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Abstract: The molecular net complexity (HmolNet) is an extension of the combinatorial complexity
(Hmol) of a crystal structure introduced by Krivovichev. It was calculated for a set of 4152 molecular
crystal structures with the composition of CxHyOz characterized by the structural class P21/c, Z = 4
(1). The molecular nets were derived from the molecular Voronoi–Dirichlet Polyhedra (VDPmol). The
values of the molecular coordination number (CNmol) and critical coordination number (CNcrit) are
discussed in relation with the complexity of the crystal structures. A statistical distribution of the set
of molecular crystals based on the values of CNmol, CNcrit, and the complexity parameters is obtained.
More than a half of the considered structures has CNmol = 14 and CNmol

′ = 9 with the Wyckoff set of
edges e5dcba. The average multiplicity of intermolecular contacts statistically significantly decreases
from 1.58 to 1.51 upon excluding all contacts except those bearing the molecular net. The normalized
value of HmolNet is of the logistic distribution type and is distributed near 0.85HmolNet with a small
standard deviation. The contribution of Hmol into HmolNet ranges from 35 to 95% (mean 79%, SD 6%),
and the subset of bearing intermolecular contacts accounts for 41 to 100% (mean 62%, SD 11%) of the
complexity of the full set of intermolecular contacts.

Keywords: information measure; complexity; crystal structure; crystallographic net; coordination
number

1. Introduction

According to the approach initially developed by Shannon in his theory of communi-
cation [1], the complexity of a message consisting of symbols depends on the probability of
occurrence of each symbol in the message. In particular, quantifying information content
of a message in bits corresponds as the function:

H = ∑k
i=1 L(pi) (1)

L(pi) =

{
0 (pi = 0),

−pi log2 pi (pi > 0)
(2)

where pi is the probability of i-th symbol to appear in the given message. Any graph
with certain types of vertices may be considered as a message, as well. Finite graphs
corresponding to the molecules belong to a wide class of so-called chemical graphs, and
the approaches of measuring information content for them were introduced in the 1950s
by Trucco [2] and in the early 2000s reviewed by Bonchev [3]. Commonly, the vertices of
a chemical graph G are referred to as equivalent if they belong to the same orbit of the
automorphism group of the graph Aut(G), which is isomorphic to the maximal symmetry
group of the graph. The information measures of molecules and their ensembles was
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recently reviewed by Sabirov and Shepelevich [4]. Information content of molecules is
of a specific interest due to the studying of chemical reactions [5], molecular aggregation
processes [6], searching the reason for the first bioorganic molecules to appear [7], etc.

A crystal structure can also be represented by a finite graph called quotient graph
introduced by Chung et al. in the 1980s [8]. In fact, the quotient graph is a “molecule”
of a non-molecular crystal. A quotient graph of the crystal structure maps atoms onto
the vertices and chemical bonds onto the edges or loops and reflects the connectivity of
the reduced unit cell of the structure. The quotient graph is a useful tool to enumerate
nets occurring in crystal structures [9] and perform a topological analysis of underlying
nets [10,11]. The cyclomatic number of the quotient graph equals the dimensionality n of
the Euclidean space En in which the net derived from the quotient graph may be embedded
being periodic in the same number of linearly independent directions. In such a space, the
deletion of any edge lattice of the net leads to a disconnected net, and the net is referred to
as minimal [12–14]. For instance, the diamondoid net is minimal in E3, while the quartz
net is minimal in E4. Embeddings of some typical nets in E3 were enumerated in Reticular
Chemistry Structure Resource (RCSR) [15], where each net is characterized by the maximal
possible symmetry achieved by a barycentric placement of the vertices [16,17].

The amount of information stored by the quotient graph of the crystal structure was
introduced by Krivovichev [18,19] to quantify the information content of the crystal. In this
case, the probability pi from (2) is calculated as pi = mi/v, where mi is the multiplicity of the
i-th crystallographic orbit occupied by atoms; v—the number of atoms in the reduced unit
cell. Later, Hornfeck [20] complemented this measure by terms considering the degrees
of freedom associated with a translational motion of an atom along the Wyckoff position
and Kaußler and Kieslich [21] adapted this measure to positionally disordered crystals.
However, for molecular crystals the information content calculated using this approach
indicates the complexity of the molecule itself instead of the crystal structure. The possible
scheme of avoiding this problem was proposed in [22]:

HmolNet = H(2N, CNmol) +
2N

2N + CNmol
Hmol +

CNmol
2N + CNmol

Hedge; (3)

H(2N, CNmol) = − 2N
2N + CNmol

log2
2N

2N + CNmol
− CNmol

2N + CNmol
log2

CNmol

2N + CNmol
; (4)

HmolNet, tot = (N + CNmol/2)HmolNet (5)

where N is the number of atoms in the molecule, CNmol—the molecular coordination
number, Hedge—the information content of the molecule, Hedge—the information content
of the edge net of the molecular net, HmolNet—the combination of Hmol and Hedge with
the property of strong additivity [20,23]. The value of HmolNet is meaningful even for
high symmetric molecular structures with the only orbit occupied by the atoms (i.e., I2, S6,
and α-N2) [22]. It should be noted that the molecule in the crystal structure is commonly
distorted, and the only symmetry operation retained in a molecule (in more than 90% cases)
is the inversion center [24], which requires for the preserving of dense packing according
to Kitaigorodskii [25]. Generally, a more conformational lability of the molecule promotes a
more diverse set of contacts in the coordination shell and should result in the increasing
of the molecular net complexity. On the other hand, certain molecular fragments have
the opportunity to form a specific intermolecular interaction, such as H-bonds, π . . . π

interactions, Hal . . . Hal, etc. In such a case the small subset of interactions often predom-
inates in the crystal structure and, in fact, is bearing the entire net of the intermolecular
contacts. However, the subset of bearing contacts may include excessive interactions and
thus be redundant. The portion of the bearing subnet complexity attributable to the target
engineered interactions may serve an indicator of effectiveness of a crystal engineering
technique, as the latter aims to reproduce targeted bearing contacts.

In this work the formalism (3)–(5) previously discussed in [26] is tested for the set of
more than 4000 homomolecular crystals with the general formula CxHyOz of a structural
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class P21/c, Z = 4(1) (such notation indicates that there is exactly one symmetrically unique
molecule occupying a general orbit in the space group P21/c). This structural class is of
the special interest as the most widespread among organic crystals and corresponding to
~1/3 of all homomolecular structures and more than 1/2 of homomolecular racemates [27].
The aim of this work is to investigate the partitioning of intermolecular contacts from the
coordination shell of the molecule into equivalence classes and to obtain the distribution
type and the descriptive statistics of HmolNet.

2. Methods

The initial set of the crystal structures was extracted from Cambridge Structural
Database (CSD) [28] using the following restrains: the presence of atomic coordinates, the
absence of errors and/or disorder, and R-factor < 5%. Out of 4249 high-quality molecular
crystal structures [26] selected from CSD ver. 5.41 (with updates), the set of 4152 structures
without duplicates was retained for further investigation. The criteria of considering a
structure as a duplicate were the same cell dimensions (with the tolerance of 2σ), the same
chemical composition, space group and Wyckoff sequence.

The construction of molecular nets was carried out using the ToposPro program [29]
by calculating the solid angles of the molecular Voronoi-Dirichlet polyhedron (VDPmol).
According to Blatov [30], VDPmol is the superposition of atomic VDPs in a molecule, and
the solid angle (Ω) corresponding to an intermolecular contact arises from interatomic
contacts as:

Ω =
∑ Ωij

ΩΣ
× 100% (6)

where Ωij is the solid angle for the intermolecular contact ij, and ΩΣ—the sum of solid
angles for all the interatomic contacts for the given molecule with the adjacent ones.
Interatomic contacts with Ωij < 1.5% of 4π steradians are omitted. In the same way, in-
termolecular contacts with Ω < 1.5% in this work have been omitted, while the adjacent
molecules with Ω ≥ 1.5% are considered as the coordination shell of the initial molecule
(Figure 1). As a rule, for non-specific van der Waals interactions the descending order of Ω
corresponds to the decrease of interaction energy, allowing to avoid energy calculations for
the assessment of supramolecular arrangement [26].
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To derive the molecular net, the atoms were pulled to the mass center of the molecule.
The molecular coordination number (CNmol), which includes only symmetrically inde-
pendent intermolecular contacts, is marked by a prime (CNmol

′), i.e., acrylic acid (ACR-
LAC04 [31]) has CNmol = 12 (cuboctahedron) and CNmol

′ = 8. The subset of bearing contacts
generating so-called critical net for a given molecule was defined in [32]. In a monosystemic
crystal structure the center of gravity of each molecule is connected with the centers of
gravity of CNmol adjacent molecules, and VDP faces have the following order of the solid
angles: Ω1 > Ω2 > Ω3 > . . . > Ωn (symmetrically equivalent contacts have the same Ω). For
any value of n, there is 1 ≤ k ≤ n such that if all edges corresponding to the solid angles
Ωk, Ωk+1, . . . , Ωn are removed from the net, the resulted net becomes disconnected. The
value max(k) is called a “critical coordination number with a prime” (CNcrit

′). If all sym-
metrically equivalent contacts are considered, the corresponding value is called a “critical
coordination number without a prime” (CNmol). For instance, acrylic acid (ACRLAC04)
has CNcrit = 5 (square pyramid) and CNmol

′ = 4. To derive a CNcrit, firstly, the edges of the
net of intermolecular contacts, for which Ω > 15%, were removed from the net. In all cases,
this led to reduction of the net’s dimensionality from 3D to 2D, 1D, or 0D. Then the contacts
with Ω = 14.5–15.0% were returned to the adjacency matrix of the centers of gravity of the
molecules, and a check was performed to establish the dimensionality of the net again.
If the dimensionality was 3D, the returned contacts were referred as Ωcrit = Ωmax(k), and
the constructed 3D net was considered a net of bearing contacts. If the dimensionality of
the net did not increase to 3D, then the contacts with Ω = 14.0–14.5% were added to the
adjacency matrix, and the dimensionality of the net was checked again. This procedure
was repeated with the step of 0.5% until Ωcrit was found for all the structures. The less step
values are not reliable since the measurement error is about 0.5%. The obtained distribution
of the crystal structures of the considered set is close to normal (Figure 2).
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The nets of intermolecular contacts in the most symmetrical embedding in E3 are
classified either in accordance with RCSR [15] or TopCryst database [33] (when RCSR
classification is lacking). The nets those remain unclassified in RCSR and TopCryst database
up to date are characterized by a point symbol. The net for the crystal structure of acrylic
acid has the RCSR code fcu (cubic closest packing), while the net of bearing contacts—sqp
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(Figure 3). For a CN-coordinated net there are CN(CN–1)/2 angles. The shortest cycle in
each angle should be identified. The point symbol in the form Aa.Bb . . . Cc indicates that
there are a angles that are A-cycles, b angles that are B-cycles, etc. (A < B < . . . < C) [34].
For instance, the fcu net has 12·11/2 = 66 angles in each vertex, and its point symbol is
324.436.56, while the sqp net has 5·4/2 = 10 angles in each vertex, and its point symbol is
44.66.
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If there are p sorts of vertices and q sorts of edges in the net, then the net is called
p,q-transitive. For instance, the fcu and sqp nets are 1,1 and 1,2-transitive, respectively. In
fact, p and q denote the minimal number of orbits occupied by the molecular centers of
gravity and the contacts, respectively, and interrelate with the molecular net complexity for
its most symmetric embedding in E3.

The complexity of a molecular net was calculated using (3)–(5). The structural informa-
tion content (SIC = 0–1) [4] meaning the same as a normalized informational complexity [19]
and was calculated as follows:

SIC = H/max(H) (7)

where max(H) is the maximal possible value of H, when each vertex constitutes its own equiva-
lence class: max(Hmol) = log2N; max(Hedge) = log2CNmol; max(HmolNet) = log2(2N + CNmol).

The molecule of acrylic acid has N = 9 atoms and all of them are symmetrically
unique (the Wyckoff set e9 in the space group P21/c), mi = 4, v = 36. Consequently,
Hmol = −9·4/36·log2(4/36) = 3.170 bits/atom. The edge net of the CNmol-coordinated
molecular net is generated by the midpoints added to each edge of the molecular net. Two
midpoints are connected if and only if they are adjacent to the same vertex, and the vertices
of the initial net are removed. The final net (edge net) is 2(CNmol − 1) = CNedge-connected.
The edge net for acrylic acid is 22-connected and contains 8 symmetrically indepen-
dent vertices with the Wyckoff sequence e4dcba, v = 24, Hedge = −16/24·log2(16/24) −
4·2/24·log2(2/24) = 2.918 bits/contact; H(2N, CNmol) = H(18, 12) = 0.971 bits/d.f. (per a
degree of freedom), HmolNet = 4.040 bits/d.f., SICmolNet = 0.823, HmolNet,tot = 4.040·15 =
60.60 bits/molecule. Note that if just bearing contacts are included in the net, then the edge
net would be 8-connected and contain only 4 of 8 independent vertices with the Wyckoff
sequence edca, v = 10, Hedge = −4/10·log2(4/10) − 3·2/10·log2(2/10) = 1.922 bits/contact.
This net is characterized by the unknown topological type.

The discriminatory power of H, based on the probability of two unrelated objects being
characterized as the same type, was calculated according to the following equation [35]:

D = 1− 1
N(N − 1) ∑s

j=1 xj
(
xj − 1

)
(8)

where N is the number of the tested crystal structures, s the number of different types
of structures with respect to H, and xj the number of objects belonging to the j-th type.
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The correlations between calculated values were sought in the Mathematica software
ver. 11.0 [36].

3. Results and Discussion

Crystal structures of the analyzed set are distributed over CNmol, generally, in accordance
with the earlier results obtained by Carugo et al. [37]. More than a half of the crystal structures
have CNmol = 14, and the second ranked value CNmol = 16. The most frequent values of CNcrit
are 5, 4, and 6, but unlike CNmol there is no sharp peak on any of the values (Figure 4). More
than a half of the structures is characterized by CNmol

′ = 9 (with e5—2355 structures; with
e6—84 structures; with e4—13 structures; e7ba—1 structure with refcode HINSOM [38]), and
most abundant CNcrit

′ is its least value 3 (eba, ecb, e—856 structures; e2a, e2b, e2—737 structures;
e3—81 structures).
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In the structural class P21/c, Z = 4(1) each molecule can form contacts with a multi-
plicity 1 or 2. The former corresponds to a so-called involution, a symmetry element of the
order 2 (the midpoint of a contact occupies the Wyckoff position e). The only involution
presence in the space group P21/c is the inversion center 1 (the midpoint of a contact
occupies the Wyckoff position a, b, c or d). All other contacts are formed via a screw axis 21,
or a glide plane c, or a translation along some direction. It is easy to show that the average
multiplicity in between 1 and 2 equals to v/2CN′. According to two-sample t-test, the
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difference of the mean values for all contacts and for those bearing the net is statistically
significant (p-value < 0.001). Moreover, the minimal multiplicity is 1.375 (3 structures) for
the hole net of molecular contacts unlike 1.000 (1 structure with refcode KOLRAF [39]) for
the critical subnet (Table 1). That is why the subnet of bearing contacts is, in average, more
enriched by the inversion centers than the hole molecular net. As shown above, 2355 struc-
tures have the Wyckoff sequence e5dcba (or similar) for the edge net, and mean multiplicity
in this case is (5·2 + 4)/9 = 1.556. Motherwell [40] previously studied the projection patterns
formed by projecting coordination shell of a molecule into 2D in different space groups
with none of the special positions occupied. The majority of projection patterns in P21/c
contained at least one contact via an inversion center.

Table 1. The min, max, mean value, and standard deviation of the multiplicity of the contact in the
molecular net of all the intermolecular contacts (molecular) and the bearing ones only (critical) for
the set of 4152 crystal structures.

The Net Min Max Mean σ

molecular 1.375 2.000 1.582 0.060
critical 1.000 2.000 1.512 0.186

The distribution of molecular nets in the considered series over the topological
types is, generally, in accordance with the trend previously found by Carugo et al. for
105 549 packings of small molecules [37]. The most widespread topological type is bcu-x, a
type derived from the body-centered cubic lattice where the coordination shell of the atom
is extended by the second coordination shell (CNmol = 8 + 6). This topological type has
the least topological density TD10 that reflects the total number of vertices in the first 10 of
coordination shells, among all 14-coordinated nets reported for centrosymmetric [41] and
non-centrosymmetric [32] crystalline hydrocarbons, some inorganic molecular crystals [22]
(i.e., 14T191 in the orthorhombic sulfur, α-S8), and those with the most popularity amongst
all small molecular crystals [37]. Recently studied crystal structure of 2-(tert-butyl)-4-chloro-
6-phenyl-1,3,5-triazine with 2 symmetrically independent molecules [42] is characterized
by the 14T319 type topology (after neglecting contacts with Ω ≤ 2%), which occupies the
opposite side of 14-coordinated molecular nets with respect to TD10 (Table 2). The more 2nd
or 3rd CN does not mean the more 4th and 5th CNs. For instance, in the 2nd coordination
sphere there are 54 vertices in 14T134 topological type and 53 in 14T10; nevertheless, TD10
for 14T10 is slightly higher. Remark that the TopCryst database has been extended last
years by many new topological types with large CNs, including CN = 14. Thus, the previ-
ously found in 2019 a 14T134 topological type [32] in the crystal structure of spiropentane
(refcode VAJGOC [43]) has no reference code in the TopCryst database. The corresponding
molecular net in the most symmetric embedding in E3 is 1,6-transitive and has the space
group R3c with the only general position occupied by centers of gravity of molecules.

Consider three typical examples of molecular nets realized in α-methyl-trans-cinnamic
acid (refcode: BEJVOB [45]), 5-methoxyindan-1-one (refcode: KACSOX01 [46]), which
are both isomers with the chemical formula C10H10O2 (Figure 5), and (1RS,3SR,4SR)-
trispiro(2.0.0.2.1.1)nonane-1-carboxylic acid with the chemical formula C10H12O2 (ref-
code: FAFDEW [47]). The Wyckoff sequences for the molecules are: e22 for BEJVOB
and KACSOX01, and e24 for FAFDEW. This leads to a slightly different values of
Hmol: Hmol = 4.459 bits/atom for BEJVOB and KACSOX01, and Hmol = 4.585 bits/atom
for FAFDEW. All other structures from the set of 4152 structural files show exactly the
same distribution of atoms over general positions, i.e., they have the maximal Hmol for
the given N (SIC = 1). Indeed, if a molecular center of gravity occupies a general position,
then no atom is able to occupy an inversion center, otherwise the other atoms should be
related by the inversion center and the molecule would either occupy the special position
or have a symmetry-induced disorder (the latter was restricted by the structure selection).
The linear correlation coefficient between N and the molecular mass in the analyzed set is
0.936, between N and Hmol − 0.959, and between the molecular mass and Hmol − 0.889.
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Consequently, there is a strong positive linear correlation between the molecular mass, N,
and Hmol.

Table 2. The topological types found in crystalline hydrocarbons [32,44], some inorganic molecular
crystals [22], and 2-(tert-butyl)-4-chloro-6-phenyl-1,3,5-triazine, ordered by the increase of TD10.

Topological Type Point Symbol
Coordination Sphere

TD10
1st 2nd 3rd 4th 5th

bcu-x 336.448.57 14 50 110 194 302 4641
gpu-x 336.446.59 14 52 114 202 314 4831
tcg-x 336.446.59 14 52 116 204 318 4893

14T34 333.451.57 14 53 117 208 324 4996
14T5 336.445.510 14 53 120 212 332 5106
14T6 336.445.510 14 53 120 213 335 5138

14T134 334.447.510 14 54 122 216 338 5201
14T10 336.445.510 14 53 122 218 339 5238
14T37 333.445.510 14 53 121 217 339 5239
14T65 333.451.57 14 54 122 218 342 5301
14T9 336.445.510 14 53 123 221 344 5329

14T24 336.446.59 14 52 120 218 344 5339
14T3 336.444.511 14 54 124 222 348 5373
14T8 336.444.511 14 54 126 226 354 5475

14T319 330.450.511 14 58 130 232 362 5581
14T18 336.444.511 14 54 130 242 382 5947
14T191 333.447.511 14 59 141 256 402 6246
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Figure 5. The structural formulas of isomeric α-methyl-trans-cinnamic acid (refcode: BEJVOB),
5-methoxyindan-1-one (refcode: KACSOX01), and (1RS,3SR,4SR)-trispiro(2.0.0.2.1.1)nonane-1-
carboxylic acid (refcode: FAFDEW).
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There are three crystal structures with CNmol = 14, but characterized by the different
topological types (Table 3): bcu-x, gpu-x, and tcg-x. Furthermore, all the structures have
CNmol

′ = 9 and the same Wyckoff sequence for the midpoints of intermolecular contacts
(e5dcba). This means the same Hedge = 3.093 as for the other 2352 structures of the Wyckoff
sequence which contains e5, including e5dcba (2324 structures).

Table 3. Topological types and structural characteristics of the molecular net in BEJVOB, KACSOX01,
and FAFDEW.

Refcode in CSD BEJVOB [45] KASSOX01 [46] FAFDEW [47]

Formula C10H10O2 C10H10O2 C10H12O2

Name α-methyl-trans-cinnamic acid 5-methoxyindan-1-one
(1RS,3SR,4SR)-

trispiro(2.0.0.2.1.1)nonane-
1-carboxylic acid

Temperature room room 100 K

R-factor 4.10 3.90 3.75

Structural class P21/c, Z = 4(1) P21/c, Z = 4(1) P21/c, Z = 4(1)

The molecular net

CNmol 14 14 14

Type (transitivity) bcu-x (1,2) gpu-x (1,4) tcg-x (1,6)

CNmol
′ 9 9 9

Wyckoff sequence
of intermolecular contacts e5dcba e5dcba e5dcba

Hedge, bits/contact 3.093 3.093 3.093

The critical net

CNcrit 6 4 5

Type (transitivity) sxa (1,3) dia (1,1) bnn (1,2)

CNcrit
′ 5 3 3

Wyckoff sequence
of bearing contacts edcba edc e2b

Hedge,crit, bits/contact 2.252 1.500 1.522

The critical nets for BEJVOB, KACSOX01, and FAFDEW are of different topological
type. It was shown in [26] that the value ∆ = CNcrit

′ −minCNcrit
′ adopts almost normal

discrete distribution, where 92% of structures demonstrate ∆ ≤ 2 (for the set of crystalline
hydrocarbons this portion was even more 95% [48]). In the space group P21/c there are
3 generators in a minimal generating subset [49]. If a molecule occupies some special
position of the space group with a site-symmetry group containing a generating element
of the space group (1 in P21/c), then a fewer number of intermolecular contacts along the
other symmetry elements could be sufficient for generating of a molecular net. However,
for the structural class P21/c, Z = 4(1) the value minCNcrit

′ = 3. For KACSOX01 and
FAFDEW the critical molecular nets are parsimonic (CNcrit

′ = 3), while for BEJVOB the
net is not parsimonic (CNcrit

′ = 5). The last one contains two redundant contacts via the
inversion centers. Any pair of two inversion centers separated by a translation generate
this translation; however, if it is accompanied by a contact with the multiplicity 2 along the
same direction, the pair of inversion centers becomes redundant. Conversely, a sole contact
with the multiplicity 2 in the critical net cannot be redundant because a triplet of inversion
centers would never generate a 3D-space group instead of a plane group with the triplet
belonging to the plane. As a result of the redundancy the critical net in BEJVOB is more
complex than in KACSOX01 and FAFDEW (Hedge,crit = 2.252, 1.500 and 1.522 bits/atoms,
respectively), i.e., about a half of the molecular net information content for KACSOX01 and
FAFDEW, and more than 2/3 of that for BEJVOB. The nets are shown in Figure 6.
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Figure 6. A fragment of the molecular nets of BEJVOB, KACSOX01, and FAFDEW, view along Y
(β-setting). The edges of the critical nets are shown—by black solid lines, those disposable for the
molecular net—by blue dashed lines, the molecular centers of gravity—by blue circles.

The topological types of the molecular and critical nets, which are subnets of the
former, are shown in Figure 7. Surprisingly, for BEJVOB the prototype molecular net bcu-x
has 2 kinds of edges, while the prototype critical net sxa has three kinds of edges because
some Wyckoff positions are split when the symmetry group descends from Im3m (bcu-x) to
Cmme (sxa). The group Cmme has five elements in a minimal generating set [49], and there
are Z = 4 (mm2) equivalent vertices in sxa. As the point group mm2 has two generators,
the vertex configuration of sxa can be generated by 5 − 2 = 3 “contacts” of the vertices,
therefore, the net sxa could be realized even for CNcrit

′ = 3. On the contrary, another similar
6-coordinated net sxb of the strucutral class Cccm, Z = 4(2/m) could not be realized in any
space group at CNcrit

′ = minCNcrit
′, since Cccm is generated by just a pair of elements.

Recently, sxb was found in a metal-organic framework (MOF) [Mg3(btdc)3(dmf)4] [50],
which was synthesized by a topotactic reaction from [Mg3(btdc)3(dmf)4]·DMF of the pcu
type upon heating, thus, the former MOF is not parsimonic in principle.
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The set of the combinatorically distinctive critical nets depends on the topology of
the initial molecular nets. For bcu-x, gpu-x, and tcg-x in the three above mentioned crystal
structures, all subsets of edges, which may correspond to a CNcrit

′ = minCNcrit
′ = 3,

were enumerated (Table 4). As all the initial nets have edges with the Wyckoff sequence
e5dcba, there are 4 involutions and 5 contacts with the multiplicity 2. In BEJVOB (bcu-x),
KACSOX01 (gpu-x) and FAFDEW (tcg-x) there are four contacts along the pair of screw
axes 21, four contacts along the pair of glide c-planes, and two contacts along the translation
vector, but their combination with the four involutions in different topological types is
different. This leads to a different number and types of the critical subnets.

Table 4. Possible critical subnets of bcu-x, gpu-x, and tcg-x with the Wyckoff sequence of edges e5dcba
in P21/c.

CNcrit
Wyckoff Sequences

of Edges Subnets
Nets

Bcu-X Gpu-X Tcg-X

4 e.

dia 18 8 20
cds – 2 –

dmp – 4 –
4T19 – 2 –

5 e2.

sqp 4 4 8
nov 8 6 10
bnn 16 – 16
5T12 – 2 –

6 e3. pcu 7 2 8

Total 53 30 62

Apparently, the complexity of the partition of subnets into the combinatorically dis-
tinctive Wyckoff sequences (e, e2, and e3), as well as into the topological types (dia, cds,
dmp, etc.), can be easily measured in terms of (1) and (2), but this is out of the topic of this
work. In fact, the coordination shell of a molecule may be referred as fuzzy [51], because
upon the crystallization different subsets of bearing contacts arise simultaneously. In sum-
mary, the subnets of gpu-x are obviously more diverse and include such exotic topological
types as 4-coordinated 4T19 (2 subnets) and 5-coordinated 5T12 (2 subnets). Meanwhile,
the leading topological type of the subnet in all cases is the diamondoid type dia. In the
structural class P21/c, Z = 4(1) dia, as any other 4-coordinated subnet, is formed by two
involutions and two contacts with the multiplicity 2. The formation of dia is limited by two
combinatorically different options [48]. In the first one, the generators are the glide c-plane
and the inversion centers located at a distance of b/4 from each other along Y. The second
option entails the screw axis 21 located at the distance of c/4 from one of the inversion
centers (Figure 8, top). If one of the inversion centers in the first dia subtype is shifted by
b/2, the subnet transforms into the cds type, for the second option it transforms into dmp.
The bnn subnet, as dia, exists in two different subtypes (Figure 8, bottom). Each subtype
has the only contact via the inversion center and 2 contacts along the translation a. The
only difference is the last contact with the multiplicity 2, either along the glide c-plane or
along the screw axis 21. However, if the contacts along a are replaced by the contacts along
the 21 axis located at a distance of (a/2 + c/4) from the initial inversion center, then the bnn
subtypes are transformed into nov and sqp, respectively. Finally, the pcu subnet of each
initial net is generated by three contacts with the multiplicity 2.
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Of course, among the critical nets in P21/c, Z = 4(1) there are those having
CNcrit

′ > minCNcrit
′, for instance, noz (5-coordinated), acs, bsn, sxd (6-coordinated), the

net of simple hexagonal packing hex (8-coordinated), the body-centered cubic net with
unextended coordination shell bcu (8-coordinated), etc. Nevertheless, these topological
types may be represented as an extension of some of the 5 minimal nets in E3 without
collisions and with equal vertex degrees (CNs): dia, cds, ths, pcu, and srs [13]. The last
minimal net of this kind, the 3-coordinated srs, was not observed in any crystal structure
for the bearing contacts so far. Similarly, the 3-coordinated net ths was not observed in
P21/c, Z = 4(1), but it is possible in some other monoclinic structural classes such as C2/c,
Z = 8(1). Up to date, in the TopCryst database it was exemplified not by a molecular
crystal, but by a MOF of the crystal structure with the refcode RAGFAJ [52]. The quotient
graph of any critical net, including a redundant one, may be derived by an addition of
an edge to the undirected quotient graph of some minimal net (Figure 9). Remark that
∆ = CNcrit

′ −minCNcrit
′ = 0 does not necessarily corresponds to a minimal net, because

the deletion of an edge lattice and the deletion of the symmetrically equivalent edges are
not exactly the same processes. The deletion of all equivalent edges implies the deletion of
translationally equivalent edges, but the converse is not true. As a result, a series of not
minimal nets such as bnn, sqp, dmp, nov (Figure 8) also corresponds to ∆ = 0.

The contribution of Hedge,crit into Hedge varies from 33.9 to 100% (Table 5). Indeed, there
are 4 crystal structures with CNcrit = CNmol and Hedge,crit = Hedge, these are extremal cases
with the most redundant critical net. The contribution of Hmol, Hedge and H(2N, CNmol) into
HmolNet, is, on the average, is 78.9, 9.5 and 11.6%, respectively, with the value of σ being a few
percent, i.e., the complexity of the molecular net is substantially defined by the value of Hmol,
but the impact of Hedge and H(2N, CNmol) is meaningful. The differences of min and max
values for the contributions of Hedge and H(2N, CNmol) into HmolNet are much more than σ,
that means the outliers being not numerous. The values of SIC, calculated using (7), also show
different variances. As it was mentioned above, since there are no atoms in a special position,
SICmol = 1 for all the structures. As the maximal multiplicity of a contact is 2, theoretically, the
minimal SICedge, crit = − CNcrit/2·2/CNcrit·log2(2/CNcrit)/log2CNcrit = 1 − 1/log2CNcrit. All
the structures with average multiplicity 2 in the set have CNcrit = 6, consequently, the minimal
SICedge,crit = 1 − 1/log26 = 0.613. The maximal SICedge, crit = 1 corresponds to the average
multiplicity 1 in the structure of (6-methoxycarbonylmethoxynaphthalen-1-yloxy)acetic acid
methyl ester (refcode: KOLRAF) [39] with the Wyckoff sequence of edges dcba and the critical
net dia. The values of SICedge and SICmolNet have much smaller σ than SICedge,crit.
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Table 5. The min, max, mean value, and standard deviation of the contributions of H (%) and SIC for
the set of 4152 crystal structures.

Value Min Max Mean σ

%

Hmol in HmolNet 35.5 94.3 78.9 6.4
Hedge,crit in Hedge 41.2 100.0 62.4 11.7
Hedge in HmolNet 1.9 39.2 9.5 3.6

H(2N, CNmol) in HmolNet 3.8 25.8 11.6 2.8

SIC

SICmol 1.000 1.000 1.000 0.000
SICedge,crit 0.613 1.000 0.740 0.057

SICedge 0.759 0.864 0.811 0.009
SICmolNet 0.813 0.879 0.853 0.008

The distribution of the crystal structures by Hmol and HmolNet is shown in Figure 10.
Both values are best approximated by a logistic distribution applicable to the modeling
of the degrees of pneumoconiosis in coal miners, chronic obstructive respiratory disease
prevalence on smoking, survival time of diagnosed leukemia patients, etc. [53]. Generally,
it has the probability density function:

f (x; µ; β) =
e−(x−µ)/β

β
(
1 + e−(x−µ)/β

)2 (9)

For Hmol µ ≈ 5.252, β ≈ 0.30; for HmolNet µ ≈ 5.572, β ≈ 0.25. Thus, the difference
of the expected values µ is about 0.320 bits/d.f., and the variance for Hmol is greater than
for HmolNet.

The discriminatory powers D for Hmol, Hedge,crit, Hedge, H(2N, CNmol), and HmolNet are
listed in Table 6. The simple combinatorial complexity Hmol distinguishes only 99 values,
whereas HmolNet—531 values. Surprisingly, Hedge has the least D = 0.6372 and distinguishes
only 26 values, while Hedge,crit has even greater D = 0.8762 and s = 28. The reason of such
substantial difference of D at a small difference of s is the abnormality of distribution. As
shown above, 2355 structures have e5dcba or similar Wyckoff sequence for the edge net (in
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this case Hedge = 1.556 bits/contact). Meanwhile, the most widespread Wyckoff sequence
for the critical net is eba (or similar)—856 structures (Hedge,crit = 1.500 bits/contact), i.e.,
with about three times less probability. The H(2N; CNmol) has a remarkably high value of s
and D in comparison with Hmol, because CNmol may vary at equal N, i.e., at equal Hmol.
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Table 6. The number s of distinctive values H and the discriminatory power D over the set of
4152 crystal structures.

Value s D, %

Hmol 99 97.76
Hedge,crit 28 87.62

Hegde 26 63.72
H(2N; CNmol) 389 98.93

HmolNet 531 99.13

4. Conclusions

For molecular crystals, unlike those with infinite chains, layers, or frameworks, the
simple combinatorial information content is of limited usefulness. When each atom occu-
pies its own crystallographic orbit, the value of Hmol reflects only the number of atoms
in a molecule. On the contrary, the information content of the molecular net Hedge com-
bined with Hmol gives a hybrid function HmolNet dependent not only on the number of
atoms in a molecule, but on the molecular coordination number CNmol and the number of
orbits occupied by the midpoints of the molecular contacts CNmol

′. In comparison with
Hmol, this hybrid function has a greater discriminatory power and is more favorable for
molecular crystals. The edge net complexity Hedge and that originated from mixing two
sources of information H(2N; CNmol) add, on the average, a little more than 10% Hmol each.
The normalized values of Hedge and HmolNet (SICedge and SICmolNet) are distributed near
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0.80–0.85 with a small standard deviation. The distribution of both Hmol and HmolNet is
approximately logistic.

More than a half of 4152 considered structures have CNmol = 14 and CNmol
′ = 9

with the Wyckoff set of edges e5dcba. The average multiplicity of intermolecular contacts
statistically significantly decreases upon excluding all contacts except those bearing the
molecular net, i.e., the critical net is more saturated with involutions (the inversion centers)
than the initial net. The critical net contains more than 40% information of the molecular
net, and Hedge,crit has a more discriminatory power.

The minimal possible CNcrit
′ is the invariant of a structural class. Each molecular

coordination shell may be split in the finite number of critical coordination shells, from
which the complexity of the fuzzy coordination shell arises.
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