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Abstract: To improve the accuracy of a symmetrical structural rolling bearing life prediction under
noise interference, a multi-bearing life prediction method combining Ensemble Empirical Mode
Decomposition (EEMD) and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. First,
EEMD is proposed to decompose the original vibration signal to obtain a finite number of Intrinsic
Mode Function (IMF), and the IMFs are further filtered by combining the correlation criterion and
kurtosis criterion. Then, the time domain features and frequency domain features of the reconstructed
signal are filtered by monotonicity index to obtain the set of features containing key information.
Finally, the BiLSTM network is trained on the filtered features set, and the method is proved to
accurately predict the remaining life of rolling bearings under different operating conditions through
rolling bearing full-life experiments, and the effectiveness of the method is verified by comparing the
prediction results with several main recurrent neural networks.

Keywords: rolling bearing; ensemble empirical mode decomposition; bidirectional long-short term
memory network; life prediction

1. Introduction

The functioning of rolling bearings, being the most significant component of rotating
equipment, has a direct impact on the machine’s operation [1]. Extracting and modeling
the rolling bearing symmetry characteristics is significant in improving remaining useful
life prediction for mechanical equipment. The proactive maintenance of rolling bearings
before they are damaged can effectively avoid accidents and thus reduce property losses.
Therefore, it is important to study the prediction of its remaining life [2]. When it comes
to the life prediction issue, multi-bearing synergetic analysis is more difficult since it
considers many bearings with identical operating circumstances in order to determine the
remaining life. Indeed, since the deterioration patterns of different bearings in a set might
vary widely, it is difficult to accurately anticipate the remaining service life of numerous
bearings at once [3].

The analysis of rolling bearing vibration signals has developed into the most efficient
approach for monitoring bearing condition. On the one hand, there is typically noise
interference in the bearing working environment, and the signal-to-noise ratio is poor.
The measured vibration signal from numerous types of bearings, on the other hand, often
exhibits nonlinearity. Fourier analysis and wavelet variation are often used in traditional
fault analysis techniques. Fourier analysis is often used to deal with non-smooth data,
although it has a low adaption rate. Wavelet transforms have multi-resolution properties,
wavelet transform methods are sensitive to frequency mixing, wavelet basis selection is
challenging, and wavelet transform algorithms are complex to develop. Empirical Mode
Decomposition (EMD) is a time–frequency signal decomposition approach proposed by
N.E. Huang [4] to analyze the non-smooth nonlinear signal. EEMD is a noise-assisted
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data analysis approach proposed by Z.Wu and N.E.Huang [5,6] to solve the mode mixing
problem in view of the shortcomings of EMD method. A fault feature extraction approach
based on EEMD was suggested by Lei [7], but did not give a filtering method for the
Intrinsic Mode Function (IMF) component. Liu et al. [8] proposed the L-Kurtosis to filter
the IMF components generated by EEMD decomposition.

Model-based approaches, knowledge-based methods, and data-driven methods are
the three primary kinds of available methodologies for determining the remaining service
life of bearings [9]. When the failure process is completely understood and the model
parameters are successfully calculated, the physical model-based method delivers more ac-
curate RUL estimations. Wang [10] suggested a mechanical condition prediction approach
based on a probabilistic model and particle filtering. Lei [11] converted the PE model into
an empirical model for predicting the remaining service life of machinery. However, as the
complexity of contemporary mechanical systems grows, the failure causes of equipment
become increasingly difficult to understand, making accurate and effective prediction
techniques based on physical models increasingly challenging. With the rapid develop-
ment of computer technology and sensor technology in recent years, massive amounts
of mechanical data can be easily captured and stored, enabling a good collection of time
series data generated during bearing operation. As a result, data-driven approaches for
predicting bearing life have been effectively established. Deep learning methods’ develop-
ment and implementation had a significant influence on the study of big data processing
techniques [12]. Deep learning methods have high accuracy and large data processing
capabilities, thus reducing modeling complexity [13]. RNN has been proven to be of a
certain advantage in processing time series data due to its memory capability. LSTM and its
derivatives, in particular, have been extensively used in picture captioning, voice recogni-
tion, genomic research, and natural language processing [14,15]. Zhao et al. [16] employed
LSTM to assess tool wear condition. Malhotra et al. [17] introduced an Encoder-Decoder
technique for Anomaly Detection (EncDec-AD) based on LSTM that learns to rebuild “nor-
mal” time-series behavior and then utilizes reconstruction error to identify abnormalities.
Bruin [18] proposed LSTM networks to diagnose railroad track circuit fault in real time.
As long as the LSTM model is fed a signal with a low sampling rate, it may provide decent
results when used directly for processing. However, the vibration signals in the bearing
prediction process are often with high-sampling-rate signals. Whenever an LSTM is applied
immediately to a noisy signal, the model parameters are almost always excessively high
and it is better to control the model, which may easily result in the unexpected result of
overfitting. Furthermore, a regular LSTM can just recall data change features at the present
moment. To this end, for the multi-bearing life prediction problem, an integrated prediction
method based on EEMD noise reduction combined with BiLSTM [19] is designed and
proposed in this paper. When compared to other approaches, the results of the trials reveal
that the strategy is better in terms of enhancing prediction performance.

2. Problem and Methodology
2.1. Multi-Bearing Remaining Useful Life Co-Prediction

The majority of current research on rolling bearing life focuses on the individual
bearings. However, different bearings have certain similarity in characteristics under the
same working conditions, and machine learning algorithms can mine the characteristics of
vibration data from vibration data well.

The challenge of forecasting the remaining service life of numerous bearings using
condition monitoring data obtained under the same operating circumstances is known
as cooperative prediction of the remaining service life of multiple bearings. Cooperative
prediction of the remaining life of numerous bearings tries to forecast the remaining life of
the bearings using both the bearings’ own monitoring data and the monitoring data for
other bearings of the same kind and operating circumstances.
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2.2. EEMD Noise Reduction Principle

In recent years, as a successful approach for coping with nonlinear non-smooth signals,
EMD has been able to deconstruct the signal into numerous IMFs, each of which reflects a
component of each frequency in the original signal. This approach can address the issue
of difficult basic function selection in wavelet noise reduction, but it cannot tackle the
problem of noise-induced mode mixing [20]. Mode mixing refers to 1 IMF containing
widely different characteristic timescales, or similar characteristic timescales distributed in
different IMFs. In order to mitigate the mode mixing, Wu and Huang et al. [5] proposed
an Ensemble Empirical Modal Decomposition (EEMD). EEMD is capable of adaptively
separating the high frequency information in the fault signal well. The EEMD noise
reduction method is shown in Figure 1:
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Figure 1. EEMD decomposition steps.

(1) A normally distributed white noise sequence Si(t) is added to the collected signal x(t)
to obtain yi(t), and normalize the noise-added signal.

(2) The obtained signal yi(t) is decomposed by EMD to obtain different IMFs Cij(t) and
the residuals ri(t) that Cij(t) represents the first i noise is decomposed to obtain the
first j residual.

(3) Repeat steps (1), (2) n times and add a new random normally distributed white noise
sequence each time.

(4) The overall averaging operation of all decomposed obtained IMFs can eliminate
the effect of adding white noise to the real IMF several times, and the final IMF
components and residuals after EEMD decomposition are calculated as follows:

Cj(t) =
1
N ∑N

i=1 cij(t) (1)

r(t) =
1
N

N

∑
i=1

ri(t), (2)

where: Cj is the EEMD decomposition of the first j component and r is the residual
after decomposition.

(5) Selection of IMF components: the decomposed IMFi components are listed in fre-
quency order from high to low. When reconstructing the signal, the appropri-
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ate IMF components should be selected to retain the feature information to the
maximum extent.

2.3. Principle of Bi-Directional Long and Short-Term Memory Network

LSTM, as a particular case of RNN, not only avoids gradient explosion and disap-
pearance, but also has a larger memory capacity than RNN, which has just one state h in
the implicit layer that is sensitive to short-term input. The LSTM augments this with a
long-term memory unit c. As seen in Figure 2, the LSTM model is primarily responsible
for controlling the memory unit c through three gate structures: an input gate, a forgetting
gate, and an output gate [21].
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Figure 2. The architecture of a LSTM memory cell.

The forgetting gate is primarily responsible for determining which information is
forgotten at the final possible time. A number of (0, 1) is output by reading ht−1 and xt.
This value determines how much information will be retained by the cell ct−1 state, with
the formula:

ft = σ
(

W f ht−1 + U f xt + b f

)
(3)

The input gate’s primary duty is to contribute information to the cell’s state. The first
section establishes values that are updated by the sigmoid function once the information at
is produced through the tanh activation function, as follows:

it = σ(Wiht−1 + Uixt + bi) (4)

at = tan h(Waht−1 + Uaxt + ba) (5)

The update module status:
ct = ft

◦at + i◦t at (6)

where, “◦” denotes the Hadamard Product. The output gate is in charge of determining
whether or not to output the current state information, which is likewise formed of two
sections: the first section is composed of ht−1, xt, and sigmoid activation. The second
section includes the tanh activation function:

ot = σ(Woht−1 + Uoxt + bo) (7)

ht = ot
◦tan h(ct) (8)

In the above equations, W, U, and b are linear correlation coefficients and bias coeffi-
cients, and σ is the sigmoid activation function.

The LSTM’s primary property is that each new input has some characteristics of the
prior input. By regularly updating the model’s cellular state, the model retains long-term
memory capacity.
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BiLSTM is made up of two LSTMs, one forward and one reverse, which could consider
both past and future states by obtaining two time series with opposite hidden states and
then connecting them to get the same output [22]. Therefore, BiLSTM can better grasp
the complete information when processing time series data, and the BiLSTM structure is
shown in Figure 3.
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The hidden state of BiLSTM at moment Ht contains the forward
→
ht and backward

←
ht

→
ht =

→
LSTM(ht−1, xt, ct−1), t ∈ [1, T] (9)

←
ht =

←
LSTM(ht+1, xt, ct+1), t ∈ [T, 1] (10)

Ht =

[→
ht,
←
ht

]
(11)

where: T is the sequence length.

3. Methodological Steps

Three critical aspects must be considered in order to correctly anticipate the remaining
life of rolling bearings.

1© Filtering of the IMFs after EEMD decomposition. If the EEMD decomposition
results are not selected, it may cause the extracted features to be vulnerable to noise
interference. To accomplish noise reduction in this study, the correlation coefficient and
kurtosis index are employed to filter the IMFs, and signal reconstruction is done on the
filtered IMFs.

The correlation coefficient may be used to measure the degree of linear correlation
between each IMF and the original signal, and it can be stated as:

ρxy =
E[(x− µx)(y− µx)]

σxσy
(12)

where ρxy denotes the correlation coefficients for x and y. E[·] denotes the mathematical
expectation, µx and µy are the mean values of the original signals x and y, and σx and σy
are the standard deviations of the original signals x and y.

Kurtosis is a dimensionless parameter that can reflect the sharpness of the waveform.
As can be seen from Equation (13), the kurtosis, as a fourth-order cumulative quantity,
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is unrelated to the size of the bearing, the rotational speed, or the load applied, but is very
sensitive to the fault shock component of the signal,

K =
1
N ∑N

i=1

(
xi − x

σt

)4
(13)

where: N denotes the number of samples, σt is the standard deviation.
The correlation coefficient r is taken in the range (−1,1), and the interference of uncor-

related quantities in the vibration signal is reduced by finding the correlation coefficient of
each IMF with the original signal. Normalize the desired kurtosis value and combine it
with the desired correlation coefficient to define it as the Kρ value of IMF:

Kρ = αK + (1− α)ρ (14)

In Equation (14) K and ρ correspond to the kurtosis value and correlation coefficient
of an IMF, and α is the degree of the current IMF component’s kurtosis value on the weight
of Kρ, and in this paper, we choose α to be 0.6 through experiments.

2© Analyzing the bearing state and choosing the best features. In this paper, a total of
13-time domain features and frequency domain features are extracted, among which some
can well characterize the full life state of the bearing, while others cannot. In this research,
monotonicity is used as a quantitative indicator to assess the extracted feature parameters
quantitatively. The monotonicity index is calculated as follows:

Mon(F) =
1

K− 1
|∑k δ( f (k + 1)− f (k)−∑k δ( f (k)− f (k + 1) | (15)

In Equation (15): the feature signal sequence F = [ f (t1), f (t2), . . . , f (tk)] and the
time series T = [t1, t2, . . . , tk], the f (tk) denotes the time at which tk corresponds to the
eigenvalues at the time, K is the total length of the sample time, and δ(•) is the simple unit
step function.

3© Selecting a suitable lifespan prediction model. The typical neural network predicts
the remaining life using data from the present instant, and data volatility has a big influence
on the prediction result, and it cannot understand the trend features of the data change
with time well. The author presents a technique for predicting the remaining life of rolling
bearings based on BiLSTM, and Figure 4 depicts the system’s flow chart. The following are
the particular steps:

(1) Filtering of IMFs: After EEMD decomposition of the original signal and obtaining a
set of IMFs, the correlation coefficient of each IMF with the original signal is calculated
according to Equation (12), the kurtosis value of each IMF is calculated according to
Equation (13), and the Kρ of each IMF is calculated using Equation (14). For noise
reduction, the IMF corresponding to the top three Kρ is chosen and rebuilt.

(2) Extraction of feature parameters: The bearing’s full-life vibration data are used to
extract the time and frequency domain features, and according to Equation (15),
the features that do not accurately depict bearing deterioration are discarded, leaving
the characteristics that do.

(3) Determination of the degradation start moment point and define the network training
label: Bearings are in normal operation for a long time throughout their lifetime,
therefore we need to figure out where the degradation begins, and life forecast of
their deterioration process may be a smart approach to conserve computing resources.
In this paper, the degradation threshold is determined using µ + 3σ (µ is the median
of the series and σ is the standard deviation of the series) [23]. The remaining life of
the bearing is normalized to between (0, 1) from the moment of degradation to the
complete failure of the bearing as the network prediction label.

(4) BiLSTM network training and prediction: The whole lifespan of the first two bearings
in each operational condition is utilized as the network’s training set, and the degraded
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feature set is used as the network’s input. The network is trained according to the
labels so that the parameters of the network can be determined. The test bearing
dataset is fed into the training network to validate the model’s accuracy and compare
it to other algorithms.

(5) Applicability of the model after training: Two evaluation metrics are provided to
examine the performance of the test bearings on the model under various oper-
ating conditions by comparing the bearings under different operating conditions
as a comparison.
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4. Experiment Implementation
4.1. Data Description

The XJTU-SY bearing data were used in this experiment and the specific experimental
setup is shown in Figure 5. The purpose of the XJTU-SY test platform is to provide
vibration signals throughout the service life of the naturally degraded bearing under
different operating conditions. The rotational speed of the AC induction motor is controlled
by the speed controller of the AC induction motor, which generates different radial forces
that are applied to the tested bearing. The test is designed for three types of working
conditions, and 5 samples are collected for each working condition of rolling bearing
operation, and 15 samples in total for the three working conditions. They are named rolling
bearing 1-1-rolling bearing 1-5, rolling bearing 2-1-rolling bearing 2-5, and rolling bearing
3-1-rolling bearing 3-5. Within each working condition, the first two bearings of each
working condition are utilized as training samples, and the remaining three bearings of
each working condition are employed as test samples in this experiment. Since the vertical
vibration signals do not reflect the degradation information well, the horizontal vibration
signals of the bearings are used for this study [24].
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4.2. Sampling Point Setting

The sampling frequency in the experiment is 25.6 kHz while the length of each sample
is 1.28 s, and the original signal is 32,768 sample points per group. In order to increase the
experimental sample size, 4096 points were set as one sample in this study. The operating
conditions of the rolling bearing under the three operating conditions are shown in Table 1.
Figure 6 depicts the whole life signal of bearing 1-1.

Table 1. Bearing accelerated life test conditions.

Work Condition Number 1 2 3

Speed/(r/min) 2100 2250 2400

Radial force/kN 12 11 10
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Figure 6. The full life vibration signal of bearing 1-1.

5. Analysis of Results
5.1. EEMD Bearing Vibration Signal Noise Reduction

The data of a certain time period of the bearing are selected to verify the bearing noise
reduction effect. The time–domain waveform and frequency spectrum of the bearing before
noise reduction are presented in Figure 7, and the frequency spectrum shows that the initial
vibration signal has a certain noise, which has a considerable interference to the bearing’s
ability to extract useful information.
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Figure 7. Time–domain waveform and frequency spectrum of the raw signal.

Next, the vibration signals of rolling bearings are processed for noise reduction by the
EEMD method. In this paper, 100 groups of white noise sequences are added to the original
signal x(t). The amplitude of each group of white noise is set to 0.3, and a total of 9 IMFs
and one residual are generated. Figure 8 shows the results of EEMD decomposition.
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Figure 8. IMF component obtained by EEMD decomposition.

Then the correlation coefficients, kurtosis values, and Kρ values are calculated for each
component, the first six IMFs are more correlated, but the kurtosis values of IMF1, IMF5,
and IMF6 are smaller, and the results of Kρ values are shown in Table 2.
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Table 2. Kρ Values for the first six IMF components.

IMF IMF1 IMF2 IMF3 IMF4 IMF5

Kρ 0.576 0.791 0.733 0.685 0.463

The Kρ values are sorted from largest to smallest, and the first three IMFs with larger
Kρ values are selected for superposition to form the new vibration signal, and the selected
components are IMF1, IMF3, and IMF4, and the other IMFs are rejected as noise. Figure 9
shows the time–domain waveform and frequency spectrum after noise reduction.
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Figure 9. Time–domain waveform and frequency spectrum of the reconstruction signal.

As can be seen in Figure 9, the low and high frequency components of the signal are
weakened after noise reduction compared with the original signal, and the shock feature of
the signal are more significant.

5.2. Feature Parameter Extraction

The full-life properties of rolling bearings are used to derive a total of 13 time–domain
and frequency-domain features. The time–domain features are: Root Mean Square (RMS),
Average Value (AVG), Skewness, Standard Deviation (Std), Variance, Peak-to-peak Value
(P-P), Peak-to-average Ratio (PAR), Impulse Factor (ImpulseF), Margin Factor (MarginF).
The frequency-domain features are: Frequency-domain Standard Deviation (SpecStd),
Frequency-domain Root Mean Square (SpRMS), Frequency-domain Mean Frequency
(MeanF), and Frequency-domain Center Frequency (CenterF).
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It is proved that too many feature parameters can lead to an increase in the number of
operations and result in long computation times. Fewer parameters may not reflect the bear-
ing degradation trend better. In this paper, the monotonicity index is used to quantitatively
filter out the feature parameters with strong characterization ability. The monotonicity
can well reflect the time-series of the feature parameters, and the calculation is referred to
Equation (15).

After quantification, the sorting results are shown in Figure 10, and the best result
is obtained by testing that the threshold value of 0.5 is selected. The six features larger
than the threshold value are extracted, and the normalization method is used to convert
the extracted features to (0, 1) in order to eliminate the negative impact of different value
ranges, which is then used as the input value of the life prediction model.
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5.3. BiLSTM Lifetime Prediction

In this paper, we construct a BiLSTM model based on Keras, which provides various
methods for initializing parameters based on probability distributions. A uniform distri-
bution is generated as the initial weight initialization method. The first two layers use
the sigmoid function as the activation function, while the ReLU function is chosen as the
activation function for the Dence layer, where the optimizer is selected from Adam and
Dropout technique is applied to prevent overfitting [23,25]. The network parameters of the
BiLSTM are shown in Table 3.

Table 3. BiLSTM model parameters.

Network Type Input
Dimension

Output
Dimensions

Activation
Function Dropout Rate

BiLSTM (None,6,15) (None,6,650) Sigmiod -

BiLSTM (None,6,650) (None,6,300) Sigmiod -

Dense_1 (None,6,300) (None,6,25) Relu 0.5

Dense_2 (None,6,25) (None,6,1) Relu -

We performed a comparative experiment by using BiLSTM, LSTM, and RNN to
validate the accuracy of the EEMD-BiLSTM remaining life prediction model. Because all
recurrent networks have the same structure, the only thing that has to be changed is the
kind of recurrent network, while the parametric network stays unaltered.
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As shown in Figure 11, the full-life prediction results of bearing 1-4 under each model
can predict the life degradation trend well, among which RNN is less effective since RNN
has only one hidden state. Assuming that the bearing degrades at point t, the reason for
the large prediction accuracy error at the time when the bearing first begins to degrade is
that the bearing has just failed, and because the damage at point t is greater than at other
locations, the vibration signal when the bearing is running to point t should be significantly
different from the state at other points in the same rotation cycle, resulting in low prediction
accuracy. As the bearing wears, the signal variation at point t becomes less noticeable
compared to other places, and model’s accuracy improves. Therefore, the proposed method
can better predict the remaining bearing life and provide for the effective operation of
the bearings.
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The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) assessment
indices of the model are utilized in this paper to validate the applicability of the suggested
method’s applicability. The two equations are shown as follows:

MAE =
1
n ∑n

i=1|yi − ŷi| (16)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (17)

where: n is the sample size of data, yi is the value of the ith sample, and ŷi is the prediction
value of the ith sample.

Table 4 shows the results of a comparison of the prediction results with the commonly
used time series algorithms. As shown in table, except for bearings 1-5 and 2-3, which have
slightly higher prediction errors, all seven bearings perform well. 1-5 and 2-3 are due to
bearing cage damage, and future research in this area can focus on life prediction using
the proposed algorithm. The proposed method’s mean values for RMSE and MAE are
0.125 and 0.257, respectively, and the experimental results confirm the effectiveness of the
proposed algorithm for lifetime prediction.
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Table 4. Prediction error.

Bearing
RNN LSTM BiLSTM Proposed

Method

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1-3 0.374 0.373 0.120 0.163 0.176 0.144 0.086 0.134
1-4 0.326 0.366 0.115 0.191 0.096 0.139 0.078 0.126
1-5 0.431 0.341 0.198 0.213 0.163 0.193 0.172 0.904
2-3 0.493 0.395 0.301 0.351 0.230 0.267 0.201 0.341
2-4 0.364 0.377 0.183 0.288 0.193 0.291 0.096 0.149
2-5 0.391 0.367 0.221 0.237 0.281 0.346 0.095 0.146
3-3 0.431 0.485 0.519 0.349 0.633 0.693 0.155 0.192
3-4 0.406 0.467 0.291 0.316 0.257 0.379 0.139 0.183
3-5 0.382 0.468 0.214 0.260 0.176 0.176 0.103 0.144

Mean 0.399 0.404 0.240 0.263 0.245 0.292 0.125 0.257

6. Conclusions

The remaining life of multiple bearings are studied based on combining model in this
paper and the follows conclusions are drawn.

(1) The ensemble empirical modal decomposition method is proposed and the decom-
posed IMFs are filtered by combining the correlation coefficient and the kurtosis
index. It is proved that the final reconstructed signal can adequately remove the
irrelevant noise.

(2) Thirteen time-domain and frequency-domain features are extracted from the noise-
reduced signal, and the initial feature set is filtered using monotonicity, and the feature
set composed of the filtered features can fully retain the degradation information of
the bearings.

(3) The experimental analysis results show that the proposed method in this paper
is more effective and has better prediction accuracy compared to other recurrent
neural networks. It is more applicable and shows good performance in different
working conditions.
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