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Abstract: Outlier detection aims to identify rare, minority objects in a dataset that are significantly
different from the majority. When a minority group (defined by sensitive attributes, such as gender,
race, age, etc.) does not represent the target group for outlier detection, outlier detection methods
are likely to propagate statistical biases in the data and generate unfair results. Our work focuses on
studying the fairness of outlier detection. We characterize the properties of fair outlier detection and
propose an appropriate outlier detection method that combines adversarial representation learning
and the LOF algorithm (AFLOF). Unlike the FairLOF method that adds fairness constraints to the
LOF algorithm, AFLOF uses adversarial networks to learn the optimal representation of the original
data while hiding the sensitive attribute in the data. We introduce a dynamic weighting module that
assigns lower weight values to data objects with higher local outlier factors to eliminate the influence
of outliers on representation learning. Lastly, we conduct comparative experiments on six publicly
available datasets. The results demonstrate that compared to the density-based LOF method and
the recently proposed FairLOF method, our proposed AFLOF method has a significant advantage in
both the outlier detection performance and fairness.

Keywords: fair outlier detection; algorithmic fairness; adversarially fair representation learning; local
outlier factors; symmetric structure

1. Introduction

With the development of machine learning technology, more and more decision-
making problems have been replaced by algorithms. Machine learning is a data-driven
approach to automated decision-making that has a high potential to introduce or even
perpetuate discriminatory issues already present in the data [1]. Existing research results
suggest that algorithms trained using unbalanced datasets may reflect or even reinforce
the social biases present in the data, such as the bias of facial analysis algorithms against
skin color [2], Word2Vec algorithms against gender [3], and advertising recommendation
systems against gender [4]. Research work in fairness machine learning aims to eliminate
potential discrimination of algorithms. In recent years, most work in fairness machine
learning has focused on supervised learning, especially on classification problems [5,6].
The latest research work has also been on fairness research in unsupervised directions, such
as clustering algorithm [7] and recommendation systems [8].

The primary task of eliminating prejudice and realizing algorithmic fairness is to
define the concept of fairness. The definitions of fairness are broadly classified as follows:
individual fairness [9] (similar individuals have the same treatment); group fairness [10]
(treatment of different groups equally); subgroup fairness [11] (combination of individual
and group fairness according to fairness constraints); counterfactual fairness [12] (comple-
mentary to group equity, based on causality). Unbalanced datasets and biased algorithms
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are the main reasons that affect the fairness of machine learning, and achieving fairness con-
straints from the algorithm level is the key to achieving fairness. The latest developments in
algorithm fairness mainly focus on fair representation learning and adversarial techniques.
Just representation learning generates intermediate representations of original data and
deletes sensitive attribute information in the data while retaining task-related informa-
tion [13]. The adversarial network joint training was first proposed by Goodfellow [14].
According to the characteristics of the GAN network, Zhang [15] and Madras [16] proposed
fair representation models that eliminate discrimination through adversarial learning.

Despite the rapid development of fairness research in machine learning, relatively
little research on fairness has been done in the field of outlier detection. Outlier detection is
widely used in critical areas such as fraud detection, intrusion detection, public safety, and
medical supervision. The nature of the task and the applied scenarios dictate the necessity
to introduce fairness into outlier detection. For example, in credit risk assessment, people
determined to be anomalous by outlier detection systems will have their bank accounts
frozen; those classified as abnormal will be detained or imprisoned in crime detection
work. To a certain extent, being misclassified as an anomaly can be detrimental to both
the individual and the organization. Suppose the outlier detection model cannot correctly
distinguish between social minorities (defined by sensitive attributes, such as gender, race,
etc.) and statistical minorities (outliers). In that case, more members of social minorities will
be incorrectly labeled as outliers, which will further strengthen stereotypes in human society
and even cause social conflicts. Therefore, it is crucial to ensure that sensitive attributes do
not influence outlier detection. However, the fairness of outlier detection has not received
any attention until 2020, and so far, there has not been a comprehensive solution.

Fair Outlier detection methods usually aim at group fairness. Davidson [17] discussed
fairness in outlier detection algorithms and proposed a framework based on combinatorial
optimization problems for detecting fairness in outlier detection methods. The FairLOF
algorithm proposed by Deepak and Abraham [18] in 2020 introduced the concept of
fairness into the outlier detection method for the first time. It improved the fairness
of the density-based LOF algorithm through three heuristic principles. However, the
FairLOF algorithm mainly acts on the original feature space, and the redundant attribute
information in the data will affect outlier detection. In addition, the FairLOF algorithm
uses the principle of statistical parity [19] to perform fairness processing on its detection
results, but only Considering statistical parity does not guarantee fairness or even weakens
outlier detection performance [20]. Aiming at the insufficiency of the FairLOF algorithm in
outlier detection performance and fairness, this paper proposes an outlier detection method
based on adversarial fair representation learning. Our approach uses the symmetric model
structure, and it hides sensitive attributes in the data through confrontational training and
improves fairness while ensuring the effectiveness of outlier detection. We generalize our
contributions in this paper as follows:

• We discuss the fairness of outlier detection and characteristic the four properties of
fair outlier detection. Further, we propose three metrics for measuring the fairness
of outlier detection from three different perspectives (statistical parity, equality of
opportunity, and conditional use accuracy equality).

• We combine the density-based LOF method with fair representation learning to op-
timize the effectiveness and group fairness of outlier detection by learning fairness
representations of the original data through adversarial training.

• We use local outlier factors to represent the outlier scores of data and assign lower
weight values to data with higher outlier scores by adjusting the dynamic weights to
mitigate the impact of outliers on representation learning.

• We conduct several experiments on six public datasets from different real-world do-
mains. The results demonstrate the significant advantages of our proposed AFLOF
method over the LOF method and the FairLOF method in terms of fairness
and performance.
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2. Materials and Methods
2.1. Datasets

Our experiments use the public datasets commonly used in algorithmic fairness
research from six different fields in the real world. Table 1 lists the primary characteristics of
each dataset. To make the experiments more illustrative, we will appropriately downsample
some groups in the dataset and keep the percentage of outlier points in each sensitive
attribute subgroup at 5%. Next, we will introduce each dataset in detail.

Table 1. Characteristics of six datasets.

Dataset Size Number of
Attributes

Sentitive
Attribute Outlier Definition

Weight 1500 17 gender insufficient weight
Drug 1190 32 gender used within last week
Crime 4000 23 gender multiple crimes within two years
Credit 6000 25 age delinquent

Student 630 33 gender final score less than 7
Adult 9400 15 race income more than 50 K

Weight [21]. This dataset records individuals’ dietary habits and physical conditions
in Mexico, Peru, and Colombia. Overall, 77% of the data is generated using a combination
of Weka tools and SMOTE filters, and 23% is collected directly from users through a web-
based platform. Gender is a sensitive attribute of this dataset, where the ratio of males to
females is 2:1.

Drug [22]. This dataset records the interviewee’s drug use, including attributes such
as gender, education level, and drug use. The sensitive attribute is gender, where the ratio
of males to females is 3:1.

Crime [23]. This dataset is the data evaluated by Florida using the COMPAS risk
assessment tool, including information such as gender, number of crimes, and arrest status.
The sensitive attribute is gender, where the ratio of males to females is 4:1.

Credit [24]. This dataset belongs to the financial domain, and the research object is
credit card customers in Taiwan. It records the payment status, credit data, historical bills,
and other records of credit card customers. The sensitive attribute is age, and the ratio of
people over 25 years old and under 25 years old is 5:1.

Student [25]. This dataset is close to the student performance of two Portuguese
schools, including information such as name, gender, grades, family status, and social
status. The sensitive attribute is gender, where the ratio of females to males is 6:1.

Adult [26]. This dataset is extracted from the 1994 Census database and records
individual income levels and education, occupation, household, etc. Race (White, Black,
Asian-Pac-Islander, Amer-Indian-Eskimo, Other) is a sensitive attribute in this dataset, and
the number of sensitive subgroups is in the ratio of 30:10:5:1:1.

2.2. Preliminary
2.2.1. Notion of Fair Outlier Detection

Given a dataset of size N, the task of outlier detection is to find a small fraction of data
points from dataset X = {xi}N

i=1 that are considered to be anomalous. Each data point xi

is associated with a sensitive attribute S = {si}N
i=1, si ∈ R where R = {ri}M

i=1 represents
the sensitive attribute subgroup. We denote the dataset processed by the feature extractor
as D = {di}N

i=1 and use it as the input of the LOF algorithm. The local outlier factors
L = {li}N

i=1 obtained by the LOF algorithm will be used to represent the outlier scores
of the data. Further, we denote L = {li}N

i=1Y = {yi}N
i=1, yi ∈ {0, 1} as the true labels of

the data and represent the detector-assigned labels to the data as O = {oi}N
i=1, oi ∈ {0, 1}.

Table 2 lists the frequently used symbols and related descriptions in the paper.
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Table 2. Symbols and descriptions.

Symbols Descriptions

N size of the dataset
M number of the sensitive attribute categories
X original dataset
D dataset processed by the feature extractor
S sensitive attribute
R categories of the sensitive attribute
L local outlier factors
Y true labels of the data
O detector-assigned labels to the data

The purpose of unsupervised fair outlier detection is to ensure the fairness of the detec-
tion results while maintaining the detection performance. Having presented the problem
setup and symbols, we characterize the properties of fair outlier detection intending to
achieve group fairness as follows:

1. Effective detection. The primary task of outlier detection methods is to ensure de-
tection performance. It makes sense to consider fairness only if the outlier detection
methods can accurately and efficiently identify outliers. The fair outlier detection
model needs to meet the following condition (see Equation (1)) to ensure effectiveness.

P(Y = 1 | O = 1) > P(Y = 1) (1)

2. Statistical parity [19]. Statistical parity means that outlier detection is independent of
sensitive attributes; that is, outlier detection performance among sensitive attribute
subgroups should be consistent. The fair outlier detection model needs to meet the
following condition (see Equation (2)) to ensure statistical parity.

P(O = 1 | S = ri) = P
(
O = 1 | S = rj

)
, ∀ri, rj ∈ R (2)

3. Equality of opportunity [20]. Equality of opportunity requires fairness in the target
group. In outlier detection, equal opportunity means that outliers should be given
higher scores and flagged regardless of the sensitive genus subgroup they belong
to. The fair outlier detection model needs to meet the following condition (see
Equation (3)) to ensure equality of opportunity.

P(O = 1 | Y = 1, S = ri) = P
(
O = 1 | Y = 1, S = rj

)
, ∀i, j ∈ [1, M] (3)

4. Conditional use accuracy equality [27]. In outlier detection, conditional use accuracy
equality implies that the probability of true positive and true negative rates among
sensitive attribute subgroups should be the same. The fair outlier detection model
needs to meet the following condition (see Equation (4)) to ensure conditional use
accuracy equality.

P(Y = 1 | O = 1, S = ri) = P
(
Y = 1 | O = 1, S = rj

)
, ∀i, j ∈ [1, M] (4)

2.2.2. Evaluation Metrics

Table 3 lists the confusion matrix of outlier detection. According to the above problem
definition of fairness outlier detection, we will evaluate the model from the following two
aspects: outlier detection performance and fairness performance.
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Table 3. Confusion matrix.

Predicted LabelTrue Label Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

• Outlier detection performance. The Receiver Operating Characteristic Curve (ROC) is
used to measure the classification performance [28]. The x-axis of the ROC curve is
the false positive rate (TP/(TP + FN)), and the y-axis is the true positive rate (FP/(FP
+ TN)). Area Under Receiver Operating Characteristic Curve (AUC) is the area under
the ROC curve, where a higher value means better outlier detection performance.
AUC represents the diagnostic ability of outlier detection at each scoring threshold.
Therefore, we will use the AUC score to measure the outlier detection performance.
AUC is defined as follows (see Equation (5)).

AUC =
1
2

n

∑
i=1

(x−axisi+1 − x−axisi)× (y−axisi+1 + y−axisi) (5)

• Fairness performance.

1. We will measure whether the outlier detection algorithm achieves statistical
parity by comparing the difference in detection effectiveness on each sensitive
attribute subgroup. Specifically, we calculate the AUC score for every sensitive
attribute subgroup and assign Fair Statistical Parity (FSP) with the value of the
most significant gap among AUC scores. We represent the number of sensitive
attribute subgroups as M and denote FSP as follows (see Equation (6)).

FSP = max
(
AUCi −AUCj

)
, i, j ∈ M (6)

2. We will measure the equality of opportunity of the outlier detection methods
by comparing the distribution of sensitive attribute subgroups over the outlier
candidates and the entire dataset. We use P to represent the sensitive attribute
subgroup distribution in the dataset and Q to describe the distribution of sensi-
tive attribute subgroup in the top 5% outlier candidates. To be specific, we sort
the data in descending order by local outlier factors and use relative entropy
(also known as Kullback Leibler (KL) divergence) to calculate the difference
between P and Q. Then, we assign Fair Equality of Opportunity the most ap-
parent distribution difference value. The definition of FEO is as follows (see
Equation (7)).

FEO = max(KL(Qm‖Pm)), m ∈ M (7)

3. The Matthews Correlation Coefficient (MCC) [29] is a metric used to measure
binary classification performance, considering true positive, true negative, false
positive, and false negative. MCC applies to unbalanced datasets and is one of
the most appropriate evaluation metrics when considering the misclassification
of detection results [30]. We will measure whether the algorithm achieves the
conditional use accuracy equality by comparing MCC scores among sensitive
attribute subgroups. To be specific, we calculate the MCC score for every sensitive
attribute subgroup and assign Fair Matthews Correlation Coefficient (FMCC)
with the value of the most significant gap among MCC scores. We denote FMCC
as follows (see Equation (8)).

FMCC = max
(∣∣MCCi −MCCj

∣∣), i, j ∈ M (8)
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The MCC is calculated based on the confusion matrix, which is calculated as
follows (see Equation (9)).

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

FSP, FEO, and FMCC provide a more comprehensive measure of the fairness per-
formance of outlier detection algorithms from three different perspectives. All three
metrics are negative measurements, where a smaller value suggests higher fairness.

2.3. Methods
2.3.1. Model Overview

In this study, the model has three main modules: a feature extractor, a sensitive at-
tribute discriminator, and an outlier detector, where the feature extractor is an autoencoder
(AE) structure. We visualize the architecture of our proposed AFLOF method in Figure 1.
The model’s input is a dataset containing sensitive attributes, and the output is outlier
scores of the data object. The training process of the model consists of three parts: mini-
mizing the reconstruction loss to train the feature extractor, maximizing the classification
loss to train the discriminator, and guiding subsequent iterative learning by dynamically
adjusting weight factors based on outlier scores. The rest of the section will detail the
model’s main components and training methods.

Figure 1. Architecture of the fair outlier detection method.

2.3.2. The Feature Extractor and the Sensitive Attribute Discriminator

The feature extractor and the sensitive attribute discriminator are deep learning arti-
facts in the overall model, where there is symmetry between the encoder and the decoder
in the extractor. The function of the feature extractor is to extract features from native
data and remove redundant information, thus improving the identification effects of the
outlier detector. The sensitive attribute discriminator distinguishes whether the features
extracted by the feature extractor contain sensitive attributes. Since the outlier detector
is not a deep learning component, fairness factors should be incorporated in the feature
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extraction stage to make the results of outlier detection fairer; that is, the extracted features
should not contain sensitive attributes that may lead to unfairness as far as possible. Thus,
in the process of model optimization, we will minimize the reconstruction loss to train
the feature extractor and maximize the classification loss to train the discriminator. The
adversarial training between the extractor and discriminator hides the sensitive attribute
of the data in the feature space and ensures the fairness of outlier detection. In addition,
to achieve adversarial training between the feature extractor and the sensitive attribute
discriminator, we introduce a gradient reversal layer [31]. It acts as an identity transform
in the forward propagation and inverts the gradient direction automatically during the
backward propagation to update the parameters.

2.3.3. The Outlier Detector

Due to the LOF algorithm can quantify the degree of abnormality for each data object
without knowing the distribution of the dataset, we choose it as the outlier detector of our
model. Our fair outlier detection model aims to improve the detection performance and
fairness of the LOF algorithm. The LOF algorithm is the basis of the fair outlier detection
algorithm proposed in this paper, which identifies outliers by comparing the density of
each data with its neighbors and assigns each data object a local outlier factor characterizing
its degree of outliers. We will use local outlier factors as outlier scores of the data object.
The computational process of the LOF algorithm is divided into four stages to obtain the
local outlier factors of the data step by step.

1. K-distance. Let d(xi, p) be the distance between xi and p. Nk(xi) represents the set of
k nearest neighbors of xi. For any data object xi ∈ X, the kdistance of xi is defined as
the furthest distance from p ∈ Nk(xi) to xi. The kdistance of a data object xi is defined
as follows (see Equation (10)).

kdistance(xi) = max{d(xi, p) | p ∈ Nk(xi)} (10)

2. Reachability Distance. If a data object xi is within the k neighborhood of p, the
reachability distance between xi and p is the kdistance of p; otherwise, the reachability
distance between xi and p is the real distance of x and p. The reachability distance of
a data object xi is defined as follows (see Equation (11)).

reach distance (xi, p) = max{kdistance (p), d(xi, p)} (11)

3. Local Reachability Density. For any data object xi ∈ X, the local reachability density
is the inverse of the average reachability distance from all data within the k neighbor-
hood of xi to xi. The lower the local reachability density, the more likely it is to be
an outlier. The local reachability density of a data object xi is defined as follows (see
Equation (12)).

lrd(xi) = 1/

(
∑p∈Nk(xi)

reach distance (xi, p)
|Nk(xi)|

)
(12)

4. Local Outlier Factor. The local outlier factor is the average ratio of the local reachability
density of all data in the k neighborhood of xi to the local reachability density of xi,
which indicates the degree of outliers of the data object xi. The larger the value, the
more likely it is to be an outlier. The local outlier factor of a data object xi is defined as
follows (see Equation (13)).

lof(xi) =

(
∑p∈Nk(xi)

lrd(p)
|Nk(xi)|

)
/ lrd(xi) (13)
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2.3.4. Dynamic Weights

To ensure the effectiveness of outlier detection in adversarially fair representation
learning. We introduce the dynamic weights to our model. We use local outlier factors
obtained by the LOF algorithm to represent the outlier scores of data objects in the feature
space. We decrease the negative influences of outliers on representation learning by
dynamically adjusting the weights after each iteration. Specifically, we assign higher
weights to data objects with lower outlier scores and lower weights to data objects with
higher outlier scores. We further emphasize outliers through lower weight values, which
mitigate the influence of outliers on feature representation learning and enhance the fair
representation of outliers in adversarial representation learning. To calculate the weights,
we will use the softmax function to normalize the local outlier factor of each data. We
represent the local outlier factor of a data object xi as li, the specific calculation of the
dynamic weights is as follows (see Equation (14)).

wi =
e−li

∑N
j e−lj

(14)

2.3.5. Adversarially Fair Representation Learning

The key to traditional adversarial learning is to distinguish whether an image is a
fake image generated by a generator. This study aims to distinguish whether the extracted
features contain sensitive attributes that may lead to unfair results. Our proposed AFLOF
method aims to obtain a fair representation for describing the data by adversarial learning.
A fair representation is obtained when the data after representation learning is independent
of sensitive attributes. We represent the encoder, sensitive attribute discriminator, and
decoder as h, d, and g. Specifically, h is used to map the original data X into a feature
space, denoted as h : X → D. d is used to identify the sensitive attribute classes of the
data after feature extraction, denoted as d : D → S. g is used to reconstruct the sample
data in the feature space, denoted as g : D → X̄. According to the above components, we
set the training goal for outlier detection based on adversarial fair representation learning
as the following two loss functions: reconstruction loss function Lr and classification loss
function La.

Our model instantiates an autoencoder, which consists of two parts: encoder, denoted
as f = h(X), and decoder, denoted as f = g(h(X)). The encoder maps the original data to
a feature space, and the decoder reconstructs the data objects in the feature space. The data
reconstructed by the decoder is different from the original data. Therefore, we set a loss
function to measure the reconstruction loss of the decoder and then adjust the parameters
by backpropagation of the loss until convergence, to minimize the reconstruction error. We
use the loss function of the L2 norm, also known as mean square error, as the reconstruction
loss function. The principle of the L2 norm is to apply a penalty to the loss function in the
optimization phase, making the representation more sparse and preventing the overfitting
problem. In particular, we weighted the encoder representation to reduce the impact of
outliers on the update of the feature extractor parameters. The expression of Lr is shown
below (see Equation (15)).

Lr =
N

∑
i=1

wi × (xi − g(h(xi)))
2 (15)

The goal of the model is to learn a fair representation of the original data. For this
purpose, we use a sensitive attribute discriminator, which serves to identify the sensitive
attribute categories of the data in the feature space. Specifically, we use the cross-entropy
loss function as the loss function of the sensitive attribute discriminator. The function is
used to evaluate the gap between the sensitive attribute categories of the data predicted
by the sensitive attribute discriminator and their actual sensitive attribute categories. We
perform a weighted representation for the sensitive attribute discriminator to enhance the
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fair representation of outliers by adversarial representation learning. The classification loss
function is shown below (see Equation (16)).

La =
N

∑
i=1

wi ×
(

si × log
(

1
d(h(xi))

))
(16)

Our AFLOF model employs an adversarial network with a minimum–maximum
strategy to improve fairness while ensuring the effect of outlier detection. We apply
different training strategies to the encoder and the sensitive attribute discriminator in the
model training stage. We realize the fair representation learning of the model by minimizing
the reconstruction loss of the encoder and maximizing the classification loss of the sensitive
attribute discriminator. In summary, we address the overall objective function of the model
as follows (see Equation (17)):

minh,gmaxdEX,S[L(h, g, d)] (17)

The combined objective function expressed as L(h, g, d) = αLr + βLa. The hyperpa-
rameters α and β are used to balance the performance and fairness of outlier detection. We
show the processing of the AFLOF algorithm using pseudo-code, as shown in Algorithm 1.

Algorithm 1 AFLOF

Input: X: dataset, S: sensitive attribute, T: training epochs, h: encoder, d: discriminator, g:
decoder.

Output: L: oulier scores
1: Initialize parameters for h,d and g;
2: Train the encoder network h and discriminator d via minimizing Lr in Equation (15)

and maximizing La in Equation (16) for E epochs.
3: for epoch from 1 to E do
4: Calculate the local outlier factor L of each data object by Equation (13);
5: Calculate the dynamic weight W of each data object by Equation (14);
6: Calculate the reconstruction loss Lr of the feature extractor;
7: Calculate the classification loss La of the sensitive attribute discriminator;
8: Back-propagate the loss;
9: update h,d and g;

10: end for
11: return oulier scores

2.4. Implementation

We implement LOF, FairLOF, and our proposed outlier detection model (AFLOF)
based on adversarially fair representation learning in PyTorch. To make the experiment
more contrastive, we set the k neighborhood size of LOF, FairLOF, and AFLOF to be
uniformly 5, following the setting in the FairLOF literature [18]. Our model uses the fully
connected network to implement the encoder, decoder, and sensitive attribute discriminator.
The dimension of feature space is 12. Specifically, the network structure of the encoder
is N-500-2000-500-12, that of the decoder is 12-2000-500-500-N, and that of the sensitive
attribute discriminator is 12-500-500-2000-M. The initial learning rate of the encoder and
decoder is 0.001, and the initial learning rate of the discriminator is 0.0001. To achieve better
training performance, we adjust the learning rate dynamically, reducing the learning rate
to the original 0.1 every 30 epochs. To speed up the training process, we set the number of
iterations to 90 and the batch size to 64 for datasets smaller than 5000, otherwise to 40 and
256, respectively. The hyperparameters α and β are set to 8 and 20. We conduct experiments
on ten random seeds and take the average of ten experimental results as the final result.
Our experiments are run in an environment where the processor is Intel(R) Xeon(R) Gold
5117 CPU @ 2.00 GHz, and the graphics card is Nvidia Tesla V100-PCIe-16GB 256 GB RAM.
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3. Results
3.1. The Unfairness of LOF Algorithm

This section will discuss the unfairness of the density-based LOF algorithm. We
explore whether the LOF algorithm can produce fair detection results in two cases. One
is the balanced dataset, where the size of sensitive attribute subgroups is consistent. And
the other is the unbalanced dataset, where the size of sensitive attribute subgroups in
the dataset is inconsistent. Specifically, we divide each dataset into two types: balanced
and unbalanced. The unbalanced data set is our original dataset. The balanced data
set is generated by reducing the number of majority groups in the original dataset and
keeping the proportion of outliers (5%) among sensitive attribute subgroups. Table 4 lists
the relevant information of the data used in the experiment and displays the size of the
two types of data and the percentage of sensitive attribute subgroups within them. We
perform outlier detection under these two datasets separately using the LOF algorithm
and measure the fairness of the LOF algorithm based on three fairness metrics (FSP, FEO,
FMCC) for outlier detection. All three metrics are negative measurements, where the
smaller value suggests the algorithm is fairer. We conducted experiments on six datasets.
Figure 2 shows the fairness performance of the LOF algorithm on two types of data in
each dataset. Observing these figures, we can see that the LOF algorithm demonstrates
significant unfairness in the outlier detection for balanced and unbalanced data.

Figure 2. The fairness performance of the LOF algorithm on balanced datasets (green bars) and
unbalanced datasets (orange bars).

Table 4. Characteristics of balanced datasets and unbalanced datasets used in the experiment.

Weight Drug Crime Credit Student Adult

Balanced 1000 (1:1) 600 (1:1) 2000 (1:1) 2000 (1:1) 180 (1:1) 1000 (1:1)
Unbalanced 1500 (1:2) 1190 (1:3) 4000 (1:4) 6000 (1:5) 630 (1:6) 9400 (1:1:5:10:30)

FSP determines whether the LOF algorithm relies on sensitive attributes when per-
forming outlier detection by comparing the detection effectiveness on sensitive attribute
subgroups. Figure 2a shows the fairness of the outlier detection algorithm from statistical
parity perspective. We measure whether the LOF algorithm achieves statistical parity by
comparing the difference in outlier detection effectiveness between each sensitive subgroup.
From Figure 2a, we can see that in the four datasets of weight, drug, crime, and credit,
the dependence of the LOF algorithm on the sensitive attribute is more apparent in the
balanced dataset. As the gap in the number of sensitive attribute subgroups increases, the
LOF algorithm becomes increasingly dependent on the sensitive attribute and more and
more unfair when performing outlier detection on unbalanced datasets.
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FEO compares the distribution of sensitive attribute subgroups between the entire
dataset and the top 5% outlier candidates detected by the LOF algorithm. Figure 2b shows
the fairness of the outlier detection algorithm from the equality of opportunity perspective,
where equal chance in outlier detection means that outliers should be assigned higher
scores and flagged regardless of the class of sensitive attribute subgroups they belong to.
We measure whether the LOF algorithm achieves equality of opportunity by comparing
the distribution of sensitive subgroups among outlier candidates. Figure 2b indicates that
the distribution of sensitive attribute subgroups in balanced datasets varies significantly
over the entire dataset and the outlier candidates, especially in the datasets of Drug and
Weight. Specifically, the LOF algorithm shows more significant unfairness on the balanced
dataset under the metric of the equality of opportunity.

FMCC measures the fairness of the LOF algorithm by comparing the accuracy of
detection results among sensitive attribute subgroups. Figure 2c measures the fairness of
the outlier detection algorithm from the perspective of conditional use accuracy equality.
In outlier detection, we measure whether the LOF algorithm achieves conditional accuracy
equality by comparing the differences in MCC scores of the sensitive attribute subgroups.
Observing Figure 2c, we can see that the fairness performance of the LOF algorithm is
poor on both data types, especially on the unbalanced dataset, where the difference in
misclassification rates among sensitive attribute subgroups is more prominent. Comprehen-
sive analysis of the above results, we understand that it is necessary to introduce fairness
awareness into outlier detection to mitigate the unfairness of the LOF algorithm.

3.2. Evaluation

In this section, we will evaluate our proposed AFLOF method’s outlier detection
performance and fairness performance and make a comparison with LOF and FairLOF. We
evaluate the performance for all three methods on six unbalanced datasets. Figure 3 shows
the experimental results. Figure 3a shows the outlier detection performance. Note that the
AFLOF method achieves better outlier detection results with a significant improvement in
the AUC score. Figure 3b–d shows the fairness performance of outlier detection methods
from three different aspects. We can see that the AFLOF method has advantages over the
LOF method and the FairLOF method.

For outlier detection performance, AFLOF has the highest AUC scores on all datasets.
Figure 3a shows that the difference in outlier detection performance between LOF and the
FairLOF is minimal. The outlier detection performance of AFLOF is far superior to the
other two algorithms. Specifically, in the adult dataset, AFLOF improve the AUC scores by
4% compared to LOF and FairLOF. In the datasets of credit and crime, the AUC scores of
AFLOF improve by nearly 10% compared to the other two algorithms.

For fairness performance, we can see that AFLOF performs well compared to LOF
and FairLOF. Figure 3b shows the dependence of LOF, FairLOF, and AFLOF on sensitive
attributes. We see that LOF and FairLOF perform better on the drug, credit, and student
datasets. Still, AFLOF does not compare poorly with them either. Moreover, AFLOF
performs well in the three datasets of weight, crime, and adult, especially in the crime
dataset, reducing the detection effectiveness gap among sensitive attribute subgroups
by nearly double compared to the other two methods. Figure 3c shows the distribution
difference of sensitive attribute subgroups between the top 5% outlier candidates and the
whole dataset. We can see that the performance of the three methods is excellent, and
AFLOF performs better overall than LOF and FairLOF and generates a fairer subgroup
distribution. Figure 3d shows the detection accuracy differences among the three methods
for the sensitive genus subgroups. We can see that the AFLOF method achieves lower
detection accuracy differences on the four datasets of weight, crime, credit, and adult.

Analyzing the above results together, we can see that our proposed AFLOF has
apparent advantages over the LOF algorithm and the FairLOF algorithm, both in terms of
outlier detection performance and fairness.
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Figure 3. Comparison of LOF, FairLOF, and AFLOF on outlier detection performance and fairness
performance.

3.3. Ablation Study

In this section, we will evaluate the effect of various components in the design of
AFLOF. The concept of ablation research first emerged in psychology to study the impact of
partial removal of an animal’s brain on its behavior. Literature [32] first introduced ablation
research to machine learning. Ablation research is used to learn networks by removing parts
and studying their performance. Ablation studies are crucial for deep learning research
and help us explore the causal relationships between experimental methods in the simplest
way possible.

Simply put, we can think of an ablation study as a controlled variables approach,
where a control group is set up, and its effect on the final results is demonstrated by adding
or removing a module. This section will conduct an ablation study on our proposed
algorithm to make the experiment more illustrative. Our method is based on the LOF
algorithm by introducing a fair adversarial representation module and a dynamic weight
module. We will remove these two modules separately to examine their effects on the
experimental results.

Based on the AFLOF method, we get an ALOF model by removing the sensitive
attribute discriminator and a FLOF model by removing the dynamic weight module.
We conducted repeated experiments on ten random seeds. Figure 4 shows the mean and
standard deviation of the three methods on six datasets. Observing Figure 4, we can see that
AFLOF significantly outperforms ALOF and FLOF in both outlier detection performance
and fairness performance. The removal of the adversarial training and the dynamic
weighting module will impact outlier detection performance and fairness performance,
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which indicates the reasonability of AFLOF’s superior performance on both detection
effectiveness and group fairness.

Figure 4. Comparison of AFLOF, ALOF and FLOF on outlier detection performance and fairness
performance. ALOF (yellow lines) and FLOF (blue lines) is the variants of AFLOF (orange lines).

3.4. Trade-Off between Fairness Performance and Outlier Detection Performance

In this section, we will investigate the trade-off between detection performance and
fairness performance of the fair outlier detection method based on adversarial representa-
tion learning (AFLOF). The ultimate goal of achieving algorithmic fairness is to incorporate
fairness constraints to remove bias without affecting the primary task performance of the
original machine learning model. In the field of outlier detection, fair outlier detection
methods should achieve good fairness without impacting outlier detection performance
compared to ordinary outlier detection methods.

In our AFLOF model, α and β are hyperparameters used to balance the outlier detec-
tion performance and fairness performance, both of them are set to 8 and 20, respectively.
To prove the rationality of the hyperparameter settings, we will measure the detection
performance and fairness of outlier detection through the control variable method. We
conducted experiments on six datasets. The outlier detection performance metric for outlier
detection is AUC, and the fairness performance metric is FSP, which is used to evaluate the
difference in detection performance among sensitive attribute subgroups. Figure 5 shows
how the model’s detection performance and fairness performance vary with parameters.
We analyzed hyperparameters α and β. Figure 5 (above) shows the trend of AUC on the six
datasets, while α ranging from (1, 2, 4, 6, 8, 10, 15, 30) and β fixed to 20. Figure 5 (below)
shows the trend of FSP on the six datasets, while β ranging from (1, 5, 10, 15, 20, 30, 40, 50)
and α fixed to 8. As shown in Figure 5, when β = 20, the AUC scores of six datasets almost
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reach the highest value where α takes the value of 8; when α = 8, the lowest values of FSP
for all six datasets are concentrated where β takes the value of 20. In summary, the fairness
and detection performance of the model reaches the best balance point at α = 8 and β = 20.

Figure 5. The tradeoff between outlier detection performance and fairness performance.

4. Discussion

Following the previous works [16,18,33], we introduce fair representations to the LOF
algorithm and propose a fair outlier detection method (AFLOF) to tackle the fair problem in
outlier detection. In this paper, we characterize the properties of fair outlier detection and
propose three methods to measure the fairness of outlier detection methods. Subsequently,
we investigate the unfairness in the LOF algorithm and conduct empirical research on
six publicly available datasets to demonstrate the effectiveness of our AFLOF algorithm
in terms of outlier detection performance and fairness. Further, we conduct ablation
experiments to verify the effectiveness of the methods used in our model. Finally, we
explore the trade-off between outlier detection performance and fairness, and analyze the
hyperparameter settings’ rationality to balance fairness performance and outlier detection
performance.

There are three main techniques to achieve fairness: pre-processing, in-processing,
and post-processing [13]. The FairLOF [18] algorithm improves the density-based LOF
algorithm in three aspects: domain diversity, prior distribution, and attributes asymmetry.
It introduces fairness constraints into the LOF algorithm and eliminates the sensitive
attributes in the outlier detection results to a certain extent. However, FairLOF belongs
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to the post-processing method to achieve fairness technology, and one of its problems is
that it has certain limitations on both detection effect and fairness. Our proposed AFLOF
algorithm employs fair representation learning, which uses adversarial networks to learn
to represent fairness to the original data and achieves a balance between fairness and
detection accuracy in the data processing.

The reasons for the superior performance of AFLOF in outlier detection mainly come
from the following two aspects:

1. Our model eliminates redundant attribute information by mapping the original data
to a feature space, which facilitates the detection of outliers by the LOF method.

2. The outliers are further emphasized by the dynamic assignment of weights, which
mitigates the negative impact of outliers on feature representation learning and
enables the feature extractor to learn a better representation of the original data.

The reasons for the excellent performance of AFLOF in fairness performance mainly
come from the following two aspects:

1. The adversarial training between the encoder and the sensitive attribute discriminator
enables the model to learn the optimized representation of the original data while
hiding the sensitive attributes in the data.

2. The dynamic assignment of weights further emphasizes outliers and enhances the
fair representation of outliers in adversarial representation learning.

Based on the above analysis, we can see that, compared to LOF and FairLOF, our
proposed fair outlier detection method (AFLOF) improves group fairness and outlier
detection performance by adversarial fair representation learning. However, our paper is
limited to studying a single multi-valued sensitive attribute. In the future, we will consider
combining more advanced outlier detection methods to study multiple sensitive attributes
to solve the more complex fairness problem of outlier detection.
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