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Abstract: Reliability theory is the core basis of engineering design, mainly including forward relia-
bility theory and inverse reliability theory. Forward reliability theory is used to obtain the reliability 
index using the known design parameters, that is, it is a mapping function that translates the design 
parameters to the reliability index. Inverse reliability theory is used to obtain the design parameters 
using the known reliability index, that is, it is a mapping function that translates the reliability index 
to the design parameters. In other words, forward reliability theory and inverse reliability theory 
together constitute a method of dual mapping, which is the specific application of symmetry theory 
in the reliability field. In this paper, a new inverse reliability analysis method is proposed, which 
can satisfy the requirements of the target reliability index while obtaining the design parameters, 
without additional calculation and verification of reliability. The method simplifies the reliability 
inverse problem to the problem of the nonlinear equation, which is solved by identifying the design 
parameters, and finally obtains the design parameters by iterating the reliability index for each de-
sign parameter to gradually approach the target reliability index. For high-dimension and complex 
problems, the Levenberg–Marquardt method is introduced to avoid the problem of sensitivity to 
initial values and iterative divergence when identifying the design parameters. The implicit limit 
state function problem is solved by the interactive operation between ANSYS software and 
MATLAB software using finite element theory. The accuracy of the proposed method in this paper 
is verified by several numerical examples, the applicability of the implicit limit state function is 
verified by a single-story frame structure, and the engineering applicability of the proposed method 
is demonstrated with a bamboo bridge. 

Keywords: symmetry principle; inverse reliability; forward reliability; frame structure; bamboo 
bridge 
 

1. Introduction 
In the current structural design specifications for structures with different safety lev-

els, structural safety can be ensured by satisfying target reliability indices. Under the 
premise of prescribed reliability levels, it is necessary to calibrate the design parameters 
to ensure structural safety [1–3]. Structural design based on the reliability principle is the 
mainstream form at present. The designed engineering structures, such as structures, 
bridges, and industrial buildings, need to meet the requirements of the target reliability 
index in the specification. 

Reliability theory is the basis of engineering design, mainly including forward relia-
bility theory and inverse reliability theory [4–6]. In the design process of inverse reliability 
analysis, the design parameters need to be determined according to the prescribed target 
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reliability index to meet the specification requirements. Obviously, the existing design pa-
rameter evaluation methods cannot solve the problem of considering the randomness of 
parameters, where the forward reliability index is checked after the design parameters are 
determined, which leads to low efficiency. Inverse reliability analysis theory provides a 
more effective method for design parameter evaluation. This method identifies the struc-
tural design parameters under a prescribed safety level by establishing the limit state de-
sign expression of the structure. The forward reliability theory is where the reliability in-
dex is obtained from the prescribed design parameters, that is, it is a mapping function, 
translating the design parameters to the reliability index. The inverse reliability theory is 
used to obtain the design parameters from the prescribed reliability index, that is, it is a 
mapping function that translates the reliability index to the design parameters. In other 
words, forward reliability theory and inverse reliability theory together involve dual map-
ping, which is the application of the symmetry theory in the reliability field. 

The inverse reliability problem was first developed by Winterstein et al. [7], using a 
“trial and error” method to identify the design parameters until the reliability index met 
the requirements of the target reliability index. Der Kiureghian et al. [8] used an improved 
HLRF method to identify the design parameters when the target reliability index is pre-
scribed, but it is limited to the solution of deterministic parameters. Li and Foschi [9–11], 
based on the FORM calculation principle, proposed a systematic inverse reliability analy-
sis algorithm, extended the inverse reliability analysis design parameter solution to ran-
dom variables and multi-parameter problems, and proved it through calculation exam-
ples. The method has good practicability and effectiveness, but it is easy to diverge when 
solving multi-parameter problems. Sadovský [12] discussed the convergence of the in-
verse reliability analysis method proposed by Li and Foschi, pointed out the reason why 
the algorithm did not converge in some cases, and improved its convergence. Minguez et 
al. [13] proposed a decomposition algorithm for the solution of inverse reliability analysis 
design parameters based on optimization theory. The algorithm can perform parameter 
sensitivity analysis when solving design parameters. Shayanfar [14] combined a neural 
network and a genetic algorithm to identify the inverse reliability analysis design param-
eters. First, the neural network was used to regress the functional relationship between 
the reliability index and random variables, and then the genetic algorithm was used to 
identify the design parameters. Sherali and Ganesan [15] proposed an inverse reliability 
analysis design parameter solution method based on the quantile principle. Cheng et al. 
[16] combined the neural network and the FORM method to solve the inverse reliability 
analysis problem of the implicit limit state function. First, neural network technology was 
used to make the implicit limit state function explicit, and then the FORM method was 
used to identify the design parameter. For high-dimensional nonlinear problems, Lee et 
al. [17,18] proposed a dimension reduction method (DRM) based on the most probable 
point (MPP) to solve the inverse reliability analysis problem. Lehký et al. [19,20] used 
neural networks to make the relationship between reliability indices and random varia-
bles explicit, and then identified the unknown parameters in the nonlinear equations (sets) 
to identify the design parameters in the inverse reliability analysis problem. Cheng and 
Li [21] combined the response surface with the FORM method to solve the inverse relia-
bility analysis problem of the implicit limit state function. Firstly, the implicit limit state 
function was made explicit by the quadratic polynomial and the neural network response 
surface, and then they used the FORM method to identify the design parameters. The 
results show that the combination of the polynomial response surface and FORM has bet-
ter results, and a higher calculation accuracy and efficiency. Balu and Rao [22] proposed 
a fast Fourier transform-based method for solving high-dimensional nonlinear inverse re-
liability analysis problems. Yi and Zhu [23] conducted research on the value of the itera-
tion step in the iterative algorithm for the inverse reliability analysis. Ramesh et al. [24] 
proposed an inverse reliability analysis solution method based on the HLFR-BFGS algo-
rithm. Li et al. [25] proposed an inverse reliability analysis method based on improved 
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adaptive chaos control. A comprehensive analysis of the existing inverse reliability anal-
ysis methods has the following general problems: one is that there is less research on the 
inverse reliability analysis of implicit limit state functions; the other is that it is difficult to 
generate convergence in the process of solving multi-parameter reliability inverse analysis 
problems. 

The reliability-based optimization design method is essentially a mapping relation-
ship between the design parameters and reliability indicators. Some researchers have 
studied this problem from the perspective of engineering applications. Zhao et al. [26] 
defined the concept of a reliability mapping function based on the relationship between 
the reliability index obtained by using the mean value first-order reliability method and 
the failure probability obtained by using an improved response surface method. Xia et al. 
[27] proposed a hybrid perturbation random moment method to estimate the objective 
function, and a hybrid perturbation inverse mapping method to evaluate the component 
reliability. Liel et al. [28] described the development of reliability-targeted ground snow 
load maps for use in building (roof) design, and proposed procedures to ensure that the 
structures thus-designed achieve a target safety index. Ji et al. [29] proposed a simplified 
iterative algorithm for the forward and/or inverse first-order reliability method (FORM), 
and used the proposed inverse FORM algorithm in the application of the geotechnical 
reliability-based designs (RBD) of a strip footing and an earth slope. Pan and Dias [30] 
proposed an efficient reliability method which combines sliced inverse regression with 
sparse polynomial chaos expansions. Majid et al. [31] studied the determination of the 
seismic reliability of low-rise moment-resisting frame RC buildings using probabilistic 
analysis. Keshtegar and Hao [32] proposed a hybrid descent mean value approach based 
on a novel merit function, which is applied to combine the minimum performance target 
point search formulas of the descent mean value and advanced mean value. Keshtegar 
and Hao [33] proposed a novel reliability-based design optimization algorithm based on 
a single loop approach and the enhanced chaos control method. Rahgozar [34] conducted 
nonlinear dynamic analyses for low- and mid-rise archetypes in a reliability-based seismic 
assessment of controlled rocking steel cores. 

In the past two decades, inverse analysis theory has made a certain amount of pro-
gress, and has been widely used in practical engineering. However, the current inverse 
analysis theory still has the following defects. Firstly, users must be familiar with optimi-
zation algorithms or artificial intelligence algorithms, which limits the application of in-
verse reliability analysis theory in engineering practice. Secondly, in the multi-parameter 
problem of inverse analysis, the Newton–Raphson iterative algorithm or the decomposi-
tion algorithm, based on optimization theory, is used to identify the design parameters; 
however, the Jacobian matrix easily becomes singular, so the Newton–Raphson iterative 
algorithm or the decomposition algorithm based on the optimization theory is not effec-
tive. Finally, when the performance function of the structure is an implicit expression of a 
random variable, the existing inverse reliability analysis theories have rarely been studied. 

In order to solve the above three problems, this paper proposes a hybrid algorithm 
for the inverse reliability analysis based on the FORM, Newton–Raphson and Levenberg–
Marquardt methods. In the inverse reliability analysis with a hybrid algorithm proposed 
in this paper, firstly, the inverse reliability analysis problem is transformed into the prob-
lem of solving nonlinear equations (sets); secondly, the target reliability index is expanded 
by a Taylor series, using the FORM algorithm to calculate the reliability index and the 
partial derivative of the reliability index to the design parameters; finally, the Newton–
Raphson iterative algorithm is used to identify the design parameters. When solving prob-
lems with multiple parameters, because the Jacobian matrix easily becomes singular, the 
Levenberg–Marquardt method can be used. Numerical examples, including applications 
in frame structures and with bamboo beams, are given to demonstrate the validity and 
efficiency of the proposed method. 
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2. Symmetric Reliability Theory 
When the overall structure or part of the structure exceeds a certain specific state and 

cannot meet a certain functional requirement specified by the design, this specific state is 
the limit state of the function. The limit state of the structure can be described by the limit 
state equation, which is expressed as: 

g = g (R,S) = R – S = 0 (1)

where g (R,S) is the limit state function of the structure, R is the resistance of the structure 
or structural members, and S is the effect of the action. 

In general, the design variables in the inverse reliability analysis problem can be de-
terministic variables or random variables. Let 𝐗 = 𝐗𝟏, 𝐗𝟐, ⋯ , 𝐗𝐢, ⋯ , 𝐗𝐧 be the basic design 
variables, let 𝐝 = 𝐝𝟏, 𝐝𝟐, ⋯ , 𝐝𝐤, ⋯ , 𝐝𝐩  be deterministic design variables, and let 𝐫 =𝐫𝟏, 𝐫𝟐, ⋯ , 𝐫𝐤, ⋯ , 𝐫𝐩 be random design variables. It is worth noting that the design parame-
ters of random variables can be the mean or variance. Other probability distribution type 
parameters are not limited to the mean or variance. In the calculation of the reliability 
index, it is necessary to convert the non-normal distribution probability function into a 
normal distribution function. Conversely, in each iteration of the design parameters, nor-
mal distribution parameters can also be converted into non-normal distribution parame-
ters, and then the design parameters can be obtained using the inverse reliability analysis 
method. For the prescribed target reliability index 𝛃𝐓, the inverse reliability problem can 
be described by calculating 𝐝 or 𝐫 according to the prescribed 𝛃𝐓, as shown in Equations 
(2) and (3): 𝛃(𝐗, 𝐝, 𝐫) = 𝛃𝐓 (2)𝐆(𝐗, 𝐝, 𝐫) = 𝟎 (3)

where 𝐆(𝐗, 𝐝, 𝐫) is the limit state function. 
In the mapping function between the design parameters and reliability indicators, 

forward reliability can be expressed as: 𝛃𝐓 = 𝛃(𝐗) (4)

From Equations (2) and (4), we can see that forward reliability theory and inverse 
reliability theory together enable dual mapping. Forward reliability theory is used to ob-
tain the reliability index from the known design parameters, that is, it is a mapping func-
tion that translates the design parameters to the reliability index. Inverse reliability theory 
is used to obtain the design parameters from the known reliability index, that is, it is a 
mapping function that translates the reliability index to the design parameters. That is to 
say, forward reliability theory and inverse reliability theory together constitute symmetric 
reliability theory. 

3. Forward Reliability Theory 
For explicit limit state functions, the FORM method can be used to directly solve the 

reliability index and the failure probability of the structure. However, the limit state func-
tions of complex symmetrical structures usually appear as implicit forms of basic random 
variables. For the reliability analysis of such problems, the finite element reliability 
method directly couples the finite element method and the reliability method through 
finite element reaction sensitivity analysis. 

The failure criterion of the structure is usually expressed by the load effect 𝑺, and the 
statistical information of the structure is expressed by the basic random vector 𝑿. The re-
lationship between 𝑺 and 𝑿 can be expressed as: 𝑺 = 𝑺(𝑿) (5)
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Equation (5) is usually called “mechanical transformation”. In actual engineering, 
since the mechanical transformation is generally implicit, it can only be solved by numer-
ical algorithms (such as the finite element method). 

For the finite element first-order reliability method, the limit state function is: 𝒈[𝒔(𝒙), 𝒙] = 𝑮(𝒖) (6)𝒅𝒊 = 𝜵𝒖𝒊𝑮𝑻𝒖𝒊 − 𝑮(𝒖𝒊)ฮ𝜵𝒖𝒊𝑮ฮ𝟐 𝜵𝒖𝒊𝑮 − 𝒖𝒊 (7)

The value of the limit state function 𝑮(𝒖𝒊) in Formula (7) can be obtained through 
finite element analysis, so the calculation of the gradient 𝜵𝒖𝒊𝑮 becomes important. Ac-
cording to the chain differential law, the relationship 𝜵𝒖𝒊𝑮 with the gradient of the limit 
state function 𝒈(𝒔, 𝒙), 𝑮(𝒖𝒊) is: 𝜵𝒖𝒊𝑮 = (𝑱𝒖,𝒙ି𝟏 )𝑻 ∙ 𝜵𝒙𝒈 (8)𝜵𝒙𝒈 = 𝜵𝒔𝒈 ∙ 𝑱𝒔,𝒙 (9)𝜵𝒖𝒊𝑮 = (𝑱𝒖,𝒙ି𝟏 )𝑻 ∙ 𝜵𝒙𝒈 ∙ 𝑱𝒔,𝒙 (10)

where 𝜵𝒔𝒈 is the gradient of the limit state function 𝒈(𝒔, 𝒙) to 𝒔, 𝜵𝒙𝒈 is the gradient of 
the limit state function 𝒈(𝒔, 𝒙) to 𝒙, 𝑱𝒖,𝒙 is the Jacobian matrix of probability transfor-
mation, and 𝑱𝒔,𝒙 is the Jacobian matrix of mechanical transformation. 

When the limit state function is the explicit form of a random variable, its gradient 
can be solved conveniently; but for the implicit form of the limit state function, it is nec-
essary to use the finite element response sensitivity method, such as the difference 
method, the perturbation method, the direct differential method, and the semi-analytical 
method. The difference method includes forward difference, backward difference, and 
center difference. Forward difference and backward difference have first-order accuracy, 
and the center difference has second-order accuracy. This paper uses central difference to 
calculate the gradient of the limit state function, and its basic format is: 𝑲(𝒙)𝑼(𝒙) = 𝑭(𝒙) (11)𝑲(𝒙 + 𝜟𝒙)𝑼(𝒙 + 𝜟𝒙) = 𝑭(𝒙 + 𝜟𝒙) (12)𝒅𝑼𝒅𝒙 = 𝑼(𝒙 + 𝜟𝒙) − 𝑼(𝒙 − 𝜟𝒙)𝟐 ⋅ 𝜟𝒙  (13)𝒅𝒈𝒅𝒙 = [𝝏𝒈𝝏𝑼]𝑻 𝒅𝑼𝒅𝒙  (14)

For the finite element reliability method, when searching for design points, the finite 
element software must be used to calculate the limit state function value and its gradient 
value at each iteration step. Therefore, the calculation efficiency of the reliability index is 
greatly affected by the solution speed of finite element. In this paper, the finite element 
analysis software ANSYS and the reliability analysis MATLAB software are combined to 
realize the FORM-based reliability finite element analysis method for complex symmet-
rical structures. Because of the convenient modeling of ANSYS software and its strong 
nonlinear processing capability, this article uses ANSYS’s parametric design language for 
pre-processing and generates a .txt file that can be executed by MATLAB when perform-
ing the finite element analysis of complex symmetrical structures. When calculating the 
reliability of complex symmetrical structures, the reliability program developed with the 
MATLAB language is used for reliability analysis, and the application program interface 
of the ANSYS software and MATLAB software is used to realize the mutual interaction. 
The calculation process is shown in Figure 1. 
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Figure 1. Finite element reliability analysis process. 

4. Inverse Reliability Theory 
The inverse reliability problem is essentially the problem of solving nonlinear equa-

tions, which can be divided into single-parameter and multi-parameter problems. 

4.1. Single Parameter Problem 
In order to solve the single-parameter problem of inverse reliability analysis, the 

equation 𝛽(𝑿, 𝑑, 𝑟) = 𝛽் can be rewritten as a general nonlinear equation: 𝑓 = 𝛽(𝑿, 𝑑, 𝑟) − 𝛽் (15)

The Newton–Raphson iterative algorithm is used to solve the roots of the equation 𝑓 = 0. Set an initial iterative value 𝜃∗ (d or r), and function 𝑓 can be expanded to the 
Taylor series and take one term: 𝑓 = 𝛽(𝑿, 𝜃∗) − 𝛽் + 𝜕[𝛽(𝑿, 𝜃) − 𝛽்]𝜕𝜃 ቤఏ∗ (𝜃 − 𝜃∗) (16)

or: 𝑓 = 𝛽(𝑿, 𝜃∗) − 𝛽் + 𝜕𝛽(𝑿, 𝜃)𝜕𝜃 ฬఏ∗ (𝜃 − 𝜃∗) (17)

let 𝑓 = 0: 𝜕𝛽(𝑿, 𝜃)𝜕𝜃 ฬఏ∗ (𝜃 − 𝜃∗) = 𝛽் − 𝛽(𝑿, 𝜃∗) (18)

From this, the solution of the equation can be obtained as: 𝜃 = 𝜃∗ + 𝛽் − 𝛽(𝑿, 𝜃∗)𝜕𝛽(𝑿, 𝜃)𝜕𝜃 ฬఏ∗
 (19)
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It should be noted that in the process of using an iterative algorithm is the most im-
portant to calculate the derivative of the reliability index with respect to the design pa-
rameters. Generally, design parameters can be divided into three types: deterministic pa-
rameter 𝑑, the mean value of random variable 𝜇, and the standard deviation of random 
variable 𝜎. The derivative of the reliability index 𝛽 with respect to the design parameters 𝜃 is calculated as follows: 𝜕𝛽𝜕𝑑 = 𝜕𝐺𝜕𝑑ฯ𝜕𝐺𝜕𝑥 𝜎௫ฯ  (20)

𝜕𝛽𝜕𝜇௫ = 𝜕𝐺𝜕𝑥ฯ𝜕𝐺𝜕𝑥 𝜎௫ฯ  (21)

𝜕𝛽𝜕𝜎௫ = − (𝜕𝐺𝜕𝑥)ଶ𝜎௫ฯ𝜕𝐺𝜕𝑥 𝜎௫ฯଶ 𝛽 (22)

Among them, ‖•‖ represents the Euclidean norm. 

4.2. Multi-Parameter Problem 
In the inverse reliability analysis for multi-parameter problems, only a certain num-

ber of limit state equations can be obtained. There are several limit state equations. Con-
sidering the target reliability index 𝜷𝒌 and the corresponding limit state equation Gk, let 𝜽 = (𝜽𝟏, 𝜽𝟐, . . . , 𝜽𝒑)𝑻 be the parameter vector to be sought in the ‘n’ equations. Using the 
method of solving a single parameter, the k-th equation is expanded by the Taylor series 
and written in the form of a system of equations: 

𝜷𝒌𝑻 = 𝜷𝒌𝒋 ൫𝑿, 𝜽𝒌𝒋 ൯ +  𝝏𝜷𝒌(𝑿, 𝜽𝒌)𝝏𝜽𝒌
𝒓

𝒌ୀ𝟏 อ𝜽𝒌𝒋
൫𝜽𝒌𝒋ା𝟏 − 𝜽𝒌𝒋 ൯, (𝒌 = 𝟏, 𝟐, … , 𝒓) (23)

or 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧𝜷𝟏𝑻 = 𝜷𝟏𝒋 (𝑿, 𝜽𝟏𝒋 ) +  𝝏𝜷𝒌(𝑿, 𝜽𝒌)𝝏𝜽𝒌

𝒓
𝒌ୀ𝟏 อ𝜽𝒌𝒋

൫𝜽𝒌𝒋ା𝟏 − 𝜽𝒌𝒋 ൯. . .𝜷𝒌𝑻 = 𝜷𝒌𝒋 (𝑿, 𝜽𝒌𝒋 ) +  𝝏𝜷𝒌(𝑿, 𝜽𝒌)𝝏𝜽𝒌
𝒓

𝒌ୀ𝟏 อ𝜽𝒌𝒋
൫𝜽𝒌𝒋ା𝟏 − 𝜽𝒌𝒋 ൯. . .𝜷𝒓𝑻 = 𝜷𝒓𝒋 (𝑿, 𝜽𝒓𝒋 ) +  𝝏𝜷𝒌(𝑿, 𝜽𝒌)𝝏𝜽𝒌

𝒓
𝒌ୀ𝟏 อ𝜽𝒌𝒋

൫𝜽𝒌𝒋ା𝟏 − 𝜽𝒌𝒋 ൯
 (24)

Equation (23) can be written in matrix form: 
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⎩⎪⎨
⎪⎧𝛽ଵ்⋯𝛽்⋯𝛽் ⎭⎪⎬

⎪⎫

= ⎩⎪⎨
⎪⎧𝛽ଵ(𝑋, 𝜃ଵ)⋯𝛽(𝑋, 𝜃)⋯𝛽(𝑋, 𝜃)⎭⎪⎬

⎪⎫

+
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝜕𝛽ଵ(𝑋, 𝜃ଵ)𝜕𝜃ଵ ฬఏభೕ ⋯ 𝜕𝛽ଵ(𝑋, 𝜃)𝜕𝜃 ฬఏೖೕ ⋯ 𝜕𝛽ଵ(𝑋, 𝜃)𝜕𝜃 ฬఏೝೕ⋮ ⋱ ⋮ ⋰ ⋮𝜕𝛽(𝑋, 𝜃ଵ)𝜕𝜃ଵ ฬఏభೕ ⋯ 𝜕𝛽(𝑋, 𝜃)𝜕𝜃 ฬఏೖೕ ⋯ 𝜕𝛽(𝑋, 𝜃)𝜕𝜃 ฬఏೝೕ⋮ ⋰ ⋮ ⋱ ⋮𝜕𝛽(𝑋, 𝜃ଵ)𝜕𝜃ଵ ฬఏభೕ ⋯ 𝜕𝛽(𝑋, 𝜃)𝜕𝜃 ฬఏೖೕ ⋯ 𝜕𝛽(𝑋, 𝜃)𝜕𝜃 ฬఏೝೕ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

⎩⎪⎨
⎪⎧𝜃ଵାଵ − 𝜃ଵ⋯𝜃ାଵ − 𝜃⋯𝜃ାଵ − 𝜃⎭⎪⎬

⎪⎫
 

(25)

Let: 
T T T T

1( ,..., ,..., )Tk rβ β β=β  (26)

j j j j
1( , ..., , ..., )Tk rβ β β=β  (27)

1( ,..., , ..., )Tk rθ θ θΔ = Δ Δ Δθ  (28)

[ ]klA=A  (29)

Among them, 𝜟𝜽𝒌 = 𝜽𝒌𝒋ା𝟏 − 𝜽𝒌𝒋 , 𝑨 is the Jacobian matrix, and 𝑨𝒌𝒍 = 𝝏𝜷𝒌(𝑿,𝜽𝒍)𝝏𝜽𝒍 ห𝜽𝒍𝒋. 
Equation (25) can be expressed as: 𝜷𝑻 = 𝜷𝒋 + 𝑨 ⋅ 𝜟𝜽 (30)

Therefore, from Equation (30), we can obtain: 𝜽𝒋ା𝟏 = 𝜽𝒋 + 𝜟𝜽 = 𝜽𝒋 + 𝑨ି𝟏 ⋅ (𝜷𝑻 − 𝜷𝒋) (31)

The Jacobian matrix in Equation (31) is very important for solving the multi-param-
eter problem of inverse reliability analysis. Generally, the Jacobian matrix easily becomes 
singular during the iterative process. In order to solve this problem, the Levenberg–Mar-
quardt method is adopted. By introducing the Levenberg–Marquardt method to solve 
Equation (31), we can obtain: [𝑨𝑻𝑨 + 𝜆𝑰]𝜟𝜽 = 𝑨𝑻(𝜷𝑻 − 𝜷𝒋) (32)

In Formula (32), Δθ  is the increment of the design variable θ , I  is the identity 
matrix, and λ  is the damping coefficient. When λ  = 0, the solution is similar to that of 
a single parameter Δθ . When it tends to infinity, the Formula (32) can be expressed as: [𝑨𝑻𝑨 + 𝜆𝑰]𝜟𝜽 = 𝝀𝑰𝜟𝜽 = 𝑨𝑻(𝜷𝑻 − 𝜷𝒋) (33)

From Equation (33), we can obtain: 𝜟𝜽 = 𝟏𝜆 𝑨𝑻(𝜷𝑻 − 𝜷𝒋) (34)

Similarly, from Equation (32) we can obtain: 
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𝜟𝜽 = [𝑨𝑻𝑨 + 𝜆𝑰]ି𝟏𝑨𝑻(𝜷𝑻 − 𝜷𝒋) (35)

Therefore: 𝜽𝒋ା𝟏 = 𝜽𝒋 + 𝜟𝜽 (36)

It should be noted that, unless otherwise specified in this article, the value of the 
damping coefficient is 𝜆𝒋 = ฮ𝜷𝑻 − 𝜷𝒋ฮ𝜹, where 𝛿 ∈ (0,2]. 
4.3. The Proposed Algorithm 

The above methodology can be summarized by the following steps. 
Step 1: Input the following parameters, the desired reliability index with respect to 

all failure modes, the resign variables and parameters, and an error value to control the 
convergence of the procedure. 

Step 2: Set the initial values of the design parameters to be calculated and then the 
known parameters, and calculate the corresponding reliability index. 

Step 3: Replace with iterative publicity to update the design parameters and reliabil-
ity indicators. 

Step 4: Check if convergence is achieved, and the design parameters and reliability 
index are iterated continuously until convergence. 

Step 5: Output the following parameters, the design parameters and the correspond-
ing reliability index. 

5. Numerical Examples 
In order to illustrate the calculation accuracy and the efficiency of the inverse relia-

bility analysis for the hybrid algorithm proposed in this paper, the classical calculation 
examples in the existing literature are used for verification. 
(1) Example 1 [10] 

Consider a single parameter limit state equation: 𝐺 = 𝑒𝑥𝑝[−𝜃(𝑥ଵ + 2𝑥ଶ + 3𝑥ଷ)] − 𝑥ସ + 1.5 (37)

where the vector of random variables 𝑿 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒)𝐓 is in the standard normal space 
and is uncorrelated. The target reliability index is taken as β = 2.0, considering the fol-
lowing two situations. 

Case 1: Suppose that 𝜃 is a deterministic design variable, the initial iteration value 
is taken as 𝜃 = 0.15, and the convergence error is 10−4. The iterative process of solving 
the design variables is shown in Figure 2. From the analysis in Figure 2, it can be seen that 
after five iterations, the design variables finally converge to 0.3671448 when the iteration 
value of the reliability index is 2.0. In Ref. [10], in order to verify the correctness of the 
calculation results, the reliability index 𝛽 = 2.0000000 , calculated by the reliability 
FORM method, is consistent with the target reliability index. 
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θ

Iterative number  
Figure 2. Example 1, Case 1: Iterative process of solving design variables. 

Case 2: Assuming that the design variables follow the lognormal distribution and the 
coefficient of variation is 0.3, find the mean value 𝜇ఏ so that the target reliability index is 𝛽 = 2.0. Taking the initial iterative value of the design variable 𝜃 = 0.20, the iterative 
process of solving the design variable is shown in Figure 3. From the analysis in Figure 3, 
it can be seen that after six iterations, the design variables finally converge to 𝜇ఏ =0.3724930, when the iteration value of the reliability index was 2.0. In Ref. [10], in order 
to verify the correctness of the calculation results, the reliability index 𝛽 = 2.0000014, cal-
culated by the reliability FORM method, is consistent with the target reliability index.  

1 2 3 4 5 6

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

θ

Iterative number  
Figure 3. Example 1, Case 2: Iterative process of solving design variables. 

From Case 1 and Case 2 of Example 1, we can see that, in the process of solving a 
single design parameter, the iterations converge quickly and meet the requirements of the 
target reliability index at the same time. Compared with the method in Ref. [10], the de-
sign parameters were obtained after five and six iterations in the proposed method, re-
spectively, which were less than that of the approaches which have seven and nine itera-
tions in Ref. [10]. In addition, to check the accuracy of the design parameters, forward 
reliability was used in Ref. [10], while the proposed method gives the reliability index in 
the process of performing the iterations.  

That is to say that the proposed method could give the design parameter and the 
reliability index at the same time, and have less iterations than the method in Ref. [10]. 
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This is one advantage of the method proposed in this paper, which is more efficient than 
the other method. 
(2) Example 2 [13] 

Consider three limit state functions with four random variables: 𝐺ଵ = 𝑥ଵଶ − 4𝑥ଶ − 2𝑥ଷ𝑥ସ (38)𝐺ଶ = 2𝑥ଵ𝑥ସ − 𝑥ଶ𝑥ଷ (39)𝐺ଷ = 𝑥ଵ𝑥ଶ𝑥ସ − 2𝑥ଷ (40)

Among them, the given target reliability index is 𝜷𝐓=(𝟑. 𝟎, 𝟑. 𝟓, 𝟒. 𝟎)𝐓. Consider the 
following three situations: 

Case 1: The mean value of three random variables (x1, x2, x3) is used as the parameter 
to be calculated, and the coefficient of variation and the probability distribution types of 
all random variables are as follows: x1 is a normal distribution, and the coefficient of var-
iation is 0.01; x2 is a lognormal distribution, and the coefficient of variation is 0.2; x3 is a 
lognormal distribution, and the coefficient of variation is 0.1; and x4 is a Gumbel distribu-
tion, and the mean value and coefficient of variation are 1 and 0.1, respectively. The mean 
values of x1, x2, and x3 are the design parameters [10]. Assume that all random variables 
are uncorrelated. The initial iteration value of the design variable is taken as (5,5,5)், and 
the value in the damping coefficient δ  is taken as ‘1′. The iterative process of solving 
design variables is shown in Figure 4. It can be seen from the analysis in Figure 4 that the 
mean values of the corresponding design variables converged to 4.36387, 2.16168, and 
1.78311, respectively after 16 iterations, when the corresponding iteration values of the 
reliability index were 3.0, 3.5, and 4.0. In Ref. [10], in order to verify the correctness of the 
calculation results, the reliability indices calculated by the reliability FORM method are, 
respectively, 𝛽ଵ = 3.00002, 𝛽ଶ = 3.50001, and 𝛽ଷ = 3.99999, which are consistent with the 
target reliability indices. 

0 2 4 6 8 10 12 14 16
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Figure 4. Example 2, Case 1: Iterative process of solving design variables. 

Case 2: The standard deviation of the random variable x1 and the mean value of the 
random variables x2 and x3 are used as design parameters. The statistical characteristics of 
each random variable are as follows: x1 is a normal distribution, and the mean value is 6.0; 
x2 is a lognormal distribution, and the coefficient of variation is 0.2; x3 is a lognormal dis-
tribution, and the coefficient of variation is 0.1; and x4 is a Gumbel distribution, and the 
mean value and coefficient of variation are 1 and 0.1, respectively. The coefficient of vari-
ation of x1 and the mean values of x2 and x3 are the design parameters [10]. The correlation 
between random variables is not considered here. The iterative process of identifying the 
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design parameters is shown in Figure 5. It can be seen from the analysis in Figure 5 that 
the mean values of the corresponding design variables converged to 0.76827, 2.19633, and 
2.07806, respectively, after 16 iterations, when corresponding iteration values of the relia-
bility index were 3.0, 3.5, and 4.0. In Ref. [10], in order to verify the correctness of the 
calculation results, the reliability indices calculated by the reliability FORM method are, 
respectively, 𝛽ଵ = 3.00001, 𝛽ଶ = 3.50001, and 𝛽ଷ = 3.99999, which are consistent with the 
target reliability indices. 
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 σx1

 
Figure 5. Example 2, Case 2: Iterative process of solving design variables. 

Case 3: In Case 1 and Case 2, the random variables are not correlated. In order to 
study the influence of the correlation between random variables, it is assumed that the 
correlation coefficient between the random variables x1 and x2 is taken as 0.8. The iterative 
process of identifying the design parameters is shown in Figure 6. It can be seen from the 
analysis in Figure 6 that the mean values of the corresponding design variables converged 
to 0.82936, 3.30358, and 1.99165, respectively, after 16 iterations. In order to verify the cor-
rectness of the calculation results, the reliability indices calculated by the reliability FORM 
method are, respectively, 𝛽ଵ = 3.00001, 𝛽ଶ = 3.49999, and 𝛽ଷ = 3.99999, which are con-
sistent with the target reliability indices. 

0 5 10 15 20
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1.0

1.5

2.0
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Iterative number

 μx2

 μx3

 σx1

 
Figure 6. Example 2, Case 3: Iterative process of solving design variables. 

From Case 1, Case 2, and Case 3 of Example 2, we can see that, in the process of 
identifying multiple design parameters, the iteration of the proposed method converges 
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gradually and meets the requirements of the target reliability index at the same time. The 
methods in Refs. [10,13] may not be useful for complex problems and multi-dimensional 
problems, since the set of contours may not have an intersection in the feasible domain. 
Significantly, the solution of the equation is very sensitive to the initial value of the itera-
tion and it easily diverges. Conversely, the proposed method used the Levenberg–Mar-
quardt method, and the damper factor chosen appropriately could bring the singularity 
of the Jacobian matrix to easy convergence. For example, Table 1 gives the comparison of 
the iterative results between the proposed method and the methods in Refs. [10,13]. From 
Table 1, we can see that this condition is also applicable to complex problems and multi-
dimensional problems. Conversely, in the other methods, a divergence in the iterative 
process occurred easily because of the singularity of the Jacobian matrix. That is to say 
that the proposed method could give multiple design parameters and the corresponding 
reliability indices at the same time using the Levenberg–Marquardt method. This is an-
other advantage of the method proposed in this paper, which is more efficient than other 
methods. 

Table 1. Comparison iterative results of the proposed method and methods in Refs. [10,13]. 

Initial 
Value Proposed Method Method in Ref. [10] Method in Ref. 

[13] Example 2 (𝟑, 𝟑, 𝟑)𝑻 1δ =  convergence divergence convergence Case 1 (𝟓, 𝟓, 𝟓)𝑻 1δ =  convergence convergence convergence Case 1 (𝟏𝟎, 𝟏𝟎, 𝟏𝟎)𝑻 1δ =  convergence divergence divergence Case 1 (𝟏, 𝟑, 𝟑)𝑻 1δ =  convergence divergence divergence Case 2 (𝟎. 𝟔, 𝟑, 𝟑)𝑻 1δ =  convergence convergence convergence Case 2 (𝟑, 𝟑, 𝟑)𝑻 1δ =  convergence divergence divergence Case 2 (𝟏, 𝟑, 𝟑)𝑻 1δ =  convergence divergence convergence Case 3 (𝟎. 𝟔, 𝟑, 𝟑)𝑻 1δ =  convergence convergence convergence Case 3 (𝟑, 𝟑, 𝟑)𝑻 1δ =  convergence divergence divergence Case 3 

(3) Example 3 [13] 
Consider the following limit state equation of the standard normal space: 

𝑮(𝒙) = 𝟏𝟐  𝒌𝒊𝒙𝒊𝟐 + 𝜷 − 𝜽𝒙𝟓𝟒
𝒊ୀ𝟏  (41)

Take the target reliability index as 𝜷𝜯 = 𝟐. 𝟎 , and the parameter 𝒌𝒊  takes the 
value 𝒌𝒊 = 𝟎. 𝟖 − 𝟎. 𝟐(𝐢 − 𝟏), 𝐢 = 𝟏, 𝟐, 𝟑, 𝟒. The initial iteration value of the design parame-
ters 𝜽𝟎 = 𝟎. 𝟏𝟓. The iterative process of the design parameters is shown in Figure 7. It can 
be seen from the analysis in Figure 7 that after five iterations, the design variables finally 
converge to 1.0000, when the iteration value of the reliability index was 2.0. In Ref. [13], in 
order to verify the correctness of the calculation results, the reliability index calculated by 
the reliability FORM method is 𝜷𝟏 = 2.00001, which is consistent with the target reliability 
index. 
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Figure 7. Iterative process of solving design variables. 

(4) Example 4 [13] 
Consider the following limit state equation: 𝐺(𝑥) = 𝑒𝑥𝑝[0.4(𝑥ଵ + 2) + 6.2] − 𝑒𝑥𝑝[0.3𝑥ଶ + 𝑥ଷ] − 200 (42)

In Formula (42), x1 and x2 are the standard normal distribution variables. Take x3 as 
the design variable and assume that it follows a normal distribution, the coefficient of 
variation is 0.1, and the mean is unknown. The given target reliability index is 𝛽 = 2.5. 
Take the initial iteration value of the design parameter 𝜇௫య = 4, and the specific iteration 
process is shown in Figure 8. 

0 2 4 6 8 10

4.0

4.2

4.4

4.6

4.8

5.0

5.2

μ x
3

Iterative number  
Figure 8. Iterative process of solving design parameters. 

It can be seen from the analysis in Figure 8 that after five iterations, the design varia-
bles finally converged to 4.82284, when the iteration value of the reliability index was 2.5. 
In Ref. [13], in order to verify the correctness of the calculation results, the reliability index 
calculated by the reliability FORM method is 𝛽  = 2.50001, which is consistent with the 
target reliability index. 
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6. Applications  
6.1. Frame Structure 

This example is used to illustrate the application of the algorithm proposed in this 
paper to the implicit limit state equation of a single parameter. Taking a single-layer frame 
as an example, the structure is a linear frame structure of one story and one bay, which 
are shown in Figure 9. The cross-sectional area Ai and horizontal force P of each member 
are taken as random variables, and their statistical characteristics are as follows: A1 and A2 

are lognormal distributions, the mean values are 0.36 m2 and 0.18 m2, respectively, and 
the coefficient of variation is 0.1; P is a Gumbel distribution and the mean value and coef-
ficient of variation are 20 kN and 0.25, respectively [35]. The section moment of inertia of 
each member is 𝑰𝒊 = 𝜶𝒊𝑨𝒊𝟐 (i = 1, 2, 𝜶𝟏 = 0.08333, 𝜶𝟐 = 0.16670). The elastic model is used 
as a deterministic parameter, and its value is E = 2.0 × 106 kN/m2. 

 
Figure 9. Frame structure. 

In the calculation example in this paper, the horizontal displacement of node 3 can 
be expressed as: 𝑢ଷ = 𝑓(𝐴ଵ, 𝐴ଶ, 𝑃) (43)

The limit state equation of the frame structure can be expressed as: 𝐺(𝐴ଵ, 𝐴ଶ, 𝑃) = 𝜃 − 𝑢ଷ (44)

In order to determine the maximum allowable displacement 𝜃 of node 3, it can be 
used as a design parameter, and the corresponding target reliability index is taken as 𝛽 = 2.831 (the failure probability is 𝑃 = 2.322 × 10ିଷ). Reference [35], using a Monte 
Carlo simulation 2000 times, finds that the maximum allowable horizontal displacement 
of node 3 is 10 mm. 

Take the initial iteration value of the design parameters 𝜃 = 15, and take the conver-
gence error as 0.0001. For the sake of simplicity, the calculation of the partial derivative of 
the limit state function to the random variable can be determined by the finite difference 
method and the deterministic calculation method. The calculation results of the design 
parameters are shown in Table 2, and the specific iterative process is shown in Figure 10. 
It can be seen from the analysis of Table 2 that the analysis results of the maximum allow-
able displacement calculation of node 3, using the inverse reliability analysis method rec-
ommended in this paper, are accurate and reliable, and can meet the requirements of en-
gineering applications. 

Table 2. Comparison of calculation results of maximum horizontal displacement of node 3. 

Variable Calculated Value Actual Value Relative Error 
θ (mm) 9.9997 10.0000 0.003% 
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Figure 10. Iterative process of the maximum allowable horizontal displacement of node 3. 

6.2. Bamboo Bridge 
This application originates from the civil engineering field of bamboo bridge con-

struction using symmetry beam structures, and is used to illustrate the application of the 
algorithm proposed in this paper to the identification of multiple parameters. The purpose 
is to design a simple support beam made of bamboo with the dimensions of a rectangular 
cross-section, with a width b and a height h (Figure 11). Both dimensions are treated as 
random variables with 5% variation. The mean value of b and h are the design parameter 
in the inverse reliability problem. The design is fully implemented in accordance with the 
technical specifications for engineered bamboo structures [36]. The ultimate limit state 
and the serviceability limit state were taken into account. The limit state functions are 
described by the following limit state functions G1 and G2: 𝐺ଵ = 𝑀ோ − 𝑀ா (45)𝐺ଶ = 𝑢୪୧୫, − 𝑢୬ୣ୲, (46)

 
Figure 11. Scheme of a simply supported beam for a bamboo bridge with a rectangular cross-sec-
tion. 

where 𝑀ோ is the resistive bending moment, 𝑀ா is the bending moment of load action, 𝑢୪୧୫, is the final limit deflection, and 𝑢୬ୣ୲, is the final deflection caused by the load. 
The bending moments 𝑀ோ and 𝑀ா are calculated as:  𝑀ோ = 𝜃ா 16 𝑏ℎ2 𝑘ௗ𝑓 (47)

𝑀ா = 𝜃ா 18 (𝑔 + 𝑞)𝑙2  (48)

where b and h are the width and height of the rectangular section, and l is the length of 
the beam. 𝑓 is the flexural strength, and 𝑘ௗ is the correction factor, taking into ac-
count the impact on the strength parameters of the load duration and the moisture content 
in the structure. 𝑔  is the permanent load, 𝑞  is variable load, and 𝜃ோ and 𝜃ா  are the 
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model uncertainties of the effect of resistance and load action. The deflection in the second 
limit state function G2 are calculated as follows: 𝑢୪୧୫, = 𝑙250 (49)𝑢୬ୣ୲, = 𝜃ா(𝑢ଵ, + 𝑢ଶ,) (50)𝑢ଵ, = 5384 𝑔𝑙4𝐸 𝑙12 𝑏ℎ3 (1 + 𝑘ଵ,ௗ) (51)

𝑢ଶ, = 5384 𝑔𝑙4𝐸 𝑙12 𝑏ℎ3 (1 + 𝑘ଶ,ௗ) (52)

where 𝑢ଵ, and 𝑢ଶ, are the final deflection caused by the permanent load and variable 
load, E is the elastic coefficient of bamboo, 𝑘ଵ,ௗ is a factor that takes into account the 
increase in deflection over time due to the combined action of creep and moisture, belong-
ing to the permanent load, and 𝑘ଶ,ௗ is the same factor, but for the variable load. Table 3 
summarizes all the random variables and their randomization. The values of the material 
parameters correspond to the bamboo bridge. 

Table 3. Random variables and design parameters. 

Variable Distribution Mean Std COV 
l (m) Normal 4 0.2 0.05 
b (m) Normal ? - 0.05 
h (m) Normal ? - 0.05 

E(Gpa) Lognormal 9.5 0.95 0.1 
fm(Mpa) Lognormal 30 6 0.2 
g(kN/m) Gumbel max EV 1 1.49 0.149 0.1 
q(kN/m) Gumbel max EV 2 2.3 0.575 0.25 𝜃ோ Lognormal (2 par) 0.9 0.09 0.10 𝜃ா Lognormal (2 par) 1.1 0.11 0.10 

We use the FORM to carry out the reliability analysis method. The starting values are 
means, and the tolerance is convergent 10−4. For calculating the design parameters of b and 
h, the design parameters, regarded as random variables with rectangular distributions, 
are shown in Table 3. The obtained design parameter values are given in Table 4. To check 
their accuracy, these values were used in Equations (47)–(52), and the reliability indices 
were calculated, as shown in Table 5. For comparison with the target reliability indices, 
we choose from a set of available dimensions. In our example, the resulting width and 
height will be b = 150 mm and h = 250 mm, which gives the final reliability indices 

1,fin 4.981β =  and 2,fin 2.879β = . 

Table 4. The iterative process of identifying design parameters. 

Iterative Times b h 
1 0.50000 0.80000 
2 0.44157 0.73892 
3 0.42198 0.56701 
4 0.33634 0.43782 
5 0.31029 0.34619 
6 0.25678 0.23921 
7 0.20766 0.23887 
8 0.16781 0.23562 
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9 0.14291 0.23445 
10 0.14272 0.23169 
11 0.14266 0.23168 

Table 5. Resulting values of design parameters and reliability indices. 

Mean (b) Mean (h) 1β ( 1,targetβ ) 2β ( 2,targetβ ) 

0.14266 0.23168 4.6999 (4.7) 2.5001 (2.5) 

7. Conclusions 
Using the forward and inverse problems in reliability theory, this paper constructs a 

dual mapping method for reliability analysis problems, and transforms the reliability in-
verse problem into a mapping function problem, translating reliability indicators to de-
sign parameters. The following conclusions are obtained: 
(1) The reliability inverse analysis problem is transformed into the problem of solving the 

nonlinear equation system for identifying the design parameters. Through the itera-
tion of the design parameters, the target reliability index is gradually approached, 
and the design parameters are obtained while meeting the requirements of the target 
reliability index. There is no need to additionally verify the accuracy of the calcula-
tion results. The proposed inverse reliability analysis method can solve following 
problems: deterministic parameters, single random parameters, and multiple ran-
dom parameters, and the limit state function can be either explicit or implicit. 

(2) In order to solve complex problems and high-dimensional parameters, the Levenberg–
Marquardt method is introduced to avoid the sensitivity of the initial value and the 
divergence of the iterative process. In order to solve the problem of the implicit limit 
state function, the method of interactive operation between the finite element ANSYS 
and MATLAB interfaces is introduced, and the finite difference method is used to 
replace the partial derivative of the structural response to the variables in the process 
of solving the design parameters. 

(3) Several numerical examples are used to verify the accuracy of the method proposed in 
this paper. Compared with other methods, the design parameters are obtained and 
the target reliability index requirements are met. Two engineering examples are used 
to illustrate the applicability of the method proposed in this paper, which provides a 
good reference for solving the design problems of civil engineering structures based 
on inverse reliability theory. 
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