Airspace Operation Effectiveness Evaluation Based on q-Rung Orthopair Probabilistic Hesitant Fuzzy GRA and TOPSIS

Zhiyuan Chen¹, Di Shen¹,*, Yaojun Ren², Fuping Yu¹ and Xiujiu Yuan²

¹ Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710051, China; czycc1993@163.com (Z.C.); junjingj@163.com (F.Y.)
² Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China; renyaojun1996@163.com (Y.R.); yuanxiujiu@sohu.com (X.Y.)
* Correspondence: shendi1103@163.com

Abstract: In order to improve the ability of airspace management, a multi-attribute decision-making tool based on q-rung orthopair probability hesitant fuzzy GRA-TOPSIS is proposed to solve the problem of airspace operation effectiveness evaluation; this is in view of the fact that there are few airspace operation effectiveness evaluation methods in general aviation airports. Firstly, taking general aviation airports as the research object, a complete airspace operation effectiveness evaluation system is newly established, its evaluation indicators are introduced, and its multi-attribute decision-making ideas are explained. Then, based on the q-rung orthopair probability hesitant fuzzy set, a new distance measure and information aggregation operator are defined, which can better deal with symmetry information. Secondly, we build a deviation maximization model to calculate the attribute weights of indicator elements in the decision-making process. Then, we combine the GRA method and TOPSIS method to rank the airspace operation effectiveness evaluation schemes. Finally, combined with calculation examples and comparative analysis, the reliability and rationality of the method proposed in this paper are verified, and the symmetry relationship between the evaluation results and the actual situation is better reflected. Experiments show that the method proposed in this paper can obtain more accurate airspace operation effectiveness evaluation results, and can provide reference for related research.

Keywords: airspace operation effectiveness; multi-attribute decision-making; q-rung orthopair probabilistic hesitant fuzzy set; GRA method; TOPSIS method

1. Introduction

In recent years, with the rapid development of the air transportation industry, the contradiction between the increasing air traffic flow and the limited airspace resources has become increasingly prominent. Facing the increasing demand for airspace use by the air transport industry, scientific and reasonable assessment of airspace operation effectiveness is not only an important guarantee for improving the efficiency of airspace resource use, but also a practical need to promote the establishment of a flexible use of airspace mechanism and promote the development of air traffic.

Airspace operational effectiveness assessment is a complex and systematic issue, mainly involving the fields of air traffic control [1], airspace management [2], military aviation [3], etc. At present, most of these fields are researched in combination with specific application backgrounds. Kim et al. [4] conducts research from the perspective of air traffic controller workload and integrates air traffic control voice data and aircraft flight path data into the Schmidt model, this model can reflect the airspace operation more realistically. Gerdes et al. [5] conducts research from the perspective of dynamic airspace, fully considers various factors affecting airspace operation, and optimizes airspace by using evolutionary algorithms, which helps to improve airspace operation efficiency.
Scala et al. [6] conducts research from the perspective of the impact of airport operations on airspace operation effectiveness, fully considering the airport taxiway capacity and the overload situation of the air traffic control terminal area, and establishing an optimization evaluation model based on the decision support system, which is more in line with the reality of air transportation. Bulusu et al. [7] conducts research from the perspective of low-altitude airspace operation, introduces indicators such as throughput and flight time, and establishes an operation model of low-altitude aircraft, by optimizing the flight performance of this type of aircraft, the operation effectiveness of low-altitude airspace can be improved on the premise of ensuring flight safety. It can be seen that the above-mentioned research results have been relatively abundant, but there are relatively few studies on solving the airspace operation effectiveness evaluation problem based on the idea of multi-attribute decision-making. Therefore, Yang et al. [8] tried to apply the multi-attribute decision-making method to optimize the continuous descent operations of the aircraft to reduce the fuel consumption and noise impact of the aircraft. Maeda et al. [9] tried to apply the multi-attribute decision-making method to the selection of military aircraft, which can provide an effective reference for high-level decision-making.

Although the above-mentioned experts have carried out very useful explorations, these studies are relatively weakly linked to the assessment of airspace operation effectiveness. Airspace operation effectiveness evaluation can determine the evaluation value of the evaluation schemes under the corresponding evaluation factor based on the information provided by decision-making groups, and then select the evaluation schemes to determine the airspace operation status, so it is essentially a multi-attribute decision problem. Affected by the knowledge level of decision-making groups, there is a lot of uncertainty in the decision-making information they provide. According to the research results of the literature [10,11], in order to ensure that the decision-making groups can give relatively fair and reasonable decision-making opinions, it is necessary to select decision-making experts with rich professional knowledge and work experience based on the specific evaluation background to ensure that the decision-making opinions given by them meet the needs of airspace operation effectiveness evaluation. On this basis, the multi-attribute decision-making idea is used to solve the airspace operation efficiency evaluation problem. One is to choose an appropriate method to express decision information, which provides the basis for subsequent multi-attribute decision-making operations. The second is to choose an appropriate method to sequence the airspace operation effectiveness evaluation schemes and select the optimal scheme to provide support information for airspace operation management decisions.

For the representation of decision information, fuzzy mathematics theory has become a research hotspot in the current field due to its unique advantages. Zedah [12] proposed fuzzy sets, which can express decision-making information in the form of membership function, and can reasonably describe the uncertainty information in decision-making, which provides a way of thinking for research in related fields. On this basis, type-2 fuzzy sets [13], type-L fuzzy sets [14], extended fuzzy sets [15], etc., have been developed successively, which expanded the scope of application of fuzzy sets. However, fuzzy sets have certain limitations. For this reason, Atanassov [16] proposed intuitionistic fuzzy sets, which describe decision-making information more comprehensively through membership and non-membership degrees. Further, Gulzar et al. [17] and Mishra et al. [18] extended it from application scenarios and basic theory, respectively, and studied the multi-attribute decision-making problem. In order to further broaden the value range of membership degree and non-membership degree, Yager proposed Pythagorean fuzzy sets (PFS) in 2014 [19], and proposed q-rung orthopair fuzzy sets (q-ROHFS) in 2017 [20]. Similarly, Ghoushchi et al. [21] conducted a new study on multi-attribute decision-making problems using spherical fuzzy set extended by PFS. In view of the loose constraints of q-ROHFS, scholars have carried out extensive research and exploration. Shu et al. [22] studied the aggregation of q-rung orthopair fuzzy continuous information, and proposed a q-rung orthopair fuzzy definite integral, which filled the gap of related research. Jana et al. [23]
proposed some q-rung orthopair fuzzy aggregation operators based on the Dombi norm. Zhang et al. [24] proposed an additive consistent q-rung orthopair fuzzy preference relation priority generation method based on the preference relation of the alternatives given by the decision maker. In practical problems, decision-making experts are often indecisive. Torra [25] was the first to notice the hesitancy of decision-making experts and creatively gave the concept of hesitant fuzzy sets (HFS). In addition, Yang et al. [26] and Kandil et al. [27] also explored related issues from the perspective of HFS. Liu et al. [28] also considered the hesitancy of decision-making experts and proposed a q-rung orthopair hesitant fuzzy set (q-ROHFS), which made up for the shortcomings of the q-rung orthopair fuzzy set (q-ROFS). By reflecting the preferences of decision-making experts through probability information, Ren et al. [29] proposed a q-rung orthopair probability hesitation fuzzy set (q-ROPHFS), which more comprehensively expressed the true opinions of decision-making groups. After comprehensive consideration, this paper mainly uses the q-ROPHFS as a tool to accurately describe the decision-making information of decision-making experts in the evaluation of airspace operation efficiency.

There are many methods available for the priority-selection problem in multi-attribute decision-making, the more common ones being the TOPSIS method, GRA method, VIKOR method, and so on. The TOPSIS method [30,31] is a method proposed by Hwang and Yoon [32] for solving multi-attribute decision-making problems. The TOPSIS method needs to compare the candidate scheme with the positive and negative ideal solutions, and determine the pros and cons by calculating the distance between the candidate scheme and the positive and negative ideal solutions. The optimal scheme is the farthest from the negative solution. The GRA method [33,34] is a method proposed by Deng [35] and widely used in the field of multi-attribute decision-making. The GRA method first needs to determine the reference sequence that can reflect the characteristics of the system behavior and the data sequence composed of the factors that affect the system behavior. Then, the grey relational coefficient of all data series is calculated with reference series. Finally, the grey relational correlation degree is calculated. If the gray correlation degree between the data sequence and the reference sequence is the highest, then the candidate scheme corresponding to the data sequence is the optimal scheme. VIKOR method [36,37] is a multi-attribute decision-making method proposed by Opricovic [38]. The VIKOR method also needs to define the positive and negative ideal solutions, and then sort them according to the closeness of the evaluation value of the candidate scheme to the ideal scheme. Although the above three methods can be well applied to multi-attribute decision-making problems, the TOPSIS method mainly considers the Euclidean distance between the evaluation indicators, and cannot directly reflect the change trend of the evaluation indicators, it is difficult to obtain a reasonable ranking result when the data is limited. The GRA method mainly calculates the degree of closeness between the candidate solution and the ideal solution based on the overall similarity of the change situation of the evaluation indicators, and ranks the scheme from the system level, which can better make up for the shortcomings of the TOPSIS method. The characteristic of VIKOR is that it can maximize group benefits and minimize individual regrets of objections, and it is more suitable for decision-making problems where decision-making preferences cannot be described, and evaluation criteria are conflicting. Due to the unified criteria of the airspace performance evaluation system, there is no conflict, and the q-ROPHFE used in this paper can express decision preferences through probability information. After comprehensive consideration, this paper mainly uses the GRA method and the TOPSIS method to carry out related research.

Based on the above analysis, this paper proposes airspace operation effectiveness evaluation method based on q-rung orthopair probability hesitant fuzzy GRA-TOPSIS. Firstly, this method takes the airspace operation effectiveness of general aviation as the research object, constructing a practical airspace operation effectiveness evaluation system. Secondly, considering that the q-rung orthopair probability hesitant fuzzy set can describe uncertain information in two dimensions, its operational properties are symmetric with the information aggregation operator itself, based on this define q-rung orthopair probability
hesitant fuzzy weighted average (q-ROPFWA) operator and weighted geometric (q-ROPHFWG) operator deal with symmetry information in decision making. Thirdly, aiming at the problem of unknown attribute weights of the aggregated comprehensive evaluation matrix, the new q-rung orthopair probability hesitant fuzzy distance defined in this paper is used to determine the attribute weights. Fourthly, we combine the GRA method and the TOPSIS method to rank the airspace operation effectiveness schemes and select the best scheme to reflect the symmetry between the evaluation results and the actual situation. Finally, the reliability of the method proposed in this paper is verified through experiments.

2. Airspace Operation Effectiveness Evaluation Issues

2.1. Airspace Operation Effectiveness Evaluation Factor

Airspace operation effectiveness refers to the extent to which the airspace resources are reasonably and fully utilized to achieve the benefits and capabilities of achieving the corresponding goals, and to meet the user’s airspace use needs from multiple aspects [39]. General aviation is a special group. Firstly, it has a complex organizational structure and diverse professional types. Secondly, it is technology intensive and has high requirements for business capabilities. Thirdly, the elements of participation are diversified, and coordination is complicated. The successful completion of an aircraft flight requires the participation of highly qualified pilots and various job support personnel. They have a clear division of labor, different tasks, and relatively independent, but they are indispensable. From the above three points, it can be seen that the flight of general aviation is an integrated process involving multiple types of elements. Only by coordinating and acting in a unified manner can all elements ensure the successful completion of the flight. Therefore, when considering the influencing factors of its airspace operation effectiveness, in addition to the necessary objective factors, it should also focus on the impact of the competence level of the personnel in each position, and choose appropriate methods to quantify the competence level of the personnel in each position.

In order to facilitate the research, it was based on the principles of purpose, science, integrity, and measurability. Select factors such as flights, equipment, air traffic control, and maintenance are the constituent factors of the airspace operation effectiveness evaluation factor system. Combining with the flight rules and characteristics of general aviation, using the viewpoint of system theory, we establish a general aviation airspace operation effectiveness evaluation system, as shown in Figure 1.

![Figure 1. General aviation airspace operation effectiveness evaluation system.](image-url)
In terms of flight factor \((M_1)\). The aircraft sorties indicators \((M_{11})\) can reflect the use of airspace from the quantitative dimension. The more aircraft sorties per unit time, the more adequate the use of airspace resources. The airspace altitude usage range indicators \((M_{12})\) can reflect the use of airspace from the spatial dimension. When the safety interval remains unchanged, the larger the airspace altitude usage range per unit time, the more aircraft flying in the airspace and the busier the airspace.

In terms of the equipment factor \((M_2)\), the communication and navigation equipment performance indicators \((M_{21})\) determines the degree of precision of flight procedures that an aircraft can perform. The higher the degree of precision of flight procedures, the more airspace the aircraft can effectively use. The monitor equipment performance indicators \((M_{22})\) determines the ability of an airport to monitor flight activities. The better the performance of the monitoring equipment, the more aircraft the airport can monitor, and the more aircraft can be accommodated in the corresponding airspace.

In terms of air traffic control factor \((M_3)\), the flight commander command capability indicators \((M_{31})\) reflects the number of aircraft that the tower can command. The stronger the commander’s command capability, the more aircraft can be commanded, and the more aircraft can be accommodated in the airspace. The air traffic controller deployment ability indicators \((M_{32})\) reflects the ability of air traffic controllers to provide air traffic control services. The greater the air traffic controller deployment ability, the more aircraft the airport can provide air traffic control services, the more aircraft the airport can serve, and the better the corresponding airspace usage.

In terms of the maintenance factor \((M_4)\), the refuel support capability indicators \((M_{41})\) reflects the aircraft refueling service capability that the ground crew can provide. The greater the refuel support capability, the shorter the aircraft’s stay at the airport, and the higher the aircraft’s flight efficiency in the airspace. The maintenance support capability indicators \((M_{42})\) reflects the number of aircraft that the ground crew can support. The greater the maintenance support capability, the more aircraft the airport can accommodate. Under the same conditions, the greater the number of aircraft dispatched.

2.2. Multi-Attribute Decision-Making Ideas

In order to facilitate subsequent modeling and analysis, the following gives general aviation’s multi-attribute decision-making application ideas. As shown in Figure 2.

![Diagram](image_url)

Figure 2. Multi-attribute decision-making ideas for airspace operation effectiveness evaluation.
It can be seen from Figure 2 that the multi-attribute decision-making idea of airspace operation effectiveness evaluation based on q-rung orthopair probability hesitant fuzzy GRA-TOPSIS is as follows:

Firstly, each experts gives the evaluation information of each scheme on specific indicators $M_{11}, M_{12}, M_{21}, M_{22}, M_{31}, M_{32}, M_{41}, M_{42}$. After transformation, the evaluation information of the above eight types of indicators can be expressed as factor M_1, factor M_2, factor M_3, factor M_4 corresponding to the q-ROPHFS. The matrix composed of these q-ROPHFS is the evaluation matrix. Secondly, the information aggregation operator of the q-ROPHFS is used as a tool to aggregation the evaluation matrix into a comprehensive evaluation matrix. Thirdly, based on the comprehensive evaluation matrix, a deviation maximization model is built to calculate the attribute weights corresponding to each evaluation factors used to evaluate the airspace operation effectiveness. At the same time, according to the GRA method and the TOPSIS method, the gray correlation degree and distance measure between the scheme and the positive and negative ideal solution are obtained respectively, and modified according to the attribute weight. Fourthly, the revised grey relational correlation degree and distance measure are processed in a dimensionless manner, and decision-making preferences are introduced to calculate the comprehensive relative closeness. Finally, according to the comprehensive relative closeness, the airspace operation effectiveness evaluation scheme is ranked and selected, and the airspace operation efficiency evaluation result is obtained.

3. Basic Knowledge of q-Rung Orthopair Probability Hesitant Fuzzy Set

In order to understand the basic content of q-ROPHFS more clearly, the following is an introduction to PHFS and q-ROHFS respectively. On this basis, the definition of q-ROPHFS is derived, and its properties and aggregation operator are introduced to provide a theoretical basis for subsequent modeling and analysis.

3.1. The Basic Definition of q-Rung Orthopair Probability Hesitant Fuzzy Set

Definition 1. Ref. [26]. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a given universe, then the PHFS on the universe X is defined as:

$$A = \{(x, \mu_A(x))| x \in X \}$$ \hspace{1cm} (1)

where $\mu_A(x)$ represents the membership degree of the element $x \in X$, and p represents the corresponding probability, and satisfies $0 \leq \mu_A(x) \leq 1$, $0 \leq p \leq 1$.

Definition 2. Ref. [28]. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a given universe, then the q-ROHFS on the universe X is defined as:

$$A = \{(x, \Gamma_A(x), \Psi_A(x))| x \in X \}$$ \hspace{1cm} (2)

where $q \geq 1$, $\Gamma_A(x)$ and $\Psi_A(x)$ respectively represent the possible membership and non-membership of element $x \in X$. $\forall x \in X$, $\forall \mu \in \Gamma_A(X)$ and $\forall \nu \in \Psi_A(X)$ all satisfy $0 < \mu, \nu < 1$, $0 \leq \mu^q + \nu^q \leq 1$.

Definition 3. Ref. [29]. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a given universe, then the q-order orthogonal probability hesitant fuzzy set on the universe of q-ROPHFS is defined as:

$$A = \{(x, \Gamma_A(x), \Psi_A(x))| x \in X \}$$ \hspace{1cm} (3)

where $\Gamma_A(x) = \{\mu_1(p_1), \mu_2(p_2), \ldots, \mu_l(p_l)\}$, $\Psi_A(x) = \{v_1(p_1), v_2(p_2), \ldots, v_m(p_m)\}$, μ_l and v_m respectively represent the possible membership and non-membership of element $x \in X$, and p_l and p_m...
and \(\overline{p}_m \) represent the corresponding probability. For \(\forall x \in X, \forall \mu \in \Gamma_A(X) \) and \(\forall \nu \in \Psi_A(X) \), the following conditions are all satisfied:

\[
0 < \mu, \nu < 1, \ 0 \leq \mu^q + \nu^q \leq 1, \ 0 < p_i \cdot \overline{p}_m < 1, \ \sum_{l=1}^{\left| \Gamma_A(x) \right|} p_l \leq 1, \ \sum_{m=1}^{\left| \Psi_A(x) \right|} \overline{p}_m \leq 1.
\]

where \(\left| \Gamma_A(x) \right| \) and \(\left| \Psi_A(x) \right| \) represent the number of elements contained in \(\Gamma_A(x) \) and \(\Psi_A(x) \) respectively. Call \(\langle \Gamma_A(x), \Psi_A(x) \rangle \) \(q \)-rung orthopair probabilistic hesitant fuzzy element (q-ROPHFE), denoted as \(h = \langle \Gamma_A(x), \Psi_A(x) \rangle_q \).

3.2. The Basic Properties of q-Rung Orthopair Probability Hesitant Fuzzy Set

Definition 4. Ref. [29]. Let \(h = \langle \Gamma_h, \Psi_h \rangle_q \), \(h_1 = \langle \Gamma_{h_1}, \Psi_{h_1} \rangle_q \), \(h_2 = \langle \Gamma_{h_2}, \Psi_{h_2} \rangle_q \) be any three \(q \)-ROPHFE, and \(\lambda > 0 \), then the algorithm of q-ROPHFS is as follows:

\[
(1) \quad h_1 \oplus h_2 = \left\{ \left(\frac{p_{11} + p_{21} - \mu_1^q \mu_2^q}{\sum_{l=1}^{\left| \Gamma_h \right|} p_l \cdot \sum_{k=1}^{\left| \Gamma_h \right|} p_k} \right), \left(\frac{\overline{p}_{11} + \overline{p}_{21} - \nu_1^q \nu_2^q}{\sum_{m=1}^{\left| \Psi_h \right|} \overline{p}_m \cdot \sum_{n=1}^{\left| \Psi_h \right|} \overline{p}_n} \right) \right\}
\]

\[
(2) \quad h_1 \otimes h_2 = \left\{ \left(\frac{p_{11} \cdot p_{21}}{\sum_{l=1}^{\left| \Gamma_h \right|} p_l \cdot \sum_{k=1}^{\left| \Gamma_h \right|} p_k} \right), \left(\frac{\overline{p}_{11} \cdot \overline{p}_{21}}{\sum_{m=1}^{\left| \Psi_h \right|} \overline{p}_m \cdot \sum_{n=1}^{\left| \Psi_h \right|} \overline{p}_n} \right) \right\}
\]

\[
(3) \quad \lambda h = \left\{ \left(1 - (1 - \mu_1^q)^{\lambda} \right)^{\frac{1}{q}}, \left(1 - (1 - \nu_1^q)^{\lambda} \right)^{\frac{1}{q}} \right\}
\]

\[
(4) \quad h^\lambda = \left\{ \mu_1^\lambda (p_1), \nu_1^\lambda (\overline{p}_m) \right\}
\]

\[
(5) \quad h^c = \langle \Psi_h, \Gamma_h \rangle_q
\]

Definition 5. Ref. [29]. Let \(h = \langle \Gamma_h, \Psi_h \rangle_q \) is a q-ROPHFE, then the score function \(S(h) \) and deviation \(D(h) \) are defined as:

\[
(4) \quad S(h) = \frac{1}{2} \left(\frac{\left| \Gamma_h \right| \cdot p_1 \cdot \overline{p}_m - \left| \Psi_h \right| \cdot \left(1 - \nu_1^q \right) \cdot \overline{p}_m}{\sum_{l=1}^{\left| \Gamma_h \right|} p_l \cdot \sum_{m=1}^{\left| \Psi_h \right|} \overline{p}_m} \right)
\]

\[
(5) \quad D(h) = \frac{1}{2} \left(\frac{\left(\sum_{l=1}^{\left| \Gamma_h \right|} p_l \cdot \mu_1^q - S(h)^q \right)^2}{\sum_{l=1}^{\left| \Gamma_h \right|} p_l} + \frac{\left(\sum_{m=1}^{\left| \Psi_h \right|} \overline{p}_m \cdot (1 - \nu_1^q) - S(h)^q \right)^2}{\sum_{m=1}^{\left| \Psi_h \right|} \overline{p}_m} \right)
\]

where \(\left| \Gamma_h \right| \) and \(\left| \Psi_h \right| \) represent the number of elements contained in \(\Gamma_h \) and \(\Psi_h \) respectively. Let \(h_1 \) and \(h_2 \) be two q-ROPHFE, if \(S(h_1) > S(h_2) \), then \(h_1 \) is better than \(h_2 \), denoted as \(h_1 \succ h_2 \). If
\[S(h_1) = S(h_2) \text{, it cannot be compared by the score function } S(h) \text{, and it needs to be compared with the deviation } D(h) \text{, if } D(h_1) > D(h_2), \text{ then } h_2 \text{ is better than } h_1, \text{ denoted as } h_1 \prec h_2. \]

In summary, the comparison rules corresponding to the q-ROPHFE based on the score function \(S(h) \) and the deviation degree \(D(h) \) are as follows:

1. If \(S(h_1) > S(h_2) \), then \(h_1 > h_2 \).
2. If \(S(h_1) = S(h_2) \),

 2.1 If \(D(h_1) > D(h_2) \), then \(h_1 < h_2 \).

 2.2 If \(D(h_1) = D(h_2) \), then \(h_1 = h_2 \).

q-ROPHFE contains a number of different degrees of membership and non-membership, reflecting the differences between decision-making experts, that is, the degree of hesitation among decision-making experts. The greater the deviation between them, the higher the degree of hesitation. In addition, when the probabilities corresponding to different degrees of membership and non-membership are closer, the more difficult it is for decision-making experts to reach consensus and the higher the degree of hesitation. Based on the above two points, this paper newly defines the hesitation degree of the q-ROPHFE based on the deviation degree proposed in document [40].

Definition 6. Let \(h = (\Gamma_h, \Psi_h)_q \) be a q-ROPHFE, the hesitation \(H(h) \) is defined as:

\[
H(h) = \frac{1}{2} \left(\sum_{l=1}^{\nu} p_l \left| \sum_{i=1}^{f_q} \left(\mu_{1}^{\theta(i)} - \mu_{2}^{\theta(i)} \right) \right|^2 + \sum_{i=1}^{f_q} p_i \left| \sum_{m=1}^{\nu} \left(\nu_{1}^{\theta(i)} - \nu_{2}^{\theta(i)} \right) \right|^2 \right) \tag{6}
\]

According to the literature [29], the Hamming distance and Euclidean distance of q-ROPHFE, which are commonly used at present, more reflect the deviation between q-ROPHFE, and less reflect the degree of hesitation among decision-making experts. Based on the above two points, this paper newly defines a distance of q-ROPHFE based on the degree of hesitation.

Theorem 1. Let \(h_1 \) and \(h_2 \) be two q-ROPHFE, then the distance of q-ROPHFE based on hesitation is:

\[
d(h_1, h_2) = \tilde{\alpha} \left[\frac{1}{2} \left(\sum_{i=1}^{f_q} p_i \left| \left(\mu_{1}^{\theta(i)} - \mu_{2}^{\theta(i)} \right) \right|^2 + \sum_{i=1}^{f_q} p_i \left| \sum_{m=1}^{\nu} \left(\nu_{1}^{\theta(i)} - \nu_{2}^{\theta(i)} \right) \right|^2 \right) + \tilde{\beta} |H(h_1) - H(h_2)| \right] \tag{7}
\]

where \(\tilde{\alpha}, \tilde{\beta} \) and represent the balance coefficient, satisfy \(\tilde{\alpha} + \tilde{\beta} = 1 \), \(\tilde{\alpha}, \tilde{\beta} \in [0, 1], \) usually take 0.5. \(\nu^* \) and \(\nu^* \) are the maximum values when \(\nu_{1}^{\sigma(i)} / \nu^* \) and \(\nu_{2}^{\sigma(i)} / \nu^* \) are positive integers respectively. For \(\forall u_1^{\sigma(i)} \in \Gamma_h \), if there is \(\nu_{1}^{\sigma(i)} / \nu^* = m \), then there is \(\mu_1^{\sigma(i)} = \mu_1^{\sigma(i)} = \mu_1^{\sigma(i)} = \cdots = \mu_1^{\sigma(m)} \). If there is \(\nu_{1}^{\sigma(i)} / \nu^* = n \), then there is \(\mu_1^{\sigma(i)} = \mu_1^{\sigma(i)} = \mu_1^{\sigma(i)} = \cdots = \mu_1^{\sigma(m+n)} \). \(\nu_{1}^{\sigma(i)} \) is the i-th largest value in \(\Gamma_h \) and satisfies \(\nu_{1}^{\sigma(i)} > \nu_{2}^{\sigma(i)} > \cdots > \nu_{1}^{\sigma(f_q)} > \cdots > \nu_{1}^{\sigma(\Gamma_h)} \).

Similarly, when \(i = 1, 2, \cdots, f_q, j = 1, 2, \cdots, f_q \), the above-mentioned corresponding relationship exists for \(\forall v_1^{\theta(i)} \), \(\forall v_1^{\theta(i)} \), \(\forall v_2^{\theta(i)} \) and \(\forall v_2^{\theta(i)} \). In practical problems, the sum of the probability information of \(h_1 \) and \(h_2 \) is usually not equal, so it is necessary to add elements to make the sum of the probability information of both equal. This article assumes that decision-making experts are risk-averse, so the element with the smallest value is added.
3.3. The Aggregation Operator of q-Rung Orthopair Probability Hesitant Fuzzy Set

In order to effectively aggregate the information of multiple evaluation matrices, q-ROPHFA operator and q-ROPHFG operator are newly defined in this paper.

Definition 7. Let \(h_i = (\Gamma_{h_i}, \Psi_{h_i})_q (i = 1, 2, \ldots, n) \) is a set of q-ROPHFE, the weight vector is \(\mathbf{w} = (w_1, w_2, \ldots, w_n)^T \), and \(\sum_{i=1}^n w_i = 1 \) and \(w_i \in [0, 1] \) are satisfied, then the q-ROPHFA operator is defined as:

\[
q - \text{ROPHFA}(h_1, h_2, \ldots, h_n) = \bigoplus_{i=1}^n (w_i h_i)
\]

The corresponding expression is:

\[
q - \text{ROPHFA}(h_1, h_2, \ldots, h_n) = \bigcup_{h_i \in \Gamma_{h_i}} \left\{ \left[1 - \prod_{j=1}^n \left(1 - p_{h_{ij}}^q \right) \right] \frac{1}{q} \right\} \bigcup_{v_m \in \Psi_{h_i}} \left\{ \left(\prod_{j=1}^n v_{mi}^q \right) \right\} \bigcup_{h_i \in \Gamma_{h_i}} \left\{ \left[1 - \prod_{j=1}^n \left(1 - p_{h_{ij}}^q \right) \right] \frac{1}{q} \right\} \bigcup_{v_m \in \Psi_{h_i}} \left\{ \left(\prod_{j=1}^n v_{mi}^q \right) \right\}
\] (8)

Definition 8. Let \(h_i = (\Gamma_{h_i}, \Psi_{h_i})_q (i = 1, 2, \ldots, n) \) is a set of q-ROPHFE, the weight vector is \(\mathbf{w} = (w_1, w_2, \ldots, w_n)^T \), and \(\sum_{i=1}^n w_i = 1 \) and \(w_i \in [0, 1] \) are satisfied, then the q-ROPHFG operator is defined as:

\[
q - \text{ROPHFG}(h_1, h_2, \ldots, h_n) = \bigoplus_{i=1}^n (h_i w_i)
\]

The corresponding expression is:

\[
q - \text{ROPHFG}(h_1, h_2, \ldots, h_n) = \bigcup_{h_i \in \Gamma_{h_i}} \left\{ \left(\prod_{j=1}^n p_{h_{ij}}^w \right) \right\} \bigcup_{v_m \in \Psi_{h_i}} \left\{ \left[1 - \prod_{j=1}^n \left(1 - v_{mi}^q \right) \right] \frac{1}{q} \right\} \bigcup_{h_i \in \Gamma_{h_i}} \left\{ \left(\prod_{j=1}^n p_{h_{ij}}^w \right) \right\} \bigcup_{v_m \in \Psi_{h_i}} \left\{ \left[1 - \prod_{j=1}^n \left(1 - v_{mi}^q \right) \right] \frac{1}{q} \right\}
\] (9)

4. Attribute Weight Determination Based on Deviation Maximization Model

Through the previous analysis, it can be known that the airspace operation effectiveness evaluation based on the q-rungh orthopair probability hesitant fuzzy GAR-TOPSIS is essentially a multi-attribute decision-making problem. In practical applications, subject to the limitation of expert knowledge level, the importance of evaluation information given by each expert is different. Although the importance of this part of information can be expressed by expert weight, the evaluation information of multiple experts is aggregated into after the comprehensive evaluation matrix, the weight corresponding to each attribute is unknown. Therefore, the attribute weights of the comprehensive evaluation matrix must be determined, and the importance of each attribute in the comprehensive evaluation matrix in the airspace operation effectiveness evaluation must be clarified, so as to ensure the reasonable and reliable subsequent decision-making results.

At present, for the problem of unknown attribute weights in the comprehensive evaluation matrix, the attribute weights are usually calculated by constructing a deviation maximization model, the specific calculation steps are shown in Figure 3.

Step 1: Build q-rungh orthopair probability hesitant fuzzy comprehensive evaluation matrix \(H \). Let the set \(A = \{ A_1, A_2, \ldots, A_m \} \) composed of airspace operation effectiveness evaluation scheme is the scheme set. The set \(M = \{ M_1, M_2, \ldots, M_n \} \) of evaluation factor used to evaluate airspace operation effectiveness is the attribute set. The evaluation matrix composed of the evaluation values of the airspace operation effectiveness scheme \(A_i (i = 1, 2, \ldots, m) \) given by the expert on the attribute \(M_j (j = 1, 2, \ldots, n) \) is \(H = (h_{ij})_{m \times n} \), where \(h_{ij} \) is the q-ROPHFE.
Step 1: Build q-rung orthopair probability hesitant fuzzy comprehensive evaluation matrix \(H \)

Step 2: Calculate the distance measure \(d(h_i, h_j) \) between the q-ROPHFE \(h_i \) and \(h_j \)

Step 3: Calculate the distance \(d_s(\omega) \) of the scheme \(S \) related to the attribute \(M \) in the evaluation matrix \(H \) from other schemes \(A \).

Step 4: Calculate the deviation \(d_j(\omega) \) of all schemes related to attribute \(M \) relative to other schemes.

Step 5: Build a deviation maximization model.

Step 6: Solve the model based on the Lagrangian function to get the corresponding attribute weight \(\omega_j \).

Figure 3. Attribute weight calculation steps based on deviation maximization model.

Step 2: Calculate the distance measure \(d(h_{ij}, h_{lj}) \) between the q-ROPHFE \(h_{ij} \) and \(h_{lj} \). According to the distance measure Formula (7) newly defined in this article, the distance measure \(d(h_{ij}, h_{lj}) \) of the q-ROPHFE \(h_{ij} \) and \(h_{lj} \) can be calculated.

Step 3: Calculate the distance \(d_{ij}(\omega) \) of the scheme \(A_i \) related to the attribute \(M_j \) in the evaluation matrix \(H \) from other schemes \(A_i \). The formula is as follows:

\[
 d_{ij}(\omega) = \sum_{t=1}^{m} d(h_{ij}, h_{lj}) \omega_j
\]

where \(d(h_{ij}, h_{lj}) \) represents the distance measure between the q-ROPHFE \(h_{ij} \) and \(h_{lj} \), \(\omega_j \) represents the weight of the attribute \(M_j \).

Step 4: Calculate the deviation \(d_j(\omega) \) of all schemes related to attribute \(M_j \) relative to other schemes. The formula is as follows:

\[
 d_j(\omega) = \sum_{i=1}^{m} d_{ij}(\omega)
\]

Step 5: Establish an optimization model for nonlinear programming. The formula is as follows:

\[
 \begin{align*}
 \max d(\omega) &= \sum_{j=1}^{n} d_j(\omega) \\
 \text{s.t. } \omega_j &\geq 0, \sum_{j=1}^{n} \omega_j^2 = 1
 \end{align*}
\]

where \(j = 1, 2, \cdots, n \).

Step 6: Solve the model based on the Lagrangian function to get the corresponding attribute weight \(\omega_j \). According to the newly defined distance measurement formula of q-ROPHFE based on hesitation in this article, and deviation maximization model, the Lagrangian solution formula can be established as follows:
\[
L(\omega, \xi) = \\
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\omega_{ij}}{2} \left[\left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) \left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) + \sum_{a=1}^{L} \left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right]^2 + \frac{1}{2} \sum_{a=1}^{L} \left(\left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \beta |H(h_{ij}) - H(h_{ij})| \right]
\]

where \(\xi \) is a real number, representing the Lagrangian multiplier variable, then the partial differential calculation formula of the Lagrangian function is as follows:

\[
\frac{\partial L}{\partial \omega_{ij}} = \\
\sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{1}{z} \sum_{l=1}^{L} p^l \left(\left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) \left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) + \sum_{a=1}^{L} \left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \frac{1}{2} \sum_{a=1}^{L} \left(\left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \beta |H(h_{ij}) - H(h_{ij})| \right]
\]

Available:

\[
\omega_{ij} = \\
\frac{1}{z} \sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{1}{z} \sum_{l=1}^{L} p^l \left(\left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) \left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) + \sum_{a=1}^{L} \left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \frac{1}{2} \sum_{a=1}^{L} \left(\left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \beta |H(h_{ij}) - H(h_{ij})| \right]
\]

Substituting the above equation into Equation (15), can get:

\[
\xi = \\
- \frac{1}{z} \sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{1}{z} \sum_{l=1}^{L} p^l \left(\left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) \left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) + \sum_{a=1}^{L} \left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \frac{1}{2} \sum_{a=1}^{L} \left(\left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \beta |H(h_{ij}) - H(h_{ij})| \right]
\]

Combining Formulas (14) and (17), can get:

\[
\omega_{ij} = \\
\frac{1}{z} \sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{1}{z} \sum_{l=1}^{L} p^l \left(\left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) \left(\frac{1}{z} \sum_{l=1}^{L} p^l \right) + \sum_{a=1}^{L} \left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \frac{1}{2} \sum_{a=1}^{L} \left(\left(v_{ij}^a \right)^q - \left(v_{ij}^a \right)^q \right)^2 + \beta |H(h_{ij}) - H(h_{ij})| \right]
\]

Then normalize the Formula (18) to obtain the weight of each attribute of the comprehensive evaluation matrix \(H \).

5. Airspace Operation Effectiveness Evaluation Based on q-Rung Orthopair Probability Hesitant Fuzzy GRA-TOPSIS

Combining the previous analysis, the airspace operation effectiveness evaluation model based on the q-rung orthopair probability hesitant fuzzy GRA-TOPSIS is given below as shown in Figure 4.

Step 1: Construct evaluation matrix \(H = (h_{ij})_{m \times n} \) for each expert. In order to ensure the reasonable reliability of the evaluation results, the research fields of the decision-making experts selected here should be related to the four types of evaluation factor \(M_1 \), factor \(M_2 \), factor \(M_3 \) and factor \(M_4 \) in Section 2.1. For the convenience of calculation, the q-ROPFWA operator is used here to aggregate it into a comprehensive evaluation matrix \(H = (h_{ij})_{m \times n} \). Let the set \(A = \{ A_1, A_2, \cdots, A_m \} \) composed of airspace operation effectiveness evaluation scheme is the scheme set. The set \(M = \{ M_1, M_2, \cdots, M_n \} \) of evaluation factor used to evaluate airspace operation effectiveness is the attribute set. The attribute set weight vector is \(\omega = (\omega_1, \omega_2, \cdots, \omega_n)^T \), satisfy \(\sum_{i=1}^{n} \omega_i = 1, \omega_i \in [0, 1] \). The set \(H = \{ H_1, H_2, \cdots, H_z \} \) composed of expert is the set of decision-making experts, and the
weight vector of the decision-making experts is \(\varphi = \{ \varphi_1, \varphi_2, \ldots, \varphi_z \}^T \), where \(\varphi_l \in [0, 1] \) and \(l = 1, 2, \cdots, z \) satisfy \(\sum_{l=1}^{z} \varphi_l = 1 \). The evaluation matrix composed of the evaluation values of the scheme \(A_l \) of each expert on the attribute \(M_j \) is \(H^{(i)} = (h_{ij})_{m \times n} \), where \(h_{ij} \) is the q-ROPHFE. Then the evaluation matrix \(H^{(i)} \) constructed by each sensor group is as follows:

\[
H^{(i)} = (h_{ij}^{(i)})_{m \times n} = \begin{pmatrix}
 h_{11}^{(i)} & h_{12}^{(i)} & \cdots & h_{1n}^{(i)} \\
 h_{21}^{(i)} & h_{22}^{(i)} & \cdots & h_{2n}^{(i)} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{m1}^{(i)} & h_{m2}^{(i)} & \cdots & h_{mn}^{(i)}
\end{pmatrix}
\] (19)

![Diagram](Figure 4. Airspace operation effectiveness evaluation model based on q-rung orthopair probability hesitant fuzzy GRA-TOPSIS.)

According to the idea of information aggregation in the literature [41], here use q-ROPHFWA operator to aggregate the evaluation matrix constructed by \(t \) sensor groups. The formula is as follows:

\[
h_{ij} = \left(\bigcup_{(h_{ij}^{(i)}) \in \Gamma_{h_{ij}}} \left\{ \left(1 - \prod_{l=1}^{z} \left(1 - \left(h_{ij}^{(i)} \right)_{l} \right) \varphi_l \right) \frac{1}{\prod_{l=1}^{z} \left(1 - \left(h_{ij}^{(i)} \right)_{l} \right) \varphi_l} \right\} \right) \cup \left\{ \prod_{l=1}^{z} \left(v_{ijm} \right) \varphi_l \right\} \left(\prod_{l=1}^{z} \left(v_{ijm} \right) \varphi_l \right) \frac{1}{\prod_{l=1}^{z} \left(v_{ijm} \right) \varphi_l} \right\} \right) \right)^\varphi
\] (20)

Through the above formula, \(H^{(i)} \) can be assembled into a comprehensive evaluation matrix \(H \) as follows:

\[
H = (h_{ij})_{m \times n} = \begin{pmatrix}
 h_{11} & h_{12} & \cdots & h_{1n} \\
 h_{21} & h_{22} & \cdots & h_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{m1} & h_{m2} & \cdots & h_{mn}
\end{pmatrix}
\] (21)
Step 2: Standardize the matrix $H = (h_{ij})_{m \times n}$ to obtain the standardized comprehensive evaluation matrix $H^N = \left(h^N_{ij}\right)_{m \times n}$. The formula is as follows:

$$H^N = \left(h^N_{ij}\right)_{m \times n} = \left\{ \begin{array}{ll}
h_{ij}, & M_{ij} \text{ is the benefit index} \\
\left(h_{ij}\right)^+, & M_{ij} \text{ is the cost index}
\end{array} \right. \quad (22)$$

Step 3: Determine the positive ideal solution A^+ and negative ideal solution A^- of each scheme related to the attribute M_j. Let the positive ideal solution of the q-rung orthopair probability hesitant fuzzy is A^+, and the negative ideal solution is A^-, according to the calculation formula of scoring function $S(h)$ and deviation $D(h)$ in Definition 5, the positive ideal solution $A^+ = \max_i\left(h^N_{ij}\right)$ and the negative ideal solution $A^- = \min_i\left(h^N_{ij}\right)$ corresponding to the attribute M_j can be obtained.

Step 4: Calculate the attribute weight ω of the comprehensive evaluation matrix H^N. Calculate sequentially according to the method in Section 3, and the attribute weight vector $\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T$ of the comprehensive evaluation matrix $H^N = \left(h^N_{ij}\right)_{m \times n}$ can be obtained.

Step 5: Calculate the gray correlation degree and distance from each scheme related to the attribute M_j to the positive and negative ideal solutions. For the GRA method, let the gray correlation coefficients of each scheme related to attribute M_j to the positive and negative ideal solutions are r_{ij}^+, r_{ij}^-. Substituting the new distance formula defined in this article in Theorem 1 into the gray correlation coefficient calculation formula, the corresponding gray correlation coefficient can be obtained. The formula is as follows:

$$r_{ij}^+ = \min_i\left\{ \frac{d\left(h^N_{ij}, h^N_{ij}^+\right)}{d\left(h^N_{ij}, h^N_{ij}^+\right)} + \rho \max_j\left\{ d\left(h^N_{ij}, h^N_{ij}^+\right) \right\} \right\}$$

$$r_{ij}^- = \min_i\left\{ \frac{d\left(h^N_{ij}, h^N_{ij}^-\right)}{d\left(h^N_{ij}, h^N_{ij}^-\right)} + \rho \max_j\left\{ d\left(h^N_{ij}, h^N_{ij}^-\right) \right\} \right\} \quad (23)$$

$$r_{ij}^+ = \min_i\left\{ \frac{d\left(h^N_{ij}, h^N_{ij}^+\right)}{d\left(h^N_{ij}, h^N_{ij}^+\right)} + \rho \max_j\left\{ d\left(h^N_{ij}, h^N_{ij}^+\right) \right\} \right\}$$

$$r_{ij}^- = \min_i\left\{ \frac{d\left(h^N_{ij}, h^N_{ij}^-\right)}{d\left(h^N_{ij}, h^N_{ij}^-\right)} + \rho \max_j\left\{ d\left(h^N_{ij}, h^N_{ij}^-\right) \right\} \right\} \quad (24)$$

where $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, n$, $\rho \in [0, 1]$ represents the resolution coefficient, usually 0.5. Then, by weighting the correlation coefficients, the gray correlation degrees r_{ij}^+ and r_{ij}^- from each scheme related to the attribute M_j to the positive and negative ideal solutions can be obtained. The formula is as follows:

$$r_{ij}^+ = \sum_{j=1}^{n} \omega_j r_{ij}^+ \quad (25)$$

$$r_{ij}^- = \sum_{j=1}^{n} \omega_j r_{ij}^- \quad (26)$$

For the TOPSIS method, calculate the distances measure d_{ij}^+ and d_{ij}^- from each scheme related to the attribute M_j to the positive and negative ideal solutions. The calculation formula is as follows:

$$d_{ij}^+ = \sum_{j=1}^{n} \omega_j d\left(h^N_{ij}, h^N_{ij}^+\right) \quad (27)$$

$$d_{ij}^- = \sum_{j=1}^{n} \omega_j d\left(h^N_{ij}, h^N_{ij}^-\right) \quad (28)$$
where the distance $d\left(h_i^N, h_{i}^{N+}\right)$ and the distance $d\left(h_i^N, h_{i}^{N-}\right)$ are calculated according to the new distance formula defined in this paper in Theorem 1.

Step 6: Calculate the comprehensive relative closeness of each scheme to the positive and negative ideal solution and rank the best. Firstly, the gray correlation degree of the GRA method and the distance measurement of TOPSIS are dimensionlessly processed. The formulas are as follows:

$$R_i^+ = \frac{r_i^+}{\max_i(r_i^+)} , \quad R_i^- = \frac{r_i^-}{\max_i(r_i^-)}$$

$$D_i^+ = \frac{d_i^+}{\max_i(d_i^+)} , \quad D_i^- = \frac{d_i^-}{\max_i(d_i^-)}$$

Then, the decision preference is introduced to perform weighted fusion of the un-quantified gray relational degrees R_i^+ and R_i^- and the distance measures D_i^+ and D_i^-, the comprehensive closeness between the ith scheme and the positive and negative ideal solutions can be obtained. The formula is as follows:

$$E_i^+ = \alpha D_i^- + \beta R_i^+$$

$$E_i^- = \alpha D_i^+ + \beta R_i^-$$

where α and β represent the decision preference, which is usually determined by the commander, and satisfies $\alpha + \beta = 1$ and $\alpha, \beta \in [0, 1]$. It can be seen from the above formula that the larger the value of D_i^- and R_i^+, the closer the scheme is to the positive ideal solution; the larger the value of D_i^+ and R_i^-, the closer the scheme is to the negative ideal solution.

Finally, calculate the comprehensive relative closeness of each scheme. The formula is as follows:

$$C_i = \frac{E_i^+}{E_i^+ + E_i^-}$$

According to the results obtained above, the schemes can be ranked and selected.

6. Example Calculation

Suppose a general aviation airport, in order to improve its airspace management capabilities, intends to evaluate the operational effectiveness of the airport’s four airspaces, to select the optimal airspace, and to promote its management model as an experience. Here, Airspace No. 1 (A_1), Airspace No. 2 (A_2), Airspace No. 3 (A_3), and Airspace No. 4 (A_4) are selected as the set of scheme for airspace operation effectiveness evaluation. Select evaluation indicators such as Flight factors (M_1), equipment factors (M_2), air traffic control factors (M_3), maintenance factors (M_4) as the attribute set for evaluating airspace operation effectiveness. The attribute set weight vector is $\omega (\omega_1, \omega_2, \cdots, \omega_n)^T$, satisfy $\sum_{i=1}^{n} \omega_i = 1$, $\omega_i \in [0, 1]$. Since equipment maintenance personnel and ground support personnel belong to the logistics support type to a certain extent, for the convenience of calculation, three experts related to the flight field, air traffic control field and support field are selected to participate in the evaluation. Let the set of experts H_1, H_2, and H_3 be the set of decision-making experts, and the weight vector of the decision-making expert set is $\varphi = \{0.3, 0.4, 0.3\}^T$. The evaluation matrix composed of the evaluation values of the scheme A_i given by each expert with respect to the attribute M_j is $H^{(j)} = \left(h_{ij}^{(j)}\right)_{m \times n}$. To facilitate the calculation, the parameter $q = 3$ is set here, and the relevant data based on the expert H_1, H_2, and H_3 are shown in Tables 1–3.
According to the data in Tables 1–3, the evaluation matrix $H^{(1)}$, $H^{(2)}$, $H^{(3)}$ of expert H_1, H_2, H_3 can be constructed respectively. Use the q-ROPHFWA operator to gather the above evaluation matrix to get the comprehensive evaluation matrix H. To facilitate the calculation, the factors selected in this article are all benefit factors, and the standardized comprehensive evaluation matrix H can be obtained by standardizing the comprehensive evaluation matrix H^N. The evaluation values of schemes $A_1, A_2, A_3, \text{and } A_4$ under attribute M_1 are shown in Table 4.

Table 4. Comprehensive evaluation value of each scheme related to attribute M_1

<table>
<thead>
<tr>
<th>Scheme Set</th>
<th>Attribute</th>
<th>M_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>{0.6000,0.2250,0.5574,0.1500,0.5411,0.1500,0.4827,0.1000,0.5746,0.1350,0.5260,0.0900,0.5069,0.0900,0.4357,0.0600}</td>
<td>(0.5059,0.2778,0.5266,0.3472,0.6328,0.0556,0.6857,0.6949,0.5343,0.0926,0.5562,0.1157,0.6884,0.0185,0.6957,0.0231)</td>
</tr>
<tr>
<td>A_2</td>
<td>{0.4463,0.0667,0.4749,0.2000,0.4463,0.1000,0.4749,0.2000,0.5143,0.0667,0.5333,0.1333,0.5143,0.1000,0.5333,0.2000}</td>
<td>(0.5681,0.1728,0.5950,0.0444,0.6733,0.1422,0.6675,0.0356,0.6284,0.2667,0.6581,0.0667,0.7050,0.2133,0.7384,0.0533)</td>
</tr>
<tr>
<td>A_3</td>
<td>{0.4160,0.0988,0.4674,0.1481,0.3860,0.0790,0.4499,0.1185,0.4357,0.1235,0.4827,0.1852,0.4090,0.0988,0.4620,0.1481}</td>
<td>(0.6684,0.3111,0.6382,0.3111,0.6284,0.0778,0.6000,0.0778,0.5918,0.0889,0.5651,0.0889,0.5564,0.0222,0.5313,0.0222)</td>
</tr>
<tr>
<td>A_4</td>
<td>{0.5866,0.0353,0.5411,0.1244,0.6354,0.0800,0.6000,0.1867,0.5409,0.0667,0.4827,0.1556,0.5999,0.1000,0.5574,0.2333}</td>
<td>(0.4012,0.0833,0.3680,0.0417,0.4315,0.1389,0.3959,0.0894,0.4676,0.1667,0.4290,0.0833,0.5030,0.2778,0.4614,0.1389)</td>
</tr>
</tbody>
</table>

According to Formulas (4) and (5), calculate the positive ideal solution A^+ and negative ideal solution A^- of each scheme related to the attribute M_1 respectively.

After calculation, the score functions of each q-ROPHE in the comprehensive evaluation matrix H^N can be obtained. The score function of each scheme corresponding to attribute M_1 are:

\[
S\left(h_{1i}^N\right) = \begin{cases}
0.4985, 0.4268, 0.4191, 0.5429 \\
0.5117, 0.5440, 0.4414, 0.4083 \\
0.6581, 0.4255, 0.3972, 0.3378 \\
0.5673, 0.4253, 0.4604, 0.4537
\end{cases}
\]
After filtering, the positive and negative ideal solutions of each scheme corresponding to the attribute \(M \) are:

\[
A^+ = \{ h_{N}^{41}, h_{N}^{22}, h_{N}^{13}, h_{N}^{14} \}
\]

\[
A^- = \{ h_{N}^{31}, h_{N}^{42}, h_{N}^{43}, h_{N}^{24} \}
\]

After filtering, the positive and negative ideal so calculate the weight of each attribute in the comprehensive evaluation matrix \(H^N \) according to Formula (18). After normalization, the weight of each attribute can be obtained as:

\[
\omega = (0.1916, 0.2035, 0.3784, 0.2266)^T
\]

In order to calculate the gray correlation degree of the GRA method and the distance measure of the TOPSIS method. Firstly, calculate the distance between the attribute-related scheme and the positive ideal solution according to Formulas (6) and (7). For the GRA method, combining the above data, using Equations (23)–(26) to calculate the gray correlation degree between the scheme and the positive and negative ideal solution and dimensionlessly processed, can get:

\[
R^+_i = \{1.0000, 0.8673, 0.5795, 0.9249\}
\]

\[
R^-_i = \{0.6697, 0.8839, 0.7708, 1.0000\}
\]

For the TOPSIS method, according to Equations (27) and (28), calculate the distance measure between the scheme \(A_i \) and the positive and negative ideal solution and dimensionlessly processed, can get:

\[
D^+_i = \{0.3122, 1.0000, 0.7611, 0.9994\}
\]

\[
D^-_i = \{1.0000, 0.7929, 0.4902, 0.3860\}
\]

Set the commander’s preference to \(\alpha = \beta = 0.5 \), and calculate the comprehensive relative closeness of each scheme according to Equations (31)–(33), can get:

\[
C_i = \{0.6707, 0.4684, 0.4112, 0.3960\}
\]

Ranking according to the comprehensive relative closeness, can get:

\[
C_1 > C_2 > C_3 > C_4
\]

According to the ranking result, the best airspace operation effectiveness is the Airspace No. 1 (A1).

In order to further highlight the accuracy of the airspace operation effectiveness evaluation method based on the q-rung orthopair probability hesitant fuzzy GRA-TOPSIS, the following will compare the modeling analysis results of the method in this paper with the TOPSIS method and the GRA method. The control parameters \(q = 3 \), \(\alpha = 0.5 \), and \(\beta = 0.5 \), use GRA method and TOPSIS method to process the data in the evaluation matrix respectively. The relative closeness and ranking results of each method are shown in Table 5 and Figure 5.

It can be seen from Table 5 that the airspace operation effectiveness evaluation results based on the GRA method are ranked as \(A_1 > A_2 > A_3 > A_4 \), and the distinction of relative closeness is more ambiguous. Based on the TOPSIS method, the airspace operation effectiveness evaluation results are ranked as \(A_1 > A_2 > A_3 > A_4 \), and the relative closeness is more obvious. The GRA-TOPSIS method used in this paper obtains the airspace operation effectiveness evaluation results as \(A_1 > A_2 > A_3 > A_4 \), which makes full use of data information, and its relative closeness is more reasonable. Combining the data in Table 5 and verifying again in Figure 5, the GRA method, TOPSIS method and the method in this
paper can all get the airspace operation effectiveness evaluation results as Airspace No. 1 \((A_1)\), which shows that the method used in this paper is accurate.

Table 5. Comparison of relative closeness and ranking results of the three methods.

<table>
<thead>
<tr>
<th>Scheme Set</th>
<th>GRA</th>
<th>TOPSIS</th>
<th>GRA-TOPSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_i^1)</td>
<td>(E_i^2)</td>
<td>(C_i)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>0.6666</td>
<td>0.4613</td>
<td>0.5910</td>
</tr>
<tr>
<td>(A_2)</td>
<td>0.5782</td>
<td>0.6087</td>
<td>0.4871</td>
</tr>
<tr>
<td>(A_3)</td>
<td>0.3863</td>
<td>0.5309</td>
<td>0.4212</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.6165</td>
<td>0.6887</td>
<td>0.4723</td>
</tr>
</tbody>
</table>

| Ranking | \(A_1 > A_2 > A_4 > A_3\) | \(A_1 > A_2 > A_3 > A_4\) | \(A_1 > A_2 > A_3 > A_4\) |

![Comparison diagram of the relative closeness of the three methods.](image)

Figure 5. Comparison diagram of the relative closeness of the three methods.

In order to further illustrate the reliability of the method in this paper under different decision preferences, the following control parameter \(q = 3\), select 3 groups of decision preference parameters and calculate their relative closeness and ranking results, as shown in Table 6.

Table 6. Comparison of relative closeness and ranking results of the three methods.

<table>
<thead>
<tr>
<th>Scheme Set</th>
<th>(a=0.1 \beta=0.9)</th>
<th>(a=0.3 \beta=0.7)</th>
<th>(a=0.6 \beta=0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_i^1)</td>
<td>(E_i^2)</td>
<td>(C_i)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>1.0000</td>
<td>0.6340</td>
<td>0.6210</td>
</tr>
<tr>
<td>(A_2)</td>
<td>0.8599</td>
<td>0.8955</td>
<td>0.4899</td>
</tr>
<tr>
<td>(A_3)</td>
<td>0.5705</td>
<td>0.7699</td>
<td>0.4256</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.8710</td>
<td>0.9999</td>
<td>0.4655</td>
</tr>
</tbody>
</table>

| Ranking | \(A_1 > A_2 > A_4 > A_3\) | \(A_1 > A_2 > A_4 > A_3\) | \(A_1 > A_2 > A_3 > A_4\) |

It can be seen from Table 6 that the airspace operation effectiveness evaluation results calculated based on the above three sets of decision preference parameters is still Airspace No. 1 \((A_1)\), so different decision preferences will only have different effects on the ranking of the airspace operation effectiveness evaluation scheme, and will not change the airspace operation effectiveness evaluation results. It can be seen that the method in this paper is reliable.

In order to further verify the stability of the method in this paper, the following control parameters \(a = 0.5, \beta = 0.5\), select 9 \(q\) values, calculate their comprehensive relative closeness and ranking results, as shown in Table 7.
Table 7. Comparison of comprehensive relative closeness and ranking results under different q values.

<table>
<thead>
<tr>
<th>Parameter q</th>
<th>C_i ($i=1,2,3,4$)</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>q = 3</td>
<td>$C_1 = 0.6707$, $C_2 = 0.4684$, $C_3 = 0.4112$, $C_4 = 0.3960$</td>
<td>$A_1 > A_2 > A_3 > A_4$</td>
</tr>
<tr>
<td>q = 5</td>
<td>$C_1 = 0.6267$, $C_2 = 0.5153$, $C_3 = 0.5005$, $C_4 = 0.5464$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
<tr>
<td>q = 7</td>
<td>$C_1 = 0.6312$, $C_2 = 0.5114$, $C_3 = 0.5020$, $C_4 = 0.5138$</td>
<td>$A_1 > A_2 > A_4 > A_3$</td>
</tr>
<tr>
<td>q = 9</td>
<td>$C_1 = 0.6289$, $C_2 = 0.5118$, $C_3 = 0.5014$, $C_4 = 0.5000$</td>
<td>$A_1 > A_2 > A_3 > A_4$</td>
</tr>
<tr>
<td>q = 11</td>
<td>$C_1 = 0.6448$, $C_2 = 0.5344$, $C_3 = 0.5057$, $C_4 = 0.5732$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
<tr>
<td>q = 13</td>
<td>$C_1 = 0.6391$, $C_2 = 0.5285$, $C_3 = 0.5055$, $C_4 = 0.5724$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
<tr>
<td>q = 15</td>
<td>$C_1 = 0.6393$, $C_2 = 0.5295$, $C_3 = 0.5053$, $C_4 = 0.5690$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
<tr>
<td>q = 17</td>
<td>$C_1 = 0.6380$, $C_2 = 0.5273$, $C_3 = 0.5074$, $C_4 = 0.5550$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
<tr>
<td>q = 19</td>
<td>$C_1 = 0.6391$, $C_2 = 0.5297$, $C_3 = 0.5064$, $C_4 = 0.5657$</td>
<td>$A_1 > A_4 > A_2 > A_3$</td>
</tr>
</tbody>
</table>

In order to more intuitively reflect the change of the comprehensive relative closeness of each scheme with the parameter q, Figure 6 is given below.

![Figure 6. Comparison diagram of comprehensive relative closeness at different q values.](image)

It can be seen from Table 7 and Figure 6 that as the value of parameter q increases, the comprehensive relative closeness of C_4 continues to increase, and the comprehensive relative closeness of C_1, C_2 and C_3 is relatively stable, but regardless of the parameter how to change q, the comprehensive relative closeness of C_1 is always the largest, that is, the airspace operation effectiveness evaluation results is always Airspace No. 1 (A_1), it can be seen that this method has good stability.

7. Conclusions

In this paper, the q-rung orthopair probability hesitant fuzzy GRA-TOPSIS is used as a modeling tool to study the problem of airspace operation effectiveness evaluation. The main contributions are as follows:

1. In order to improve the airspace operation and management ability, this paper takes the airspace operation effectiveness evaluation of general airports as the research object, selects the actual airspace operation effectiveness evaluation indicators, builds a perfect airspace operation effectiveness evaluation system, and gives the evaluation model from the perspective of multi-attribute decision-making. The evaluation model clarifies the ideas and methods of solving the airspace operation effectiveness evaluation problem based on the idea of multi-attribute decision-making, which can provide reference for related theoretical research.

2. Compared with other fuzzy mathematics theories, this paper uses q-ROPHFS to express the evaluation information given by decision-making experts. Firstly, it can
express the decision-making experts’ preference through probability information, which makes the decision-making process more realistic. Secondly, the evaluation information given by decision-making experts for multiple indicators at the same time can be summarized into a set, which is more conducive to multi-attribute decision-making operations. Thirdly, it breaks through the limitation that the sum of the evaluation information membership degree and non-membership degree does not exceed 1, and broaden the scope of application.

(3) In order to realize the effective fusion of decision-making information, this paper defines a new q-ROPHF information aggregation operator and distance measure. Through the information aggregation operator newly defined in this paper, it can better realize the effective aggregation of decision-making information in the q-ROPHF environment and reduce information loss. In addition, the distance measure newly defined in this paper fully reflects the degree of hesitation and deviation among decision-making experts. The attribute weights calculated based on the distance measure can more truly reflect the actual decision-making, which is conducive to the subsequent selection of the best.

In addition, in order to obtain more reasonable results of optimal ranking, this paper uses the GRA method and the TOPSIS method in combination to avoid the defects of a single method, and through example calculation and comparative analysis, the accuracy, reliability and stability of the method are verified. This helps to provide a reference for engineering applications. However, there are still some deficiencies, such as complex data processing and large calculation, which need to continue to be optimized and adjusted. In the follow-up research, the Muirhead aggregation operator can be combined to deal with the multi-attribute decision-making problem with correlation between attributes. In addition, the distance measure proposed in this paper can also be combined with the power averaging operator to eliminate the influence of extreme data in the evaluation information in practical problems.

Author Contributions: Ideas, Z.C., D.S. and F.Y.; method, Z.C., Y.R. and X.Y.; software, Z.C. and Y.R.; data curation, D.S. and X.Y.; writing—original draft preparation, Z.C.; writing—review and editing, D.S. and X.Y.; funding acquisition, D.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Social Science Fundation of China [Grant No. 15GJ003-227].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The numerical simulation data used to support the findings of this study are included within the article.

Acknowledgments: The authors are thankful to anonymous reviewers for their instructive reviewing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

9. Maeda, S.M.; Costa, I.P.; Castro, M.A.; Fávero, L.P.; Costa, A.P.; Corrêa, J.V.; Gomes, C.F.; Santos, M.D. Multi-criteria analysis applied to aircraft selection by Brazilian Navy. Production 2021, 31, e20210011. [CrossRef]

15. Farhadinia, B.; Chiclana, F. Extended Fuzzy Sets and Their Applications. Mathematics 2021, 9, 770. [CrossRef]

34. Wei, G.; Lu, J.; Wei, C.; Wu, J. Probabilistic linguistic GRA method for multiple attribute group decision making. J. Intell. Fuzzy Syst. 2020, 38, 4721–4732. [CrossRef]

