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Abstract: Many structures in nature look symmetric, but this is not completely accurate, because
absolute symmetry is close to death. Chirality (handedness) is one form of living asymmetry. Chi-
rality has been extensively investigated at different levels. Many rules were coined in attempts
made for many decades to have control over the selection of handedness that seems to easily oc-
cur in nature. It is certain that if good control is realized on chirality, the roads will be ultimately
open towards numerous developments in pharmaceutical, technological, and industrial applica-
tions. This tutorial review presents a report on chirality from single molecules to supramolecular
assemblies. The realized functions are still in their infancy and have been scarcely converted into
actual applications. This review provides an overview for starters in the chirality field of research on
concepts, common methodologies, and outstanding accomplishments. It starts with an introductory
section on the definitions and classifications of chirality at the different levels of molecular com-
plexity, followed by highlighting the importance of chirality in biological systems and the different
means of realizing chirality and its inversion in solid and solution-based systems at molecular and
supramolecular levels. Chirality-relevant important findings and (bio-)technological applications are
also reported accordingly.

Keywords: chirality; enantiomorphism; deracemization; supramolecular chirality; chirality inversion;
chiral supramolecular assemblies; chiral polymers

1. Introduction
1.1. Chirality and Vital Rules for its Identification

Pasteur concluded that homochirality forms the only sharply defined boundary be-
tween the chemistry of dead and living matter [1]. Our right and left hands look symmetric
and are mirror images of each other but cannot be superimposed onto each other, and this
is the simplest example of enantiomers [2]. Pairs of enantiomers are often designated as
right- and left-handed. Chiral molecules have non-planar structures (usually tetrahedral),
and they always have one or more chiral centers (usually around an asymmetric carbon
atom). The number of chiral centers within a specific chiral molecule determines whether
there is only an enantiomeric pair of this molecule or more possibilities of enantiomers and
diastereomers (non-superimposable mirror images of one another) (Figure 1). For instance,
17 out of the 20 amino acids possess one chiral center. For each of them there are two
possibilities: an enantiomeric pair. Threonine and isoleucine have two chiral centers, and
they have two enantiomers and two diastereomers.

Glycine is the smallest amino acid and has no chiral centers and therefore it is achiral.
An enantiomeric pair is two molecules or compounds that are identical in their chemical
structure and physical properties but have exactly the opposite orientation (absolute oppo-
site configuration). Diastereomers show similar but not exact chemical properties, whereas
their physical properties are completely different. As all chiral molecules are optically
active, enantiomers are also called optical isomers. The primary difference between the
members of an enantiomeric pair can be detected by the way they rotate the plane of the
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polarized light when they are optically active [3]. If the light is rotated clockwise, then this
enantiomer is labeled (+) and its mirror image is labeled (−).
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Figure 1. If the compound has only one chiral center, then there is a possibility of having only one
pair of enantiomers (a). In case of the presence of two or more chiral centers, enantiomers and
diastereomers could exist (b).

Another way of determining the orientation or the handedness of the molecules is
by applying the Cahn-Ingold-Prelog priority rule [4]. Using this rule, the group/atoms
are attached to the chiral center (stereo-center) and bearing the lowest molecular weight
are held backward out of the plane and the other groups/atoms are ordered from the
group/atoms by the highest priority (molecular weight). If the direction of this order is
clockwise, then the molecule is “R” (from rectus, right-handed); if the order direction is
counterclockwise, then the molecule is “S” (from sinister, left-handed) (Figure 2).

1.2. Other Forms of Chirality

Other forms of chirality include the axial chirality [5], also called helicity. In this case,
the molecules do not have a stereogenic center, but an axis, about which the molecular
groups are held in a spatial arrangement (helical, propeller, or screw-shaped geometry)
that cannot be superimposed on its mirror image. A molecule with a helical morphology is
termed P (standing for “plus”) or ∆ enantiomer if it is a right-handed helix and M (standing
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for “minus”) or Λ enantiomer, if it is a left-handed helix. While chiral molecules are not
planar molecules, they can exhibit planar chirality [4,6], which is another form of chirality
existing in chiral molecules that have no asymmetric carbon atoms but possess two non-
coplanar rings that are each dissymmetric and thus cannot rotate around the chemical bond
connecting them.
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thus priority, of the four groups is such that A > B > C > D. The group of the lowest priority (D) is 
projected behind the plane containing the groups A, B, and C. The handedness direction is clockwise 
(R) in the enantiomer on the right and anticlockwise (S) in the enantiomer on the left. 
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Figure 2. Cahn-Ingold-Prelog priority rule for determining the handedness of molecules. Solid lines
represent bonds that are in the plane of the paper. Dotted lines represent bonds out of plane away
from the reader, whereas wedge-shaped lines are projected towards the reader. Molecular weight,
and thus priority, of the four groups is such that A > B > C > D. The group of the lowest priority (D) is
projected behind the plane containing the groups A, B, and C. The handedness direction is clockwise
(R) in the enantiomer on the right and anticlockwise (S) in the enantiomer on the left.

1.3. Enantiomorphism and Supramolecular Chirality

Enantiomers represent chirality at the molecular level. However, chirality at the molec-
ular level is not a prerequisite to observe chirality at the macroscopic level. In fact, there
are hierarchical levels of chirality in which the building blocks need not be chiral them-
selves (Figure 3). This generates what is widely known as enantiomeric and diastereomeric
assemblies. Supramolecular chirality is initiated by the properties of the contributing com-
ponents. A supermolecule can be chiral if one or more of its constituents are asymmetric
or there is an association among the achiral components so that their assembly has no
symmetry elements. In this case, the chiral supermolecule does not superimpose on its
mirror image [7]. For instance, sodium chlorate (NaClO3) is an achiral chemical compound
that assembles in a chiral crystalline space group (P213) [8–10]. A crystal of a certain
handedness and its mirror image are called enantiomorphs. The term enantiomorph is
commonly reserved for all macroscopic objects possessing handedness [11].

At the 2D level of condensed matter, supramolecular chiral surfaces of a monomolec-
ular thickness can be assembled in a confined 2D crystallization process. For instance,
chiral monolayers of an ester (N-stearoylserine methyl ester) are assembled at the air-water
interface such that the long hydrocarbon chains are aligned parallel to each other at the
air phase, whereas the chiral head groups are closely packed to form the condensed phase
(Figure 4) [13]. Dipotassium folate has also been shown to form a self-assembled hexagonal
lyotropic liquid crystalline phase in water, which generates supramolecular objects with a
chiral columnar shape [14].

Molecules can also self-assemble through non-covalent interactions to form helical
supramolecules. It was shown that there is a plausible interrelation between the torsion
angle between the hydrogen bond donor and acceptor groups in those molecules and the
handedness of hydrogen bonded supramolecular helices formed in the solid state. This
correlation is suggested to be in the form of translation of certain conformation (OCCN
torsion angles) of the unit molecules into the O-H . . . N hydrogen bonded helical networks
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with specific handedness [15]. Other chiral 3D supramolecular assemblies are well defined
complexes of molecules in the form of spheres, rods, and sheets, with dimensions from
nano- to micrometer range [16].

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 27 
 

 

 
Figure 3. An example for the assembling process of two achiral molecules that result in the for-
mation of a chiral supermolecule, because the symmetry planes are normal for the molecular com-
ponents. (Reprinted from Reference [12]). 

At the 2D level of condensed matter, supramolecular chiral surfaces of a monomo-
lecular thickness can be assembled in a confined 2D crystallization process. For instance, 
chiral monolayers of an ester (N-stearoylserine methyl ester) are assembled at the air-wa-
ter interface such that the long hydrocarbon chains are aligned parallel to each other at 
the air phase, whereas the chiral head groups are closely packed to form the condensed 
phase (Figure 4) [13]. Dipotassium folate has also been shown to form a self-assembled 
hexagonal lyotropic liquid crystalline phase in water, which generates supramolecular 
objects with a chiral columnar shape [14]. 

 
Figure 4. Upper and side views of an assembly of four adjacent N-stearoyl-L-serine molecules in a 
micellar aggregate. The top view depicts the inter-amide chiral spine of the same segment, including 
the asymmetric centers. A 2-dimensional crisscross network of such spines will create a chiral sur-
face (reprinted with permission from Reference [13]). Copyright 1993 American Chemical Society. 

Molecules can also self-assemble through non-covalent interactions to form helical 
supramolecules. It was shown that there is a plausible interrelation between the torsion 
angle between the hydrogen bond donor and acceptor groups in those molecules and the 
handedness of hydrogen bonded supramolecular helices formed in the solid state. This 
correlation is suggested to be in the form of translation of certain conformation (OCCN 
torsion angles) of the unit molecules into the O-H…N hydrogen bonded helical networks 
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1.4. Complex Chiral Structures

Rosette nanotubes (RNTs) are a bioinspired and biocompatible class of nanomaterials
that can provide tunable chiroptical properties [17–20]. Through hierarchical spontaneous
self-assembly, RNTs are obtained from a synthetic heterobicyclic Guanine-Cytosine (G∧C)
motif by the formation of six-membered supermacrocycles (rosettes), which then stack
up under the effects of temperature and concentration to form the very long nanotubes.
Functional groups can be covalently attached to G∧C motif and can be expressed on the
surface of the nanotubes, and this provides a robust built-in strategy for varying the physical
and biological properties of RNTs for specific medical or biological applications [21–23].
Other forms of organic nanotubes are also possible through combinations of covalent and
non-covalent interactions (Figure 5) [24].
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Figure 5. A schematic diagram showing the different forms of organic nanotubes (reprinted from
Reference [24] with kind permission from Springer Science and Business Media, License number:
3610670481704).

Among the chiral 3D supramolecular assemblies exist the dendrons [25],
dendrimers [26,27], and other more complex dendritic building blocks, which provide
vital architectural motifs. Chirality (helicity) in these complex structures emerges through
the transfer of structural information from the molecular level, passing by the supramolec-
ular level up to the (quasi-)periodic array level of crystals [28–32]. The intrinsic propensity
of self-assembling dendrimers with three-fold symmetry has been exploited to form di-
verse three-dimensional columnar, tetragonal, and cubic arrays of helical supramolecular
structures [33]. Using a series of perylene bisimide (PBI) derivatives (versatile electron-
accepting building blocks dendronized with two first generation self-assembling miniden-
drons) [34–36], it was revealed that the crystallization of the supramolecular assembly can
be transformed from a kinetically controlled process into a thermodynamically controlled
process. This could facilitate easy access to their equilibrium states and the determination
of their structures, notwithstanding the thermal history of the sample (Figure 6) [37].

The thermodynamically controlled assembly of supramolecules has also been reported
for another group of strong electron-accepting building blocks: naphthalene bisimide (NBI)
derivative functionalized and dendronized with an environmentally friendly chiral racemic
semi-fluorinated group. The resultant NBIs have undergone either self-organization into
lamellar crystals or self-assembly into complex and ordered columns that subsequently self-
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organize in a columnar hexagonal periodic array and eventually as a columnar hexagonal
super-lattice (Figure 7) [38]. These NBIs are expected to be used as alternatives for fullerene
acceptors in organic photovoltaics [39–41] and other electronic applications [42–44]. In ad-
dition, they could to be utilized in fluorosis chemistry, as well as in organic, supramolecular,
macromolecular, and biomolecular fluorine-containing compounds [45–50] that are neither
toxic nor biopersistent [51–55].
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ence [37]. Copyright 2013 American Chemical Society.
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Copyright 2015 American Chemical Society.

2. Importance of Chirality in Biological Systems

The origin of chiral homogeneity of biological molecules is somehow connected to
the origin and evolution of life [56–66]. Molecular chirality plays a vital role in chemistry
and biology, and many chiral molecules are known to display enantioselective effects in
biological systems. Chiral molecules exist widely in nature, such as in amino acids, sugars,
and nucleotides. Except cysteine, all-natural amino acids are S: left-handed. Supramolecular
chirality is abundant in many biological structures, e.g., the triple helix of collagen [67],
the α-helical coil of myosin [68], and the DNA double helix [69], which, together with
RNA, are long helical polymers formed from complex connections of sugar units with the
same absolute chirality. Biological supramolecular structures result from chiral molecular
recognition [70] and chiral self-assembly [71].

It has long been known that, in biological systems, the cells use only left-handed
proteins and phospholipids and right-handed sugars [72]. This has recently been realized
to be inaccurate, when D-aminoacids were found in living organisms as free aminoacids,
peptides, and proteins [73] that have even been linked to the progression of the big threat
of dementia [74,75]. Since amino acids and sugars are themselves chiral, the proteins and
glycoproteins, which constitute enzymes, receptors, and carrier macromolecules, are also
chiral. For instance, to activate or block a certain receptor, the correct structural orientation
is necessary to effectuate the necessary function. This causes a stereospecificity and selective
affinity in these structures and their dynamics. In consequence, R and S enantiomers can
be very different in their (bio-)chemical effectiveness or have very different functions.
Synthetic chiral molecules are very crucial in pharmaceutical applications [76]. In the
pharmaceutical industry, different enantiomers may greatly affect the pharmacokinetic
processes, such as absorption, tissue distribution, plasma protein binding, metabolism,
and elimination [77,78]. An enantiomer can even cause adverse effects if wrongly existed
instead of its mirror image [79]. Therefore, it is vital to prepare enantiomerically pure
forms of the molecules intended for the production of pharmaceutical drugs [80]. For these
reasons, different approaches for the synthesis and purification of enantiopure molecules
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and chiral supramolecular assemblies have been constructed. The chiral drugs can be
prepared using chiral precursors through different routes, such as asymmetric (biased)
synthesis or enzymatic transformation, chiral resolution, or preparative enantiomeric
segregation [81–87].

3. Towards Pure Enantiomeric Compounds and Supramolecular Assemblies

Synthesizing chiral molecules from achiral precursors in the absence of inductive
chiral agents leads to the formation of equal portions of enantiomers, the so-called racemic
mixture or racemate [88,89]. In case of solid-liquid equilibria phases, racemic mixtures can
crystallize as pairs of enantiomers that act as a single phase, which cannot be segregated
without the use of a chirality breaking operation. Most crystalline racemates (90–95%) are
racemic compounds in which the enantiomeric pair exists orderly and evenly in every
unit cell. Only about 5–10% of crystalline racemates can crystallize in the form of racemic
conglomerates [90], which are a mechanical mixture of crystals, each of which contains only
one of the two enantiomers present in a racemate, i.e., the enantiomers crystallize separately
as separate phases from each other, and, therefore, the different enantiomers can be easily
separated by crystal picking, as in the pioneering experiment of Louis Pasteur with a salt of
tartaric acid [91]. A more complicated form of assembly exists in solid solutions in which
the enantiomeric pair crystallizes randomly within one crystal.

In natural biopolymers, homochiral polymers do not efficiently assemble in a racemic
solution of its monomers [92]. This was explained through a theoretical analysis, which
suggested that the addition of monomers of the wrong chirality blocked the polymerization
through an enantiomeric cross-inhibition process [93]. This is indeed a relief from very
many unwanted and even dangerous mutations on the biological level. Fortunately, the
same process does not exist when attempts are made to generate homochiral synthetic
polymers, because homochirality in this case is not a prerequisite [94].

The chiral purity is measured by calculating the optical purity [95], also called enan-
tiomeric excess (ee), which reflects the degree to which a mixture contains one enantiomer
in greater amounts than the other, using the following equation:

ee =
[R]− [S]
[R] + [S]

× 100

where [R] and [S] (also called [P] and [M], respectively) are the respective fractions of
the separate enantiomers in the mixture. A racemic mixture has an ee of 0%, while an
enantiopure sample has an ee of 100%.

The methodologies implemented to induce the formation of pure enantiomers (ee
≈ 100%) are categorized into two main approaches; the chiral approach, based on the
synthesis of pure enantiomeric compounds, and the racemic approach, based on chiral
resolution through separation of enantiomeric mixtures [96,97]. Among the chiral methods,
deracemization has shown an impressive progress [98], whereas cocrystallization is from
the racemic methods that resulted in several remarkable outputs [99].

4. Deracemization and Chiral Amplification

Except for conglomerates, other racemic mixtures require a deracemization: an enan-
tiomers separation process, also known as resolution.

For racemic mixtures, a dynamic absolute resolution requires two main steps: chiral
symmetry breaking, followed by chiral amplification [100].

Chiral symmetry breaking is a process by which a small chiral bias is introduced
into a racemic mixture, with ee of 0% to increase it to a value ≤1%. This bias can be
induced by adding a catalyst that leads to a kinetic (chemical) resolution [101], by the
presence of a natural chiral impurity, by seeding with either one of the enantiomers, or the
addition of a (tailor-made) non-racemic stereogenic element into some molecular fragment
in the racemic mixture. The latter may inhibit the nucleation of one of the enantiomers
in case of condensed matter. This process, in which one enantiomer is preferentially
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selected over its mirror image, is also known as a stereo-selective, or more specifically
enantioselective process. Generally, chiral resolution is facilitated by different methods,
which can be categorized into two main routes: crystallization-assisted chiral resolution in
solid solutions [102] or chiral synthesis in solutions.

4.1. Crystallization-Assisted Chiral Resolution in Solid Phase

Spontaneous absolute asymmetric synthesis, by which the statistical formation of
enantio-enriched compounds from achiral reagents takes place, without the intervention of
any chiral auxiliaries, has been proposed as one of the origins of chirality [64,103]. Chiral
resolution can rarely occur through spontaneous resolution, in which the two enantiomers
condense (crystallize) as two separate phases (conglomerates) [104,105]. Enantiomeric
resolution can be initiated via the transformation of a metastable polymorphic form using
the solvent-assisted solid-to-solid route into a thermodynamically stable polymorph during
the crystallization from the supersaturated solution of certain kinds of racemic mixed
crystals [106].

As mentioned earlier, enantiomers are similar in their physical properties, while
diastereomers are not. Therefore, one way of purifying an enantiomeric pair from each
other is by adding a chiral resolving agent to their racemic mixture. This leads to the
formation of a complex, usually diastereomeric salt with the racemic mixture entities (so
called diastereomeric salt formation). Therefore, a difference in physical properties (such
as solubility) occurs, and accordingly, the resultant diastereomers can now be separated
through crystallization [107,108]. Afterwards, the chiral agent can be removed to give the
pure enantiomers. This method is known as diastereomeric resolution. Unfortunately, this
approach will only result in a 50% yield.

On the other hand, mechanical flow has been proven to efficiently induce complete
resolution for solid crystals, as was highlighted by the work of Viedma [98,109,110]. The
latter and others have shown that stirring with attrition (grinding the crystals in saturated
solution with glass or ceramic beads), so called Viedma ripening [111,112], accomplishes
both the chiral bias and amplification [113–118]. By increasing the attrition intensity during
Viedma ripening, the effect of inherent chiral impurities (which influence Viedma ripening
and lead to a preference of one enantiomer over the other) is suppressed and deracem-
ization yield each enantiomer with equal probability [119]. The chiral amplification in
Viedma ripening is enhanced by what is considered as an accelerated form of Ostwald
ripening [120], which involves dissolution of minor crystals in the crystallization solution
and their participation, as dissolved species, as growth units on the surfaces of larger crys-
tals. In terms of chirality, the solid phase (crystals) of certain (usually major) handedness
dissolves to very small clusters and then redeposits on the surface of larger crystals of
the same handedness. Consequently, a higher fraction of clusters of the opposite minor
handedness dissolve, resulting in an increment in the proportion of molecules bearing
this handedness in the solution phase. Under racemizing conditions, this proportional
difference provides a net flux of molecules of the minor handedness to those of the major
chirality. Thus, the final result is a complete conversion into crystals of the chirality that
initially forms the major population (Figure 8). The method was proven to be effective
without the need of adding any catalyst, as was the case for isoindolinones (a compound of
common use for pharmaceutical drugs), for which complete deracemization was accom-
plished, starting from a racemic mixture of conglomerate crystals [121,122]. Nevertheless,
the prerequisite for a racemization step is a major limiting factor for applying Viedma ripen-
ing, and many attempts were made to overcome this bottleneck. Successful approaches
that resulted in complete deracemization were made through the combination of grinding
with physical factors, such as temperature gradients [123], temperature cycling [124], chiral
additives [125], UV-light [126], and continuous solvent exchange, with which the very
important antimalaria drug Mefloquine was deracemized [127]. Moreover, Vlieg et al.
showed that Viedma ripening is also effective for obtaining a single enantiomer, not only
for compounds with a single stereocenter, but also from a mixture of stereoisomers with
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two (or more) different stereocenters, in a process that should be preceded by epimerization
of stereocenters, and crystallization of the most stable pair of enantiomers as a racemic
conglomerate [128].
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parts indicate the major and minor enantiomers, respectively. Circles and large rhombi indicate
dissolved enantiomers and enantiomeric crystals, respectively. Small rhombi indicate subcritical
nanocrystals that mostly undergo dissolution, but also participate more effectively in the crystal
growth for the major enantiomer. Thick arrows indicate crystal growth. The green dotted arrow
indicates the driving steady flow to major enantiomer in the solution that results in chiral purity.
Reprinted with some additions with permission from Reference [120]. Copyright 2015 John Wiley
and Sons. License number: 3610860077640.

4.2. Synthetically-Assisted Chiral Resolution in Solutions

Asymmetric autocatalytic reactions [129,130], an auto-multiplication process, can
efficiently effectuate chiral amplification, because the chiral product itself acts as a catalyst
for the production of more of this product. Therefore, unlike asymmetric catalysis, in which
the structure of the product is completely different from the catalyst, the separation of the
catalyst from the product is not required [131,132]. An empirical and stochastic analysis of
several parallel experiments was performed to investigate the nature of the autocatalytic
reactions, and it was found that that the initial steps of the reaction might be controlled by
simple normal distribution (“coin tossing”) formalism. However, the advanced stages of
the reaction appear to be of a more complicated nature, with a high probability of being up
to three cooperating catalytic cycles [133].

Physical forces, such as sublimation [134] and light, namely, circularly polarized
light [64,135–142], have been also reported to effectuate chiral amplification. Single handed
circularly polarized light has been shown to induce preferred-handed helical conformation
in a thin film form of a virtually achiral main-chain conjugated polymer without the use of
chemical auxiliaries, but the induction was reversible [143].

On the supramolecular level, synthetic hydrogen-bonded assemblies were reported
to display supramolecular chirality in solution [144] and solid states [145]. In particular,
helical architectures are required, because they are the central structure motif in biopoly-
mers. The first successful example of the self-assembly of building blocks into helical
superstructures via non-covalent interactions was reported in 1998 [146]. Chiral polymers
bearing defined secondary structures and chiral macromolecular assemblies arising from
polymer aggregation were thoroughly reviewed elsewhere [94,147]. Asymmetric induction
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of supramolecular chirality is extensively studied in polymeric superstructures [148–150]
and especially in solvents [151]. It has so far been achieved in inorganic metal-coordinated
systems [152,153], organic hydrogen-bonded assemblies [149], and organic gels [154,155].

Amplification of chirality in helical covalent and supramolecular copolymers, which
are unlike bio-helical polymers, have no chiral information in their building blocks, can
occur via two main assembly routes: the sergeants-and-soldiers or the majority-rules
principles [156,157]. Both effects are triggered by a chiral bias between the left- and right-
handed helical bonds [158].

4.2.1. Sergeant-and-Soldiers Principle and Related Approaches

Sergeant-and-soldiers chiral amplification was first proposed in the field of polymer
chemistry in the 1960s [159]. Two decades later, it became described with this term when a
big control of a few chiral co-monomer (sergeants) was observed on the optical properties
(a strong nonlinear response) of the (achiral) monomers (soldiers) in the helical assembly of
poly(n-hexyl isocyanate) [156]. Few research groups broadened the scope of this concept
to include different aspects of supramolecular and polymer chemistry [148,160–167], and
many supramolecular structures were released [168–175]. A prerequisite for the sergeant
and soldiers’ approach is that the chiral guest (sergeant) molecules are chiral analogues of
the achiral component (soldiers) [160,176–179]. A large number of bonds with the helicity
sense preferred by the chiral monomers was then formed (Figure 9).
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If the chiral guests (auxiliaries) differ in the structure from the achiral component, or if
they are chiral solvents, the amplification mode is called the chiral auxiliaries
approach [18,164,181–184]. The idea of adding an auxiliary chiral component (chiral
supramolecular auxiliary approach) has also been used to assemble 1D and 2D chiral
structures. The resultant assemblies retain their structure even after the removal of the aux-
iliary chiral components, thus revealing a memory effect of the chiral auxiliary component
in the production of chiral structures. This was shown in the stereoselective non-covalent
synthesis of 1D helical self-assembled stacks of achiral monomers that resulted in homochi-
ral helical stacks, which maintain the preferred helicity after the removal of the chiral
auxiliary, even after encountering a temperature change [185].

Induction of global chirality in an achiral 2D monolayer, initially assembled into only
chiral rows of hydrogen bonded domains in a racemic structure at the liquid-solid interface,
has been also accomplished by the addition of a chiral auxiliary, which interacts with



Symmetry 2022, 14, 292 12 of 27

the dimers through hydrogen bonding. Upon removal of these chiral molecules (volatile
solvent), the surface remains in its chiral form [186]. Many other examples of amplification
of homochirality at solid surfaces [187,188], as well as in isotropic liquids [189], have
been reported.

A third approach for preparing chiral monolayers, called the giant sergeant-and-
soldiers approach, has been also reported. The giant sergeant is the covalent analogue of
a cyclic supramolecular hexamer of sergeant molecules, which co-adsorbs on the surface
without affecting the supramolecular organization. This approach is expected to have an
impact on the supramolecular synthesis of on-surface materials through the formation of
mixed assemblies, by applying the first compound on the surface, removing the excess
material, and then adding the second component [190].

Moreover, it has been reported that auto-amplification of molecular chirality can
be accomplished through the induction of supramolecular chirality, which proceeds by
means of the sergeant and soldiers’ approach (Figure 10). This amplification process was
reported for the solution of prochiral, ring-open diarylethenes (soldiers), in which a small
amount of their chiral, ring-closed counterpart was added. Hydrogen bonding facilitates
the molecules’ co-assembly into helical fibers, while the handedness of the fibers is biased
by the chiral, ring-closed diarylethene. Subsequent photochemical ring closure of the open
diarylethene yields extra chiral of the ring-closed product [191].
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light activation, made all the difference. Reprinted with permission from Reference [191]. Copyright
2014 John Wiley and Sons. License number: 3610870899092.

4.2.2. Majority-Rules Principle and Related Approaches

In the absence of a chiral co-monomer, the helical assembly can equally be in one or
the other handedness, and many helical reversals along the polymeric chain can occur. For
chains consisting of both enantiomeric forms of a chiral monomer, one of which is present
in (small) excess, the majority-rules principle is the way to chiral amplification [157]. In
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this case, a slight majority, shown by a small ee, leads the helical preference toward its
helical sense. Subsequently, fewer helical reversals occur, because of the lower energy
of the helical directionality of the majority units compared to the minority helical sense.
These reversals were also shown to be negligible in the copolymer of a ratio of 56/44
of one mirror image unit to the other but became significant with a ratio of 51/49 [157].
The effect of chemical structure on the amplification of chirality has been investigated in
order to determine the limits of the majority-rules principle, and it was found that helix
reversal penalty is constant; the mismatch (energy) penalty could be directly related to the
number of stereocenters present in the molecules [192]. The validation of the ‘majority-rules’
for the homochirality control of achiral molecules at the liquid/solid interface was first
demonstrated when global homochirality was induced in 2D enantiomorphous networks
of achiral molecules via co-assembly with chiral co-absorbers. Even after the replacement
of the chiral co-absorber by other achiral co-absorber, the resultant global homochirlaity
was memorized and showed nonlinear dependence on the enantiomeric excess of the chiral
co-absorber in the solution phase [193].

Although the majority-rules approach of chiral amplifications has been demonstrated
by several examples [194–196], it has been discovered, in contrary to common knowledge
that, for several combinations of supramolecular polymers, the helical preference is gov-
erned by the helicity preference of minority enantiomer. This effect has been dubbed the
‘minority-rules’ approach [197].

Another extraordinary finding has been reported, in which four-component supramolec-
ular, propeller-like architectures were constructed through co-assembly of an achiral disk-
shaped molecule and chiral amino acid derivatives driven by intermolecular hydrogen bond-
ing. Chiral amplification in this system was shown to be explainable by both the “sergeants-
and-soldiers” principle and “majority-rules” effect [198].

Moreover, in a breakthrough in the knowledge about the preferred helicity of naturally
occurring helical supramolecular assemblies, it has been demonstrated that the chirality
of helical supramolecular aggregates formed by achiral molecules can be assisted by
applying rotational, gravitational, and orienting forces during the self-assembly process.
The application of these external forces only during the nucleation step of the aggregation
is shown to be sufficient to achieve chiral selection. This finding proved that an almost
instantaneous chiral distress can be passed on and amplified throughout the growth of
supramolecular self-assemblies and represents evidence that a falsely chiral influence is
able to induce absolute enantioselection (Figure 11) [199].
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5. Inversion of Chirality

The chiral assembly of supramolecular structures is as vital as the capability of invert-
ing their chiral pattern. The inversion of supramolecular chirality is expected to facilitate
chiral transmission (and thus information) and provide the possibility of mimicking biolog-
ical superstructures, such as DNA, which can encounter a helical reverse as a result of a
small change in its molecular packing. Inversion of the self-assembled structures’ helicity
can be realized by varying the preferences toward the available intermolecular interactions
such as hydrogen bonding, π−π stacking, and hydrophobic forces that arise from the typi-
cal nature of molecular systems [200–202]. These variations can be induced by changing
the solvent [200], temperature [203], or concentration of the co-assembling chiral dopant
molecules (Figure 12) [204]. This chiral inversion has been accomplished by applying exter-
nal heat and ultrasonic stimuli to an organic chromophoric system, which in turn induced
the formation of aggregates with ordered molecular packing and enhanced optical chiral-
ity [205]. In a very different approach than the kinetically and thermodynamically-driven
approaches, a thermal-reversible chirality inversion has been patterned by the symmetry
change of the self-organized 3D packing [33].
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6. Supramolecular Chirality and (Bio-)Technological Applications

Many polymers cannot form crystals, and thus the investigations to determine their
structures always lacks important details. The assembly of these polymers in chiral helices
provides an alternative means to study their exact structure using X-ray diffraction. In
addition, local guidance, usually by manipulating the chiral properties, plays an important
role in supramolecular structure formation. Controlled construction of different levels
of chirality in helical structures using chiral molecules is a necessity for exploring the
new properties of functional materials. Because supramolecular polymeric structures are
assembled through hydrophobic interactions, hydrogen-bonding, metal-ligand bonding,
π−π stacking, or host–guest interactions, they offer crucial properties related to their
reversible nature (in terms of their structure, shape, and function, in response to external
stimuli) that cannot be obtained with classical, or covalent polymers [206]. These smart
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material properties include low viscosity in the melt phase, amphiphilicity [207], the
potential to self-heal [208,209], and reciprocity to the dynamics of living tissues [210,211].

In a leading structure-dynamics-property study, it has been shown that the inclusion of
homochirality in aqueous supramolecular polymers imparts a higher level of internal order-
ing, which does not affect the basic dimensions of the supramolecular fibers but the equilib-
rium dynamics of the polymers differ by almost one order of magnitude [212]. This result is
important for the implementation of the chiral supramolecules in biomedical applications.

6.1. Technological Applications for Chiral 2D Surfaces

The induction and amplification of chirality in 2D surfaces are relevant for many vital
chemical processes, including asymmetric heterogeneous catalysis, chiral resolution, and
enantio-enrichment in crystal chemistry. Chiral assemblies results in important proper-
ties when the building blocks assemble in periodic 2D structures [213]. This is because
of the resultant strong optical activity [214,215], circular dichroism [216], and negative
refraction [217–220]. Several applications in physics, including electronic (semiconducting
nanofibers [221,222] and nanotubes [194]), photonic and opto-electronic applications, have
been enormously developed by using these chiral 2D structures. Other applications include
optical communication and sensing [223–227], which require a sort of 2D periodic chiral-
ity, and holographic lithography-based and vectorial holographic techniques [213,228].
Moreover, remote chiral communication in 2D supramolecular assembly at a liquid/solid
interface has been explored at the molecular level [229]. It was also shown that the stereo-
chemical information in a chiral co-adsorber was transmitted over five methylene groups’
lengths to a 2D supramolecular assembly of achiral building units, with the association
of certain hydrogen bonds between the chiral co-adsorber, achiral building units, and the
confinement effect during 2D crystallization. In addition, an odd-even effect was found
when the stereogenic center encountered a change in position, with respect to the stereocon-
trolling functional groups. In such a case, a stereogenic center closer to the stereocontrolling
moiety transmitted more readily the stereochemical information to the 2D supramolecular
assembly [229].

6.2. Functions Provided by Chiral 3D Supramolecular Assemblies

Transmission of chirality from the molecular to the 3D supramolecular level is an
important topic in organic chemistry [230], enantioselective organo-catalysis [231–234],
and metal and bio-catalysis [235–237]. In that respect, chiral guest encapsulation has been
shown to result in high diastereoselectivity of a dissymmetric capsule, which resembles an
enzyme with a binding pocket, in an approach that may provide rational means for the
synthesis of a molecular machine capable of manipulating chiral information encoding in a
supramolecular structure [238].

6.3. Applications of Synthetic Chiral Polymers

Artificial chiral polymers have a wide variety of potential applications [224,239–242]. Chi-
rality of some polymers can be switchable using chemical [243–245] and
light [135–137,141,143,246–248] stimuli. Artificial double-stranded helical oligomers (foldamers)
and polymers have been also developed [235,241,249,250]. However, the structural motifs
for these structures are still limited to helicates [251] (and a double helix of two strands with
opposite chirality) [252], peptide nucleic acids (PNAs) [253], aromatic oligoamides [254], and
oligoresorcinols [255]. However, more studies are dedicated to the construction of complemen-
tary double-stranded helical oligomers and polymers linked by a variety of linkages with a
controlled helical sense [256–261]. The controlled modulation of the chiral properties of the
self-assembled polymeric aggregates is expected to help in the design of optical devices based
on organic nanostructures with the desired chiroptical properties.
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6.4. Plausible Functions for Dendrons and Dendrimers Based Supramolecular Assemblies

As we described above, these assemblies provide vital architectural motifs that have
a remarkable impact on the field of science at the interface between chemistry, biology,
physics, and complex ordered soft-condensed matter [262,263]. The high level of con-
trol in designing supramolecular helical structures, generated from synthetic dendrons,
dendrimers, and other structurally similar macromolecules, draws the attention to these
assemblies, essentially because of the ability to precisely incorporate functional groups
in various parts in their helices [264,265]. These structures are of wide interest in dif-
ferent applications [266], including molecular recognition [267], folding [249,268], nan-
otubes [18,194,269], nanomachines [270], porous protein mimics [25], optics [271–273],
and/organic electronics [42,274,275].

6.5. Exploiting the Chiral Nature of DNA in Technological Applications

DNA is a biologically abundant double helical chiral supramolecular assembly that
has been used beyond its genetic role as a building block for the construction of nano-
engineered materials (Figure 13). The spatial arrangement of heterogeneous components,
using DNA nanostructures as the templates, is expected to facilitate the fabrication of
outstanding functional materials. Moreover, nucleic strands can be designed to extend
out of the DNA superstructures to interact with nanoscale targets through specific recog-
nition. Metal and semi-conductor nanoparticles has been positioned on the surface of
DNA nanostructures with nanometer precision for chiral response applications (chiral
plasmonic nanostructures) [276,277]. Moreover, DNA origami nanostructures have been
shown to guide the assembly of achiral, spherical, and metallic nanoparticles into nature-
mimicking chiral geometries through hybridization between complementary DNA strands
on the surface of nanoparticles and DNA scaffolds to generate a circular dichroism (CD)
response in the visible light region [278,279]. In addition, DNA has been successfully
applied in biosensors [280–282], molecular machines [283,284], and other complex nano-
architectures [278,279]. Furthermore, the regulation of DNA self-assembly and hybridiza-
tion on chiral molecule modified gold surfaces has been performed. The study has shown
that the short-chain DNA has a larger adsorption quality and better covalent assembly on
the L-surface than the D-surface, but the D-surface has larger hybridization efficiency [285].
These developments require the study of the covalent immobilization of DNA and further
investigation of the DNA hybridization on chiral molecule modified surfaces.
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7. Conclusions

Homochirality is the selection that has been easily, but indeed wisely, chosen for
nature. Learning from this choice and attempting to become accustomed to its demands to
synthesize compounds and supramolecular assemblies for important chiral-based techno-
logical and biologically relevant pharmaceutical applications is currently a very vital topic
of research. To date, attempts are ongoing to define the rules and develop and improve
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methodologies by which chiral selection and amplification can be implemented. In this
review, the essential basics, as well as recent foundations and applications, in this field
of research are reported. Indeed, there is no single universal methodology suitable for
the production of pure enantiomers for all super(molecules) and assemblies. However,
an enormous development in science of chirality does exist and is still attracting a lot of
research appeal, owing to the prospective of very important applications.
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