xtk
ijnpl (8)

• Social sustainability

Social sustainability for home healthcare services refers to the satisfaction of care-
givers [59]. One way to improve the satisfaction of caregivers is to achieve working time
balancing for the caregivers. Therefore, the third objective ( f3), as given in Equation (9),
minimizes the unemployment time of each caregiver which is uncertain and, accordingly,
the robust optimization is adopted as follows:

min f3 = ∑
s∈S

πs f3s + λ ∑
s∈S

πs

(
f3,s − ∑

s′∈S
πs′ f3,s′ + 2θ3,s

)
(9)
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• Constraints

Equations (10)–(30) provide the constraints for our multi-objective robust optimization
model as follows:

f1,s − ∑
s′∈S

πs′ f1,s′ + θ1,s ≥ 0 ∀s ∈ S (10)

f1,s = ∑
i∈P

∑
n∈Np

∑
t∈T

∑
k∈K

WCt
np.Wkt

is .Ykt
inp + ∑

p∈P
∑

n∈Np

∑
t∈T

∑
k∈K

OCkt
npOkt

nps ∀s ∈ S (11)

f3,s − ∑
s′∈S

πs′ f3,s′ + θ2,s ≥ 0 ∀s ∈ S (12)

f3,s = ∑
p∈P

∑
n∈Np

∑
t∈T

∑
k∈K

Zkt
nps ∀s ∈ S (13)

STt
inps + Wkt

is + Tijs ≤ STt
jnps + M

(
1− Xtk

ijnpl

)
∀i, j ∈ V, i 6= j, p ∈ P, l ∈ L, n ∈ Np, t ∈ T, k ∈ Ks ∈ S (14)

EPt
is ≤ STt

inps ≤ LPt
is ∀i ∈ V, p ∈ P, n ∈ Np, k ∈ K, t ∈ T , s ∈ S (15)

∑k∈K Okt
nps ≥ max

{
∑i∈V ∑k∈K Ykt

inp ·Wkt
is · βk

inp · δkt
i −Wmax, 0

}
∀p ∈ P, n ∈ Np, t ∈ T, s ∈ S (16)

∑k∈K Zkt
nps ≤ max

{
Wmax −∑i∈P ∑k∈K Ykt

inp ·Wkt
is · βk

inp · δkt
i , 0

}
∀p ∈ P, n ∈ Np, t ∈ T, s ∈ S (17)

∑
i∈V

∑
j∈V

∑
n∈Np

∑
k∈K

∑
t∈T

Xtk
ijnpl ≤ M ·YL

pl ∀p ∈ P, l ∈ L (18)

∑
l∈L

YL
pl = 1 ∀p ∈ P (19)

∑
p∈P

YL
pl = 1 ∀l ∈ L (20)

∑
j ∈ V
i 6= j

∑
n∈Np

∑
k∈K

∑
l∈L

∑
t∈T

Xtk
ijnpl ≤ M ·YP

ip ∀p ∈ P, i ∈ V (21)

∑
p∈P

YP
ip = 1 ∀i ∈ V (22)

∑
j ∈ V
i 6= j

∑
l∈L

Xtk
ijnpl = Ytk

inp ∀i ∈ V, n ∈ Np, p ∈ P, t ∈ T, k ∈ K (23)

∑
p∈P

∑
n∈Np

Ykt
inp · βk

inp = δkt
i ∀i ∈ V, k ∈ K, t ∈ T (24)

∑
j ∈ V
i 6= j

Xtk
ijnpl − ∑

j ∈ V
i 6= j

Xtk
jinpl = 0 ∀i ∈ V, p ∈ P, l ∈ L, n ∈ Np, k ∈ K, t ∈ T (25)

∑
i∈V

Xtk
i0npl = 1 ∀j ∈ V, p ∈ P, l ∈ L, n ∈ Np, k ∈ K, t ∈ T (26)

∑
j∈V

Xtk
0jnpl = 1 ∀i ∈ V, p ∈ P, l ∈ L, n ∈ Np, k ∈ K, t ∈ T (27)

∑
i ∈ V
i 6= j

∑
j∈V

Xtk
ijnpl ≤ M · γt

np ∀l ∈ L, p ∈ P, n ∈ Np, k ∈ K, t ∈ T (28)

Xtk
ijnpl , Ykt

inp, YP
ip, YL

pl ∈ {0, 1} ∀i, j ∈ V, p ∈ P, l ∈ L, n ∈ Np, k ∈ K, t ∈ T (29)
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STt
inps, Okt

nps, Zkt
nps, θ1,s, θ2,s ≥ 0 ∀i, j ∈ V, p ∈ P, l ∈ L, n ∈ Np, k ∈ K, t ∈ T, s ∈ S (30)

To summarize the role of each constraint, Equations (10) and (11) are the robust
optimality limitations for the first objective function. As such, Equations (12) and (13)
are the robust optimality limitations for the third objective. Equation (14) shows the
relation of routing and scheduling decisions for the caregivers regarding their starting
time to visit the patients and the availability of the patients. Equation (15) confirms that
each patient has a time window limitation. Equations (16) and (17) are the working time
balancing constraints to calculate the overtime and unemployment time of the caregivers,
respectively. Equation (18) provides a link between the allocation decisions with routing
and scheduling decisions. Equations (19) and (20) state that each pharmacy works with
only one laboratory. Equation (21) is similar to Equation (18) and shows that a caregiver
for pharmacy p can visit the patient i based on the assignment of patients and pharmacies.
Similar to Equations (19) and (20), Equation (22) means that each patient should be assigned
to only one pharmacy. Equation (23) shows that the assignment of patients and the routing
and scheduling decisions of the caregivers are correlated. Equation (24) ensures that there
is no shortage in the model and the demand of each caregiver for the type of the homecare
services must be met. Equation (25) ensures that each caregiver visits a patient, and then
leaves this patient. Equations (26) and (27) state that, for each caregiver, the starting point
is a pharmacy and the end point is a laboratory, respectively. Equation (28) states that the
availability of caregivers has a direct impact on the routing and scheduling decisions of the
caregivers. Finally, Equation (29) supports the binary variables and Equation (30) shows
the non-negative continuous decision variables.

In conclusion, for the first time, we study a multi-objective robust optimization model
for a sustainable home healthcare logistics network. This model has not been studied before
and, in the following, we provide a plan to solve it mathematically.

4. Proposed Solution

The proposed solution for the model presented in Section 3 is based on a combination
of the epsilon constraint method to generate Pareto-based solutions and the Lagrangian
relaxation theory with three heuristic algorithms to find an efficient solution in reasonable
time. One benefit of our solution algorithm is the opportunity to find an optimal solution
which is very close to the global solution. It should be noted that in the case of multi-
objective optimization, there is no global solution and there is a set of non-dominated
solutions which can dominate other solutions.

To define the concept of multi-objective optimization, assume that we only consider
two objectives for our model including f 1 and f 2. Next, note that there are two solutions
for our model: Solution A and Solution B. Let ZA

1 and ZA
2 be the values for the first (f 1)

and second (f 2) objective functions in Solution A and, as such, Solution B has ZB
1 and ZB

2 .
In the case of minimization, for both objectives, Solution A dominates Solution B when(

ZA
1

ZA
2

)
≤
(

ZB
1

ZB
2

)
and

(
ZA

1
ZA

2

)
6=
(

ZB
1

ZB
2

)
[59,61].

Here, first, we introduce the epsilon constraint method to show how our proposed
solution algorithm performs the Pareto-based analysis. Then, the Lagrangian relaxation
method [68] is applied to our optimization model given in Section 3.3. Next, we illustrate
our procedures for the generation of initial solutions by heuristic algorithms. Finally, the
main loop of our algorithm is explained to apply all the epsilon constraint, Lagrangian
relaxation, and heuristic methods in an integrated way.

4.1. Epsilon Constraint Method

The epsilon constraint method was first proposed by Haimes et al. [69]. On the basis
of this method, we consider one objective as the main objective and other objectives are
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limited by favorable bounds. The model given in Equations (7)–(30) can be transformed
into a single objective model as follows (Equations (10)–(30)):

min f 1
s.t.
f2 ≤ e1
f3 ≤ e2
f2min ≤ e1 ≤ f2max
f3min ≤ e2 ≤ f3max

(31)

where e1 and e2 are the limit bounds for the second and the third objective functions. These
bounds are limited by the positive and negative ideal solutions for each objective function.
To achieve the positive ideal solution for the second objective function ( f2min), we only
optimize the second objective function without the limitations of other objective functions.
Regarding the negative ideal solution ( f2max), the model given in Equation (31) without the
bound limits should be run. As such, the limitations for the bound of the third objective
function, ( f3min, f3max), are calculated in the same way as we calculated the positive and
negative ideal solutions for the second objective function.

In each run, the bounds are updated, and the solutions are noted. For our model, we
have considered one cut for the bounds as the average of the positive and negative ideal
solutions. Therefore, the epsilon constraint method, in this case, can generate nine solutions
maximally (if all cases are feasible). These cases are given in Table 2.

Table 2. All possible cases for the Pareto-based analysis by the epsilon constraint method for our
optimization model.

No. of Solutions e1 e2

S1 f2min f3max

S2 f2max f3min

S3 f2min f3min

S4 f2max f3max

S5 f2min ( f3max + f3min)/2

S6 f2max ( f3max + f3min)/2

S7 ( f2max + f2min)/2 f3min

S8 ( f2max + f2min)/2 f3max

S9 ( f2max + f2min)/2 ( f3max + f3min)/2

After an assessment of these solutions based on the definition of the multi-objective
optimization concept, the non-dominated solutions would be selected to provide a full set
of alternatives for decision-makers.

4.2. Lagrangian Relaxation Theory

This study uses the concept of the Lagrangian relaxation theory for solving the pro-
posed routing and scheduling optimization model. According to the Lagrangian relaxation
theory, first, we generate an efficient reformulation for the main model, and then, we apply
an iterative algorithm for improving lower and upper bounds for the main optimization
model. The applied iterative algorithm can be classified as a sub-gradient algorithm for
optimization problems [68]. In the area of home healthcare logistics optimization, there
are several studies which have considered the Lagrangian relaxation theory [40,45,46]. The
proposed hybrid algorithm differs from previous works [40,45,46,61,62] as it is combined
with the epsilon constraint method and three heuristic algorithms.

The Lagrangian relaxation theory uses a lower bound and an upper bound. These
two bounds have been updated in each iteration. First of all, in this method, the main
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optimization model should be relaxed by removing a number of very difficult constraints
from it. The Lagrangian relaxation reformulation is evaluated by two main criteria, i.e., the
computational time for this reformulation and the quality of objective function based on its
deviation from the original model.

These relaxed constraints are multiplied by the Lagrange multiplier in the objective
function. For the case of minimization, after solving the relaxed model, a lower bound
would be generated. This solution may be infeasible but optimal. To check the quality
of this lower bound, we need to define an upper bound for our Lagrangian relaxation
reformulation. In the majority of Lagrangian relaxation-based algorithms, this upper bound
is selected randomly which is inefficient and may increase the computational cost [40,45,62].
However, the proposed algorithm uses three fast heuristic algorithms to find an upper
bound to define an initial upper bound which is feasible but not optimal.

To select the best reformulation for our optimization model, we conducted some
experiments which are not reported here. From our tests to find the most difficult constraint
set, Equation (14) as a big-M type constraint [70] makes the model more complex and
increases the computational time significantly. Therefore, the proposed reformulation as
our relaxed model is (Equations (10)–(13); Equations (15)–(30)):

min f ′1 = f1 + ∑
i∈V

∑
j∈V

∑
s∈S

πijs

(
∑

p∈P
∑

l∈L
∑

t∈T
∑

k∈K
∑

n∈Np

STt
inps + Wkt

is + Tijs − STt
jnps + M

(
1− Xtk

ijnpl

))
s.t.
f2 ≤ e1
f3 ≤ e2
f2min ≤ e1 ≤ f2max
f3min ≤ e2 ≤ f3max

(32)

where πijs are Lagrange multipliers. After solving this relaxed model, a lower bound is
found. Now, we should check the quality of this lower bound by an upper bound.

4.3. Initialization

Solving Equation (32) provides a lower bound for the original model given in Equation
(31). Although this lower bound is most probably infeasible, it is an optimal solution. Now,
we want to define the search space for finding a feasible solution and consider a greedy
algorithm based on different heuristic algorithms for decisions.

As reviewed in Table 1, many studies have contributed heuristic algorithms (greedy
search) for solving home healthcare optimization models [9,22,32,38,45,49,51]. In this study,
we extend the heuristic algorithms proposed by Fathollahi-Fard et al. [45] for our multi-
objective robust and sustainable home healthcare logistics network model. The search
space is based on the main decision variables for our optimization model including Xtk

ijnpl ,

YL
pl , and YP

ip. Among these variables, the assignment of pharmacies to laboratories (YL
pl) and

patients to pharmacies (YP
ip) are the same for all periods and probabilistic scenarios. If we

assume predefined values for YL
pl = YL

pl and YP
ip = YP

ip, the main part of the search space is

defined by feasible sets for our routing decision variable (Xtk
ijnpl). In this regard, we have

defined three heuristic algorithms to define the relations in this variable. These relations
are our search space to define a feasible solution which may be optimal.

To define YL
pl = YL

pl , each pharmacy is assigned to one laboratory regarding the
minimum array for the following matrix:

DCSLpl = DL
pl × AC; ∀p ∈ P; l ∈ L (33)

where DCSLpl is the assignment cost for both the pharmacies and the laboratories. To

allocate the patients to pharmacies (YP
ip = YP

ip), the proposed strategy considers the distance

of patients to pharmacies (DP
ip) and the distance of patients to laboratories (DVL

il ). To
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generate the cluster for each pharmacy, the average distance is considered. Therefore, the
minimum array of each pharmacy is selected by:

DISPLip = ∑
l∈L

(DP
ip × DVL

il ×YL
pl)/2; ∀i ∈ V, p ∈ P (34)

where DISPLip is the matrix for the allocation of patients to form a pharmacy cluster.
Based on Equations (33) and (34), the allocation decisions have been made. The routing
and scheduling decisions (Xtk

ijnpl) are the difference of each heuristic. In this regard, the
following matrix is generated regarding the caregivers and patients:

DTCijnp = Dij × TCnp; ∀i, j ∈ V; p ∈ P, n ∈ Np (35)

where DTCijnp is the total transportation cost.
We call our heuristic algorithms LGEC1, LGEC2, and LGEC3. More details about these

algorithms are given in the Supplementary Materials file. All these heuristic algorithms
follow a symmetric pattern for decisions on the allocation of patients and caregivers’
routing.

The difference of these algorithms is graphically shown in Figure 3 based on the
symmetric pattern of patients. In this example, we have five patients, one caregiver and
one home care service for all these patients, is requested. With regards to the first algorithm,
i.e., LGEC1, the route for the caregiver is {3→ 2→ 4→ 1→ 5}, in which Patient 3 is the
first node for the caregiver which is the closest patient to the pharmacy (Figure 3a). LGEC2
finds the optimal route of {2→ 4→ 1→ 3→ 5} in which Patient 2 is selected based on
the mean transportation cost to the closest patient (Figure 3b). The last route generated
by the last version of our hybrid algorithm, i.e., LGEC3 is {1→ 4→ 2→ 3→ 5}. In this
solution, Patient 1 who is the furthest patient to the laboratory, is selected (Figure 3c).

Figure 3. A graphical example of the proposed algorithms, i.e., LGEC1 (a), LGEC2 (b) and LGEC3 (c).

To show how we define a feasible solution in our search space for the routing decision
variables (Xtk

ijnpl), consider an example with one pharmacy, one laboratory and 10 patients.
This example with our computations, is shown in Figure 4. We have assumed that in
our multi-service, only nurses and physiotherapists are available in this example. In
this regard, we have one tour for the nurse and another tour for the physiotherapist.
The transportation cost per unit is set to two. The first heuristic algorithm is LGEC.
After running this algorithm, the nurse’s route starts with Patient 3. Next, the nurse
does the home healthcare service for Patient 7, which is the patient closest to Patient
3. After the completion of this tour for visiting all patients needing a nurse, the tour is
0→ 3→ 7→ 1→ 8→ 4→ 0 . In a similar procedure, the physiotherapist’ route starts
with Patient 5. The patient closest to Patient 5 is Patient 9. After visiting all patients, the
complete route is 0→ 5→ 9→ 10→ 2→ 6→ 0 . The second heuristic algorithm for the
routing decision, so-called LGEC2, computes the mean transportation cost for each patient.
Based on this criterion, first, the nurse visits Patient 8. The route of the physiotherapist starts
with Patient 10. Other visits are based on the lowest traveling distance. After the completion
of this cycle for the nurse, the route is 0→ 8→ 4→ 3→ 7→ 1→ 0 . As such, the route for
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the physiotherapist is 0→ 10→ 9→ 2→ 6→ 5→ 0 . Finally, we run the third heuristic
algorithm, so-called LGEC3. The first patient to be visited by the nurse is based on the
criterion of furthest patient to the laboratory. In this regard, the route for the nurse is exactly
the same as LGEC1 in this example. However, the physiotherapist starts with Patient 2.
Hence, the complete cycle for the physiotherapist is 0→ 2→ 9→ 10→ 6→ 5→ 0 .

Figure 4. Numerical example of LGEC1, LGEC2, and LGEC3 algorithms to generate an initial upper
bound.

4.4. Proposed Algorithm

The main notations of our algorithm are as follows:
t Number of iterations
LBt Lower bound at iteration t
UBt Upper bound at iteration t
πt

ijs Lagrange multiplier at iteration t
f t
1 Optimal solution found in Equation (31) at iteration t

ft Updater for the Lagrange multiplier per iteration
α Reduction rate of the updater
Maxt Maximum number of iterations

Generally, the flowchart of the proposed hybrid heuristic algorithm is shown in
Figure 5. The main loop is based on the following steps:

Step 0: Initialize the bounds of other objectives (e1 and e2) and Lagrange multiplier
π0

ijs and set t = 0;
Step 1: Let πijs = πt

ijs and solve the relaxed problem given in Equation (32). Replace
this solution for the main model given in Equation (31). Then, update the lower bound as
follows:

LBt = max
(

LBt, f t
1
)

(36)
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Step 2: Select one of heuristic algorithms, i.e., LGEC1, LGEC2 and LGEC3. Then, find
the upper bound.

Step 3: Update the Lagrange multiplier as follows:

πt+1
ijs = max

πt
ijs + µt ×

∑
p∈P

∑
l∈L

∑
t∈T

∑
k∈K

∑
n∈Np

STt
inps + Wkt

is + Tijs − STt
jnps + M

(
1− Xtk

ijnpl

), 0

 (37)

where µt = ft ×
∣∣∣∣ LBt−LBt+1

(UBt+1−LBt+1)
2

∣∣∣∣ and being ft a number distributed by U(0, 2) in the first

iteration. Then, it would be reduced per iteration by ft+1 = ft × α with no improvement.
Notably, α would be tuned by a range from 0.5 to 1;

Step 4: t = t + 1;
Step 5: If a feasible lower bound reaches or t satisfies the maximum number of iteration

(Maxt) then, note this solution and go to Step 6. Otherwise, go to Step 1;
Step 6: If there is no possible case from Table 2, generate the best non-dominated

solutions. Otherwise, go to Step 0.

Figure 5. The flowchart of the proposed hybrid heuristic algorithm.
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In conclusion, the proposed hybrid algorithm has four input parameters including
ft, α, π0

ijs, and Maxt. These parameters would be tuned regarding the characteristics of the
simulated test studies. The proposed hybrid heuristic algorithm is in three versions, so-
called LGEC1, LGEC2 and LGEC3. The main innovation of the proposed hybrid heuristic
algorithm is to use a near-optimal solution as the upper bound and the use of epsilon
constraint method to generate the Pareto-based solutions.

5. Computational Results

Here, the proposed hybrid heuristic algorithm, i.e., LGEC1, LGEC2 and LGEC3,
are applied. The calibrations of the model’s parameters with the three classifications of
complexity levels and the details of these algorithms are given in the first subsection. Next,
the validation and comparison of the results along with the sensitivity analyses are provided
and, finally, a comprehensive discussion about the findings and managerial solutions is
provided. It should be noted that all experiments for the coding of the algorithms and
model were done in GAMS 24.7.3 software and MATLAB R2013a software on a laptop with
CoreTM i5, 2.40 GHz, and RAM 4 GB and the use of the Windows 8 operating system.

5.1. Simulated Test Studies

As there is no available data base to match with our novel multi-objective robust
optimization model for sustainable home healthcare logistics, we have generated our
benchmarks based on the recent studies in the literature review [38,40,45,50,52]. In three
classifications of the complexity levels, 12 simulated test studies are generated as given in
Table 3. For the calibration of the heuristic algorithms, the maximum iteration is tuned in
Table 3 and its amount is 10 iterations for very small sizes and 50 iterations for the very
large sizes. Other parameters of the algorithm, including ft, α, and π0

ijs, are calibrated as 2,
0.99, and 0.3, respectively. For the calibration of the robust optimization, the coefficient of
the robust optimality (λ) is set as 0.5.

Table 3. Size of the simulated test studies.

Classification Test Study Np P and L V T Maxt

Small

SP1 2 2 10 2 10

SP2 3 2 25 4 10

SP3 4 3 40 6 20

SP4 4 3 65 8 20

Medium

MP5 6 3 80 14 30

MP6 6 4 85 18 30

MP7 6 5 95 24 30

MP8 6 5 100 28 30

Large

LP9 8 6 120 32 40

LP10 8 6 150 36 40

LP11 8 7 160 40 50

LP12 8 8 200 42 50

The range of deterministic and the scenario-based parameters is given in Tables 4
and 5, respectively. It should be noted that our planning horizon starts from zero minute
and ends from one day to 21 days. From per period, eight hours are limited. Each caregiver
may work each day in two periods, i.e., morning and evening.
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Table 4. The range of deterministic parameters.

Parameters Range

(xi, yi) 1000× (U(0, 1), U(0, 1))

(xj, yj) 1000× (U(0, 1), U(0, 1))

(xp, yp) 1000× (U(0, 1), U(0, 1))

(xl , yl) 1000× (U(0, 1), U(0, 1))

DV
ij

√
(xi − xj)

2 + (yi − yj)
2 (meter)

DP
ip

√
(xi − xp)

2 + (yi − yp)
2 (meter)

DL
pl

√
(xp − xl)

2 + (yp − yl)
2 (meter)

DVL
il

√
(xi − xl)

2 + (yi − yl)
2 (meter)

TCn rand{2, 3, 4, 5} ($)

FCkt
np rand{8, 10, 12, 14, 16} ($)

WCt
np rand{0.4, 0.5, 0.6, 0.7, 0.8} ($)

OCkt
np rand{1, 2, 3} ($)

γt
np rand{0, 1}

βk
inp rand{0, 1}

δkt
i rand{0, 1}

Wmax 5 × 60 × 60 (min)

AC 2 ($)

FER 0.25 (L)

CER 2.61 (kgCO2/L)

Table 5. The range of uncertain parameters.

Parameter
General Scenarios

Optimistic Realistic Pessimistic

EPt
is rand{100, 351, . . . , 450} (min) rand{450, 451, . . . , 600} (min) rand{600, 601, . . . , 800} (min)

LPt
is rand{500, 501, . . . , 850} (min) rand{851, 851, . . . , 1100} (min) rand{1100, 1101, . . . , 1320} (min)

Tijs
DV

ij

∑i∈V ∑j∈V DV
ij
× 70 (min)

DV
ij

∑i∈V ∑j∈V DV
ij
× 90 (min)

DV
ij

∑i∈V ∑j∈V DV
ij
× 110 (min)

Wkt
is U(10, 20) (min) U(15, 25) (min) U(20, 30) (min)

5.2. Extensive Analyses and Sensitivities

In our experiments, the proposed heuristic algorithms are validated by the epsilon
constraint method in small sizes. The results of SP1 as an example are given in Table 6.
The non-dominated solutions are depicted in Figure 6. Among nine possible solutions, as
given in Table 2, eight solutions are considered to be the non-dominated solutions for each
algorithm in Table 6. It should be noted that the units of the objective functions are $, kg
CO2, and minutes, respectively.
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Table 6. Results of SP1.

Epsilon Constraint LGEC1 LGEC2 LGEC3

f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

7136.2 225.4 6.5 7235.81 226.84 6.75 7462.1 206.28 6.45 7392.2 226.84 6.5

7185.7 314.2 2.15 7256.42 314.72 2.15 7456.2 308.2 2.09 7416.8 312.6 2.1

7919.5 226.2 2.1 8546.17 221.4 2.1 8219.3 218.8 2.12 7682.5 224.1 2.14

7056.8 314.2 6.7 7182.81 314.72 6.75 7367.8 309.15 6.66 7543.2 312.8 6.12

7208.2 223.8 4 7365.6 226.4 4.1 7513.6 216.13 4.35 7481.5 226.84 3.85

7286.6 318.72 4.2 7482.54 314.72 4.35 7455.8 314.72 4.25 7518.3 309.72 3.96

7438.2 265.8 2.06 7518.25 260.7 2.15 7677.4 268.44 2.08 7602.4 256.8 2.11

7808.4 259.92 6.34 7648.32 265.8 6.75 7523.6 254.24 6.56 7416.2 249.71 6.34

Note: The best values are shown in bold.

Figure 6. The non-dominated solutions for the algorithms.

As given in Figure 6, the solutions of LGEC2 outperform the other algorithms’ solu-
tions, as all objectives are in minimization form. The solutions of LGEC1 and LGEC3 are
almost the same.

For each solution of the heuristic algorithms, the gap between the lower bound and the
upper bound is computed as follows:

Gap =
upper bound− lower bound

lower bound
× 100 (38)

Clearly, this gap is for the first objective function, and we provided an average for all
non-dominated solutions from our heuristic algorithms, i.e., LGEC1, LGEC2, and LGEC3.
We have also provided the average of the objectives in Table 7 as well as the average gap
between the lower bound and the upper bound and the computational time. The best
values in this table are shown in bold.
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Table 7. Results of algorithms (CPU = computational time (seconds).

Algorithms SP1 SP2 SP3 SP4 MP5 MP6 MP7 MP8 LP9 LP10 LP11 LP12

LGEC1

f1 7529.49 20,987.2 33,822 71,300 124,528.6 167,349.6 217,454.4 294,784 327,136 414,576 510,480 600,516

f2 270.8 754.8099 1216.417 2564.322 4478.702 6018.77 7820.802 10,601.98 11,765.53 14,910.33 18,359.54 21,597.71

f3 4.45 13.5 32.43 55.43 83.95 79.61 106.02 127.25 119.45 155.85 169.06 167.040

Gap 0.078 0.0892 0.1205 0.1403 0.1662 0.0992 0.1205 0.1853 0.1102 0.2081 0.2382 0.2891

CPU 98.1036 115.0362 236.4876 712.467 1472.815 1692.641 4346.857 6942.648 12,344.1 15,450.8 15,919.45 18,827.49

LGEC2

f1 7584.475 20,632.8 32,875.8 68,304.8 114,875.6 147,252.6 219,043.2 279,784.4 342,624 421,524 499,760 559,776

f2 261.995 712.731 1135.6482 2359.4931 3968.2157 5086.6335 7566.5386 9664.7578 11,835.463 14,560.953 17,263.505 19,336.673

f3 4.32 15.5 30.86 58.67 79.44 78.39 118.45 121.21 130.27 149.05 163.67 176.74

Gap 0.054 0.0652 0.0924 0.1105 0.1402 0.1482 0.1682 0.1402 0.1654 0.1572 0.2103 0.2571

CPU 98.1684 114.1407 234.3996 711.5886 1472.855 1691.582 4353.564 6938.969 12,339.14 15,445.88 15,923.21 18,831.67

LGEC3

f1 7506.638 20810 33822 69,802.4 124,528.6 15,7301.1 217454.4 287,284.2 334,880 418,050 505,120 580,146

f2 264.926 734.43132 1193.6538 2463.4824 4394.8921 5551.5067 7674.4508 10,138.9 11,818.662 14,753.917 17,826.812 20,474.646

f3 4.14 14.2 32.43 57.81 83.95 78.04 106.02 125.63 124.82 151.17 165.19 172.81

Gap 0.0852 0.1206 0.1043 0.1402 0.1892 0.0865 0.1205 0.1782 0.1273 0.1672 0.2981 0.3452

CPU 98.9874 115.7796 236.565 713.2833 1475.178 1695.827 4354.003 6939.268 12,339.1 15,454.67 15,922.76 18,830.81

Note: The best values are shown in bold.

As given in Table 7, LGEC2, in most of the test problems, outperforms the other
algorithms. From the average of the solutions, most of the LGEC2′s solutions are the best.
The gap between the lower bound and the upper bound for each solution of the heuristic
algorithms is also important to confirm the performance of the heuristic algorithms; most
of the results of LGEC2 are shown in bold as the best gap. Based on the criterion of CPU
time, in half of test studies, LGEC2 is the best and in the others, LGEC1 is the best point.

The behavior of the algorithms’ gaps is depicted in Figure 7. The gaps of the heuristic
algorithms are the same and there are significant competition. However, in most of the test
studies in small sizes and large ones, LGEC2 is the best and outperforms other algorithms.
After this algorithm, LGEC3 is the best, except in one test in which LGEC1 is better than
LGEC3 (i.e., LP9).

Figure 7. The behavior of the algorithms’ gaps.

The computational time behavior of the algorithms is depicted in Figure 8. The first
issue is that the CPU time of the hybrid heuristic algorithm is lower than the epsilon
constraint method. In addition, all the heuristic algorithms have similar behavior based on
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this criterion. However, as previously noted in Table 7, both LGEC1 and LGEC2 confirm
the best behavior with regards to the solution time.

Figure 8. The computational time behavior of the algorithms.

Finally, some sensitivity analyses are performed to evaluate the key parameters of he
model to gain practical insights. To this end, the best heuristic algorithm in our study, i.e.,
LGEC2, is selected. For all sensitivity analyses, SP2 is selected as a small test study. The
behavior of the objectives, on average, of all non-dominated solutions is reported in the
results.

First, we analyze the impact of robust optimality (λ) on the objectives. This parameter
is set as 0, 0.5, 0.75, 1, and 1.5 in our sensitivity analyses. The results are given in Table 8
and the behavior of the objective functions based on their normalized values is shown in
Figure 9. These analyses show the impact of uncertainty on our robust optimization model.
With an increase in robust optimality, the amount of the objective functions increased,
except for the second objective function which is not linked with uncertainty.

Figure 9. Sensitivity analysis of robust optimality.
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Table 8. Sensitivity analysis of robust optimality.

λ 0 0.5 0.75 1 1.5

f1 15,640.4 20,632.8 23,129 25,625.5 30,617.6
f2 712.731 712.731 712.731 712.731 712.731
f3 11.5 15.5 17.5 19.5 21.5

More sensitivity analyses are performed using four parameters which include trans-
portation cost (TCn), fixed cost of caregiver employment (FCkt

np), service cost of the care-
givers (WCkt

np), overtime cost of the caregivers (OCkt
np), and the maximum time of working

for each caregiver (Wmax). All of these parameters have a high impact on the behavior
of the objectives, and they are very important for managers of home healthcare logistics
networks.

Without a doubt, transportation is one of the main sectors for a sustainable home
healthcare logistics network. Based on the results given in Table 9 and the behavior of
the normalized values of the objectives depicted in Figure 10, there are no changes in the
amount of environmental emissions and unemployment time of the caregivers, while the
transportation cost increases. This parameter has a high impact on the financial costs of
the home healthcare logistics model and reduces the routes of the caregivers to visit the
patients.

Table 9. Sensitivity analysis of transportation cost.

TCn 3 4 5 6 7

f1 15,999.14 20,632.8 25,266.45 29,900.11 34,533.76
f2 712.731 712.731 712.731 712.731 712.731
f3 15.5 15.5 15.5 15.5 15.5

Figure 10. Sensitivity analysis of transportation cost.

A sensitivity analysis of the fixed cost of caregivers’ employment is done by an increase
in this parameter and the behavior of the objective functions is analyzed. The results are
given in Table 10 and Figure 11. This parameter results in some changes in the behavior
of all objectives in the majority of the sensitivity analyses. An increase in the cost of fixed
employment of the caregivers generally increases the total cost. However, it also effects
the routes of the caregivers and the number of employed caregivers is reduced. This
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reduction increases the carbon emissions of the home healthcare logistics network as the
route of each caregiver has been generally increased. This factor leads to a reduction in the
unemployment time of the caregivers as they must work more to satisfy the demands of
the patients.

Table 10. Sensitivity analysis of the fixed employment cost of the caregivers.

FCkt
np 8 9 10 11 12

f1 21,054.93 20,632.8 20,680.62 21,674.92 20,789.45
f2 712.731 712.731 731.824 744.82 751.835
f3 15.5 15.5 14 13 12.5

Figure 11. Sensitivity analysis of the fixed employment cost of caregivers.

The service cost of home healthcare is analyzed using some sensitivities. The results
are given in Table 11 and the behavior of the objectives in terms of normalized values is
depicted in Figure 12. Service cost is a variable cost for caregivers associated with each
home care service. Similar to transportation cost, service cost is only linked with financial
issues and there is no impact on environmental emissions and unemployment time, as
confirmed by the results. Regarding financial costs, if the service cost fits the model’s
parameters, it can reduce the total cost. However, the general behavior of the first objective
function is to be increased while the service cost increases.

Table 11. Sensitivity analysis of the service cost of the caregivers.

WCkt
np 0.3 0.4 0.5 0.6 0.7

f1 22,420.38 20,632.8 21,705.58 21,919.39 22,214.07
f2 712.731 712.731 712.731 712.731 712.731
f3 15.5 15.5 15.5 15.5 15.5
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Figure 12. Sensitivity analysis of the service cost of the caregivers.

The sensitivity analysis of the overtime cost is another important factor which is
linked with uncertainty. The results are given in Table 12 and the behavior of the objectives
is depicted in Figure 13, based on the normalized values of the results. Overtime cost
generally increases the total cost. However, an increase in this factor finally leads to a
well-tuned level of this parameter to reduce the overtime of the caregivers. After this
calibration, unemployment time is also reduced. It shows that the model achieves working
time balancing, aimed at social justice for the caregivers. Although this parameter has a
significant impact on the economic and social objectives, there is no change in the carbon
emissions of the home healthcare logistics model based on the results.

Figure 13. Sensitivity analysis of the overtime cost.
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Table 12. Sensitivity analysis of the overtime cost.

OCkt
np 2 3 4 5 6

f1 20,492.09 20,632.8 20,890.04 20,791.55 20,531.98
f2 712.731 712.731 712.731 712.731 712.731
f3 15.5 15.5 15.5 14 14.5

Finally, the maximum working time in each period is another important factor to
study the working time balancing of the caregivers. A sensitivity analysis of this parameter
was conducted and the results are reported in Table 13. The behavior of sustainability
dimensions is also shown in Figure 14. The results confirm that this factor has a high impact
on a sustainable home healthcare logistics model with economic, environmental, and
social goals. When this parameter increases, the third objective regarding unemployment
time increases. It shows that a proper amount of this factor leads to a well-tuned level of
unemployment time as its ideal value. However, this parameter slightly reduces green
emissions. When unemployment time increases, overtime reduces. It may also reduce a
caregiver’s route. The behavior of the financial cost is varied and, in general, it is increased.
In conclusion, a well-tuned level of this parameter is useful to achieve a sustainable home
healthcare logistics model.

Table 13. Sensitivity analysis of the maximum time of working.

Wmax 25 50 75 100 125

f1 21,671.19 20,632.8 22,595.39 22,080.3 22,080.3
f2 712.731 712.731 712.731 682.916 654.185
f3 0 15.5 18.7 42.711 67.562

Figure 14. Sensitivity analysis of the maximum time of working.

5.3. Managerial Implications

As the ageing problem worsens, home healthcare is becoming increasingly important
in the functioning of sustainable development goals, especially a triple bottom line approach
for sustainability. The services provided by a home healthcare logistics network include
housekeeping, nursing, drug deliveries, and cleaning, as well as different types of the
caregivers have been studied economically and environmentally [38,52], but are yet to be
improved on the social dimension (Table 1).
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In this study, we proposed a sustainable home healthcare logistics model based on a
triple bottom line approach to optimize financial, environmental, and social goals, simulta-
neously (Figure 1). Since some parameters linked with time and availability are uncertain,
a scenario-based robust optimization approach was developed. This multi-objective robust
optimization model characterized with real-life constraints such as clustering of patients,
working time balancing, multi-services, and time windows, was solved using a hybrid
heuristic algorithm that combined the epsilon constraint method with the Lagrangian
relaxation theory and used three heuristic algorithms (Figure 5).

Without a doubt, this study was more complex than the majority of studies on home
healthcare logistics. In addition to the total cost and carbon emissions of transportation,
unemployment time was minimized as the third objective function. With the use of a
multi-objective robust optimization model, working time balancing was considered to find
a tradeoff between unemployment time and overtime and multi-service home healthcare
was applied to provide a full range of care by using doctors, nurses, physiotherapists and
nutritionist. The validation of the developed heuristic algorithms, i.e., LGEC1, LGEC2 and
LGEC3, as shown in Table 6, showed that the second version of the heuristic algorithm,
i.e., LGEC2 outperformed the other algorithms based on the non-dominated solutions
(Figure 6). The performance and applicability of this algorithm, based on the criteria of
quality (Figure 7) and time (Figure 8), are shown in Table 7, which lends support for the
development of our Pareto-based Lagrangian relaxation-based heuristic algorithm in other
optimization problems.

One significant managerial implication is that this study conceptually shifts from
green home healthcare logistics management to sustainable home healthcare logistics man-
agement based on working time balancing and environmental pollution of transportation.
Other practical solutions are taken from the results of the sensitivity analyses. The first
point is that the proposed robust optimization model is very sensitive to the robust optimal-
ity factor (Figure 9). This factor supports both the favorable and the unfavorable scenarios
to find a more feasible solution. This reason satisfies the optimality of the deterministic
solution as compared with a robust model.

The transportation cost (Figure 10) and the variable cost of home care services (Figure 12)
are important to achieve economic sustainability. In addition, overtime cost effects economic
as well as social sustainability factors (Figure 13). However, the fixed employment cost
of the caregivers to change the number of caregivers in each period (Figure 11) and the
maximum time of working (Figure 14) play key roles to achieve a triple bottom line
approach of sustainability. Therefore, it is very challenging for managers of home healthcare
logistics to find a well-tuned amount of these parameters with regards to other real-life
limitations to achieve sustainability for a home healthcare logistics network.

6. Conclusions and Future Remarks

In this paper, a multi-objective robust optimization model was applied to a practical
routing and scheduling optimization problem for the application of a home healthcare
logistics network. The needs and benefits derived from an efficient design for a robust
and sustainable healthcare logistics network are highly significant to create a response or
action to the COVID-19 pandemic. This study focused on home healthcare logistics and
services for planning the routing and scheduling of caregivers to visit patients’ homes. Due
to the need for social distancing during the COVID-19 pandemic, these services are highly
applicable to reduce the growth of the epidemic. In this regard, in this study, we addressed
the challenge of the COVID-19 pandemic for healthcare systems. In addition, the home
healthcare logistics network was redesigned to meet the standards of a triple bottom line
approach based on sustainable development goals. Hence, this model, for the first time,
formulated economic, environmental, and social criteria simultaneously to address a triple
bottom line approach in home healthcare logistics and services.

The total cost and the environmental pollution of the home healthcare logistics and
services were optimized in addition to the unemployment time of the caregivers. Three
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heuristic algorithms based on the epsilon constraint method and the Lagrangian relaxation
theory were developed to address the proposed model. Extensive validation, comparison,
and sensitivity analyses were performed and highlighted that the second version of our
heuristic algorithms, so-called LGEC2, was very efficient and that the parameters of this
model, especially the fixed employment cost and maximum working time of the caregivers,
were significant to achieve a sustainable home healthcare logistics network based on
economic, environmental, and social goals.

In this study, for the first time, although. we conceptualized a sustainable home
healthcare logistics network, the proposed multi-objective robust optimization model was
still very general and many other suppositions could be added to enhance its applicability.
Considering Industry 4.0 and industrial informatics for monitoring patients using advanced
technologies have rarely been modeled in this research area [71]. Patients’ satisfaction and
care continuity are two important factors to increase the quality of home care services.
An introduction of fuzzy logic with the possibility of programming instead of a robust
optimization makes another contribution for future work [72]. The proposed heuristic
algorithms were another significant contribution of this study and, therefore, the application
of some novel and state of the art metaheuristic algorithms such as the social engineering
optimizer [73], is very interesting to solve a very large real dataset for the proposed model
as compared with our heuristic algorithms. Without a doubt, the proposed heuristic
algorithms with the use of the Lagrangian relaxation theory and the epsilon constraint
method, provide an introduction for solving other multi-objective routing and scheduling
optimization problems.
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