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Abstract: Image and video manipulation has been actively used in recent years with the development
of multimedia editing technologies. However, object-based video tampering, which adds or removes
objects within a video frame, is posing challenges because it is difficult to verify the authenticity of
videos. In this paper, we present a novel object-based frame identification network. The proposed
method uses symmetrically overlapped motion residuals to enhance the discernment of video
frames. Since the proposed motion residual features are generated on the basis of overlapped
temporal windows, temporal variations in the video sequence can be exploited in the deep neural
network. In addition, this paper introduces an asymmetric network structure for training and testing
a single basic convolutional neural network. In the training process, two networks with an identical
structure are used, each of which has a different input pair. In the testing step, two types of testing
methods corresponding to two- and three-class frame identifications are proposed. We compare the
identification accuracy of the proposed method with that of the existing methods. The experimental
results demonstrate that the proposed method generates reasonable identification results for both
two- and three-class forged frame identifications.

Keywords: object-based video tampering; frame identification; motion residual; convolutional neural
network; symmetrically overlapped motion residual; three-class identification

1. Introduction

Millions of images and videos are created and distributed through the Internet every
day. A wide range of editing tools is available even to non-professionals so that they can
easily edit videos on their computers and mobile phones. Therefore, videos are often used
after undergoing an editing process rather than being used as is. Because most of the editing
is of good quality, there may be times when the reliability of the video is questionable. When
videos used as evidence in courts or as news to report facts by the media are tampered with
for malicious purposes, the consequences often cause serious social problems or harm. For
this reason, video forgery detection has emerged as an important topic [1,2].

Earlier video tampering methods were limited to the temporal domain, referred to as
frame-based forgery, which included frame insertion, frame deletion, frame duplication,
and double-compression. In the frame insertion forgery, a set of frames is inserted in the
order of original frames. When one or more frames are deleted from a sequence of frames
in a video, it is known as frame deletion. The size of the frame-deleted video is generally
less than that of the original video. Frame duplication means copying a set of frames in a
video and pasting that into the same video. Over the years, several techniques to detect
frame-based video forgery were proposed.

Earlier, double-compression detection algorithms [3–6] were presented. However, to
tamper with a video sequence, the video should first be decompressed. After the manipula-
tion, the video is recompressed, irrespective of whether the frame has been tampered with.
Therefore, double-compression detection is performed in combination with frame insertion
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and deletion in frame-based forgery detection methods. Stamm et al. [7] proposed a tempo-
ral anti-forensic algorithm for motion compensated videos. They developed a theoretical
model of forensically detectable fingerprints and used the model to detect video frame
deletion or addition. Gironi et al. [8] introduced a frame insertion and deletion algorithm
of whole frames in digital videos using double encoding detection. This method can be
applied when different codecs are used for the first and second compressions. Yang et al. [9]
presented a two-step approach for detecting frame duplication using similarity analysis.
In the first step, the features of each frame are extracted via singular value decomposition.
In addition, the Euclidean distance is calculated between features of each frame and the
reference frame to select candidate duplication frames. In the second step, the candidate
duplications are confirmed through random block matching.

Object-based video forgery is a common tampering method by adding new objects to
a video sequence or removing existing ones. However, object-based video forgery and de-
tection have only recently attracted attention. Because this tampering method is performed
in the spatial domain of the video, it can be considered as copy-move or splicing forgery of
images. However, applying the image-based forgery detection techniques [10–12] to each
frame of the video is not appropriate because they cannot exploit the temporal information
in compressed videos.

In 2014, Richao et al. [13] proposed an object-based video manipulation detection
algorithm using statistical features of an object contour. The algorithm extracted several
statistical features, such as the moment features of detailed wavelet coefficients and the aver-
age gradient of each color channel, and inserted them into a support vector machine (SVM)
as feature vectors for classifying natural and forged objects. Tan et al. [14] presented a GOP-
based automatic detection method for object-based video forgery. This technique extracted
steganalysis features [15] from motion residuals and employed an ensemble classifier [16]
to construct a frame manipulation detector. Similar to the method in [14], Chen et al. [17]
extracted 548-dimensional image steganalysis features [18] from noise patterns based on
motion residuals of frame images and trained the features to identify object-based forged
frames using the ensemble classifier. Saddique et al. [19] exploited the chrominance value
of consecutive frame difference and discriminative robust local binary pattern to model
the inconsistency embedded in the video frames due to forgery and used SVM to detect
whether the pair of consecutive frames was forged. Sitara et al. [20] proposed a video
tampering detection method using differentiating optical camera zooming from synthetic
zooming based on pixel variance correlation and sensor pattern noise. Aloraini et al. [21]
introduced a new video tampering detection and localization approach based on sequential
and patch analyses performed by modeling video sequences as stochastic processes and as
a mixture model of normal and anomalous patches. Experimental results showed that this
approach achieves excellent detection performance with low computational complexity.

Recently, deep learning has been in the spotlight in the field of computer vision [22].
Deep learning-based methods such as CNN have attained great success in the domain
of image processing and computer vision. The reason is that deep neural networks are
capable of extracting problem-specific and complex high-dimensional features to efficiently
represent the information needed. In the field of video forensics, several studies focusing
on the convolutional neural network (CNN) have been conducted. Yao et al. [23] extracted
high-dimensional features based on high-frequency signals from motion residual features
and used CNN to determine whether the frames were tampered with. Kohli et al. [24]
proposed a spatiotemporal method using CNN to detect video tampering and to localize
the forged region in a forged frame. They employed the motion residual to train the
presented network. Yang et al. [25] proposed a spatiotemporal trident network based on
the spatial rich model and three-dimensional convolution, which provides branches and
can theoretically improve the detection and localization accuracy of tampered regions.

Motion residual was widely used as a key feature to detect object-based video
forgery [17,23–25]. For each video frame, the motion residual contains a substantial number
of the intra-frame properties of that frame as well as the inter-frame inherent properties of
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the corresponding frame. Because the motion residual contains both the intra- and inter-
frame inherent properties of the corresponding frames, it is frequently used for detecting
the object-based video forgery. However, it is often difficult to distinguish a motion induced
by tampering from the one caused by a scene change. The conventional motion residual
features cannot sufficiently distinguish between these two differences.

Most past studies [21,23,25] performed two-class identification, which classifies whether
the video frame has been tampered with, to detect object-based video forgery. In [24], an-
other two-class identification is defined by identifying whether the frame has been forged
or double-compressed. Only the method of Chen et al. [17] reported the three-class identifi-
cation results.

In this paper, we propose a novel video frame identification algorithm for object-based
video tampering detection. The main contributions of this paper are as follows.

(1) A symmetrically overlapped motion residual is proposed to enhance the discernment
of video frames. Three different motion residuals are presented on the basis of overlap-
ping temporal frames. The proposed overlapped motion residuals can reduce natural
motions while preserving motions caused by tampering. Because the overlapped
motion residuals use three different temporal windows, temporal changes in motion
residuals can be exploited in the neural network.

(2) An asymmetric CNN structure for training and testing is proposed. In the training
step, we design a single basic CNN and use it to perform two different training
processes, resulting in two trained networks with an identical structure. In the testing
process, we propose two types of testing methods corresponding to two- and three-
class frame identifications. Two-class identification determines whether a video frame
has been forged using a single trained network. In contrast, three-class identification
is also performed to classify whether a frame is pristine, double-compressed, or
tampered with by combining the two learned basic networks.

The proposed method generates reasonable identification results for both two- and
three-class forged video frame identifications.

The remainder of this paper is organized as follows. Section 2 introduces the basic
process of the object-based video forgery and detection. Section 3 presents the proposed
symmetrically overlapped motion residuals. The proposed frame identification network
structure is discussed in Section 4. In Section 5, the performance of the proposed method is
compared with that of existing methods using the experimental results. Section 6 presents
the discussion, and the conclusions are presented in Section 7.

2. Object-Based Video Forgery and Detection

Object-based video forgery refers to adding new objects to or removing existing objects
from a video frame. Figure 1 illustrates an example of the object-based video tampering
process on a sample video sequence. Figure 1a shows four consecutive frames of a pristine
video, and Figure 1b contains two tampered-with frames. The first two frames in Figure 1b
are not tampered with, and objects are removed from the last two frames. The objects
surrounded by the red ellipse in the first and second frames remain unchanged, and the
objects in the third and fourth frames have disappeared. Figure 1b presents a typical
example of video tampering by object removal.
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twice, and manipulated frames are compressed again after forgery. In this scenario, there 
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A video is defined in both spatial and temporal domains. In the spatial domain, the 

intra-frame properties are almost identical to those of a conventional image. However, 
since motion compensation is applied to the video coding, temporal information is added 
to the intra-frame. In contrast, the inter-frame properties describe the temporal character-
istics. The strong correlation between adjacent frames in a video implies that each frame 
in a local temporal window comprises two parts: the motion part and the static part [17]. 

Figure 1. Example of object-based video tampering. (a) Pristine frames. (b) Partially tampered-with
frames. The object surrounded by the red ellipse is removed from the third and fourth frames.

Because all videos are compressed for storage and transmission, they should first be
decompressed in order to tamper with or just enjoy them. When there is an intention to
tamper with the video sequence, forgery is performed on specific frames of the recom-
pressed video, and there are frames that have not been manipulated. At the end of the
tampering process, the entire video sequence is recompressed. Videos intended to be ma-
nipulated are first decompressed, and only specific frames are tampered with in most cases.
After this process, the tampered with and non-tampered with frames are recompressed
simultaneously. Video frames that are not tampered with undergo compression twice, and
manipulated frames are compressed again after forgery. In this scenario, there are three
types of frames: (1) pristine frame, (2) double-compressed frame without tampering, and
(3) tampered frame. On the basis of this scenario, there are two types of frame identification,
such as two-class identification (forged and non-forged) and three-class identification (pris-
tine, double-compressed, and forged). Figure 2 shows two types of frame identification
to detect object-based video forgery. This paper presents both two- and three-class frame
identification results using various combinations of a single CNN structure.
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3. Symmetrically Overlapped Motion Residual

A video is defined in both spatial and temporal domains. In the spatial domain, the
intra-frame properties are almost identical to those of a conventional image. However, since
motion compensation is applied to the video coding, temporal information is added to the
intra-frame. In contrast, the inter-frame properties describe the temporal characteristics.
The strong correlation between adjacent frames in a video implies that each frame in a
local temporal window comprises two parts: the motion part and the static part [17].
The static part is identical to the base frame of a local temporal window, whereas the
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motion part is the motion residual for that base frame. For each frame, the motion residual
contains many of the intra-frame properties as well as the inter-frame properties of the
corresponding frame because it represents the temporal changes from that frame to the
base frame. Because the motion residual contains both intra- and inter-frame inherent
properties of the corresponding frame, it is used as a primal feature for object analysis.
Therefore, motion residual is a commonly used feature to detect video forgery in several
studies [17,21,23,24]. In this section, we briefly review the motion residual and propose a
symmetrically overlapped motion residual to improve the frame identification performance.

3.1. Motion Residual

Let V be the decompressed video sequence defined as

V =
{

f(1), · · · , f(Q)
}

, (1)

where f(k) (k = 1, . . . , Q) is the k-th decompressed video frame and Q is the number of
frames of the video sequence. In a temporal window, a collusion operation can be defined
around a center frame f(k) with the temporal window size of L = 2l + 1, where l is the number
of the left and right neighbors of f(k). Figure 3 shows the frame structure for collusion
operation, which is performed using l frames to the left and right around the base frame
f(k). Let c(k) be the colluded result for f(k), which is defined as

c(k) = C
[
f(k−l), · · · , f(k) , · · · , f(k+l)

]
, (2)

where C is the collusion operator.
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In the video forgery detection approaches, the minimum or the median operation is
commonly used as the collusion operator. Let f (k)(i,j) and c(k)(i,j) be the pixel values of f(k)

and c(k) at the spatial location (i,j), respectively. The colluded result at the location (i,j) is

c(k)(i, j) = C
[

f (k−l)(i, j), · · · , f (k)(i, j) , · · · , f (k+l)(i, j)
]
. (3)

Figure 4 shows an example of obtaining c(k) using median collusion operation.
The motion residual image is defined as the absolute difference between f(k) and c(k)

as follows.
r(k) =

∣∣∣f(k) − c(k)
∣∣∣, (4)

where r(k) is the motion residual of the k-th frame and |·| denotes the absolute value. The
motion residual is considered a measure of the motion or temporal change in the temporal
window. Adding or removing objects from a certain frame can cause an abrupt change
in a video sequence. Because the motion residual can act as a clue in the detection of the
object-based frame tampering, it is frequently used in detecting video tampering [17,23–25].
However, a scene change in a video frame can also cause an abrupt change. Thus, it
is important to distinguish between the motion residual by a scene change and that by
tampering.
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3.2. Proposed Overlapped Motion Resiual

It is important to increase the difference between natural motion and the motion
created by object adding or removing forgery. This paper presents an overlapped motion
residual to improve the discernment of the motion residual. The proposed overlapped
motion residual has three motion residual frames, including base, left, and right motion
residuals with a temporal window size of Lp = 2lp + 1, as illustrated in Figure 5. In
conventional motion residual, l is set to 9, therefore, the size of the temporal window is
L = 2l + 1 = 2 × 9 + 1 = 19. In our method, lp is set to 5, which results in the temporal
window size of Lp = 11.
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The three colluded results, cbase
(k), cright

(k), and cleft
(k) for f(k) are defined as

cbase
(k) = C

[
f(k−lp), · · · , f(k) , · · · , f(k+lp)

]
, (5)

cright
(k) = C

[
f(k−1), · · · , f(k+lp−1) , · · · , f(k+2lp−1)

]
, (6)

cle f t
(k) = C

[
f(k−2lp+1), · · · , f(k−lp+1) , · · · , f(k+1)

]
. (7)

To obtain the proposed overlapped motion residuals, we use the median filter for the
collusion operation. In conclusion, we have three motion residuals rbase

(k), rright
(k), and rleft

(k)

corresponding to cbase
(k), cright

(k), and cleft
(k), respectively as follows.

rbase
(k) =

∣∣∣f(k) − cbase
(k)
∣∣∣, (8)

rright
(k) =

∣∣∣f(k+lh−1) − cright
(k)
∣∣∣, (9)

rle f t
(k) =

∣∣∣f(k−lh+1) − cle f t
(k)
∣∣∣. (10)
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All motion residuals include base frame f(k), and the base motion residual, rbase
(k)

contains two sub-base frames. This why the proposed method is called overlapped motion
residual.

Figure 6a presents the conventional and overlapped motion residual images for a
sample pristine frame. As shown in Figure 6a, there is no significant difference between
conventional motion residual and the overlapped motion residuals. Because the proposed
overlapped motion residual uses a smaller temporal window than the conventional motion
residual, fine background noises are shown in the overlapped motion residuals. Figure 6b
presents the forged frame by removing two objects from the pristine frame shown in
Figure 6a. The forged trace is not significantly reinforced in the conventional motion
residual image. However, the trace of object tampering appears relatively prominent in the
overlapped motion residuals. Because the motion in this example exists from left to right,
the tampering trace is clearly visible, especially at the left overlapped motion residual rleft

(k).
The fine details of background due to the small temporal window can cause a relatively
strengthening effect into the tampered-with area. Because the proposed method uses three
different temporal windows, the temporal change of the motion residual can be more
effectively reflected in the deep neural network.
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3.3. Patch Generation of Overlapped Motion Resiual

Because the video is partially tampered with, the number of pristine frames is usually
greater than that of forged frames. Therefore, there exists an imbalance between data with
different characteristics. In addition, a data augmentation technique to increase artificially
the amount of data to reduce network overfitting is needed. Yao et al. [23] introduced
an asymmetric data augmentation method to increase the amount of data in the training
process and resolved the data imbalance. In this study, we adopt the asymmetric data
augmentation method of Yao et al. to increase the amount of data and resolve imbalance.

Let the size of a single frame be M × N. The size of overlapped motion residual of one
video frame is also M × N. The motion residual image is first cropped to an m × m patch at
the left-most position, where m is calculated as

m = min(M, N). (11)
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Next, new patches are created by striding to the right until a predefined number of
patches are satisfied. Using the asymmetric data augmentation technique, the stride size t
is calculated for a given patch size p as follows.

t =
⌊

max(M, N)−min(M, N)

p

⌋
, (12)

where bc is the floor function. Different numbers of patches for the three classes to be
distinguished are used in this paper.

For an m × m patch, maximum pooling is used to reduce excessive computation time
as well as to make the network robust to variations in overlapped motion residual values.
The patch size is reduced to (m/w) × (m/w) with a maximum pooling window size of
w × w. In this study, the size of w is set to 3. A high-frequency filter is frequently exploited
to enhance a weak feature for various machine-learning applications [23,26,27]. The motion
residual patch that has undergone the maximum pooling process is passed through the
high-frequency filter with a 5 × 5 shift-invariant convolution kernel [26] before feeding to
the proposed network.

4. Proposed Frame Identification

In this paper, we propose an asymmetric network structure for training and testing. In
the training process, two training pairs, such as forged and non-forged patches, and pristine
and double-compressed patches, are fed to the same basic CNN model. The training pair
with the forged and non-forged patches is used for two-class identification in the testing
process, as shown in Figure 2a. The class of non-forged patch is divided into pristine and
double-compressed patches. Using this relationship, we can identify a three-class problem
as forged, double-compressed, and pristine in the testing process, as shown in Figure 2b.

4.1. Basic Network

Figure 7 shows a schematic of the basic CNN architecture, which is a simple and typical
CNN model in which a similar convolution layer is repeated five times. The input of this
network is three-dimensional overlapped motion residual patches after maximum pooling
and high-frequency filtering. Every convolution layer includes a batch normalization (BN),
rectified linear unit (ReLU), and average pooling (AP).

The kernel sizes of the five convolution layers are 3 × 3, 3 × 3, 3 × 3, 1 × 1, and
1 × 1. The number of kernels for convolution layers I, II, II, IV, and V is 8, 16, 32, 64,
and 128, respectively. The kernel and stride sizes of AP I are 5 × 5 and 2, respectively.
AP II has a kernel size of 15 × 15 and stride size of 1. Detailed information of the basic
network is summarized in Table 1. The overlapped motion residual patch has a size of
3 × (m/w) × (m/w). In Table 1, let m’ = m/w. Because the stride size of AP I is 2, the
patch is reduced to the size of 1/22. In AP II, the global average pooling with kernel size of
(m’×m’)/210 results in a 128 dimensional final feature vector inserted to the fully connected
network. In this paper, we use 1280 × 720 size video sequence and 3 × 3 window for the
maximum pooling. Therefore, m’ = 720/3 = 240.

Table 1. Detailed information of the basic network.

Kernel Size Number of Kernel Stride Size Feature Size after AP I

Layer I 3 × 3 8 1 8 × (m’ × m’)/22
Layer II 3 × 3 16 1 16 × (m’ × m’)/24
Layer III 3 × 3 32 1 32 × (m’ × m’)/26
Layer IV 1 × 1 64 1 64 × (m’ × m’)/28
Layer V 1 × 1 128 1 128 × (m’ × m’)/210

AP I 5 × 5 1 2 -
AP II (m’ × m’)/210 1 Global 128
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4.2. Training

A video frame can roughly be divided into two types: forged and non-forged. In this
paper, we further divided the non-forged frame into pristine and double-compressed. In
the training process, two machine learning networks are configured. The first network is
trained with forged and non-forged patches as shown in Figure 8a. The number of patches
in one forged frame is set to 9 and the number of patches in a single non-forged frame is set
to 3. Because the number of patches in the forged frame is generally smaller than that in
the non-forged frame, the number of patches in the forged frame is set to be greater than
that in the non-forged frame. Figure 8b presents the basic CNN for distinguishing pristine
and double-compressed frames. The number of patches in a single frame for pristine and
double-compressed frames is set to 3 and 5, respectively.
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The loss function for the proposed deep learning model is the cross-entropy function
for a 1-of-G coding scheme [28]. This loss function is

Loss = − 1
D

D

∑
d=1

G

∑
g=1

ωgλdg ln ydg, (13)

where D is the number of input samples, G is the number of classes, ωg is the weight for
class g, λdg is the indicator that the d-th sample belongs to the g-th class, and ydg is the
output probability for sample d for class g.

4.3. Classification

The number of patches for a frame was set differently, depending on the type of
frame in the training process. However, the type of frame cannot be known during the
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testing process. Therefore, we fix the number of patches extracted from a single frame to
3. In the proposed method, both two-class identification (forged or not) and three-class
identification (forged, double-compressed, or pristine) can be solved using the two learned
basic networks. The identification process is performed in two stages. We try to explain the
identification process using the concept of a logic circuit as shown in Figure 9.
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In Figure 9, if S3 is set to 0, the network performs two-class identification. In this
situation, basic CNN II is disabled. According to the value of OI, the input frame is classified
as forged or non-forged. The three-class identification is performed when S3 is set to 1. In
this case, if OI = 0, the network determines that the input frame has been forged, and basic
CNN II is disabled. In contrast, if OI = 1, basic CNN I determines that the input frame has
not been tampered with, and basic CNN II is enabled. Then, we can classify the input frame
as double-compressed if OII = 0, and pristine if OII = 1. Basic CNN I is always activated
(E1 = 1), and CNN II is enabled if both S3 = 1 and OII = 1 (E2 = S3·OII).

In the testing process, a single frame is sliced into three patches. The tampered-with
object usually occupies a small part of the frame. Thus, the network classifies the input
frame as forged when only one of the three patches of a single frame has been tampered
with. In basic CNN II, the majority vote for the three patches is used to determine whether
the input frame is pristine or double-compressed.

5. Experimental Results
5.1. Dataset

For object-based video-tampering identification, there are three representative datasets,
namely SYSU-OBJFORG [17], SULFA [29], and REWIND [30]. SULFA has only five videos
with a resolution of 320 × 240. REWIND is based on the SULFA dataset with the same
resolution as SULFA. The amount of data available for SULFA and REWIND is too small,
and thus they are not sufficient for deep learning approaches in training and testing.
Therefore, SULFA and REWIND are known to be insufficient in forgery detection due to the
small number of samples and low image quality. SYSU-OBJFORG comprises 100 pristine
video sequences and 100 tampered-with video sequences. Out of 100 tampered-with videos,
80 have one forged part, and the remaining 20 videos have two manipulated parts. Each
video sequence has a duration of approximately 11 s, with a resolution of 1280 × 720 and a
frame rate of 25 FPS. All videos are compressed in the H.264/MPEG-4 encoding format
with a bitrate of 3 Mbps. In the experiment, 50 pairs of pristine and tampered-with video
sequences are used for training, and the remaining 50 pairs of videos are used for testing.
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In the training step, 50 pairs of videos are divided into training and validation data. One of
the five parts is used for validation, and the remainder are used for training.

5.2. Experimental Setup

The proposed method is implemented using MATLAB R2019a and executed on a
PC environment of Intel(R) Core(TM) i5-8500 3.00 GHz CPU and NVIDIA GeForce GTX
1050 GPU. The training options of the proposed deep learning model are stochastic gradient
descent with momentum, initial learning rate of 0.001, learning rate drop factor of 0.2,
learning rate drop period of 5, and batch size of 64 for both basic CNN I and CNN II. The
training time of CNN I is 3794 min and CNN II takes 1488 min.

To evaluate the performance of the proposed method, we first define seven evalua-
tion metrics: pristine frame accuracy (PFACC), forged frame accuracy (FFACC), double-
compressed frame accuracy (DFACC), total frame accuracy (TFACC), Precision, Recall, and
F1 score. These metrics are defined as

PFACC =
# Correctly classifed pristine frames

# Pristine frames
, (14)

FFACC =
# Correctly classifed forged frames

# Forged frames
, (15)

DFACC =
# Correctly classifed double− compressed frames

# Double− compressed frames
, (16)

TFACC =
# Correctly classifed frames

# All the frames
, (17)

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

F1 score = 2× Precision× Recall
Precision + Recall

, (20)

where # represents the number of the set elements, TP is the number of true positives, FP
is the number of false positives, and FN is the number of false negatives. In this study,
imbalanced data are used in the testing process. The numbers of pristine frames, double-
compressed frames, and forged frames are 14,217, 8420, and 5790, respectively. Therefore,
we use averaged Recall and Precision.

5.3. Results
5.3.1. Two-Class Identification

Most video tampering detection methods classify video frames as forged and non-
forged. Non-forged and just double-compressed frames are considered pristine frames. In
the proposed network, two-class identification can be achieved with setting S3 = 0 as shown
in Figure 9. In this case, only basic CNN I is activated. Table 2 presents the confusion matrix
for two-class identification obtained using the proposed network. From Table 2, we can see
that both the non-forged and tampered-with frames are identified well with an accuracy of
98% or more.

Table 2. Confusion matrix for two-class forged frame identification based on the proposed method.
The number in bracket indicates the number of frames used in the testing process.

Labeled Frame

Actual Frame
Non-Forged Forged

Non-forged 98.10% (22,207) 1.90% (430)
Forged 1.93% (112) 98.07% (5678)
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We compared our method with five state-of-the-art methods by Yao et al. [23] (CNN),
Kohli et al. [24] (Temporal CNN), Aloraini et al. [31] (TF-SA), Aloraini et al. [21] (S-PA),
and Yang et al. [25] (STN). Table 3 shows six metrics for six forgery detection algorithms,
including the proposed method. CNN [23] exhibits good performance in terms of PFACC;
however, it generates low FFACC. FFACC is the most important metric in identifying video
frames because lower FFACC can cause serious problems. Therefore, the CNN method
cannot be successfully applied to video-tampering identification. STN [25] achieves the
best performance for all metrics as shown in Table 2. However, STM can only be applied to
two-class problems. The proposed method ranks in the second place for various metrics,
except PFACC.

Table 3. Six evaluation metrics for various methods. Numbers in bold indicate the highest perfor-
mance and those in italics represent the second place.

Method PFACC FFACC TFACC Precision Recall F1 Score

CNN [23] 98.45 89.90 96.79 91.05 97.31 94.07
Temporal
CNN [24] - 96.04 97.49 - - -

TF-SA [31] - - - 93.90 93.90 93.30
S-PA [21] - - - 95.51 94.44 94.97
STN [25] 99.50 98.75 99.34 98.14 98.75 98.44
Proposed 98.10 98.07 98.09 96.23 98.08 97.15

5.3.2. Three-Class Identification

The three-class identification can be achieved by setting S3 = 1 in the proposed ap-
proach as shown in Figure 9. Table 4 shows the confusion matrix for three-class identifi-
cation obtained using the proposed deep network. As illustrated in Table 4, there is no
misclassification of pristine as forged, and of forged as pristine. However, more than 5% of
double-compressed is incorrectly classified as forged. The double-compressed frames seem
to have a tendency to be identified as tampered-with frames because the discontinuity
increases because of the accumulated compression errors.

Table 4. Confusion matrix for three-class video frame identification obtained using the proposed
method. Numbers in bracket indicate the number of frames used in the testing process.

Labeled Frame

Actual Frame
Pristine Double-Compressed Forged

Pristine 99.89% (14,205) 0.11% (12) 0.00% (0)
Double-compressed 0.27% (23) 94.62% (7967) 5.11% (430)

Forged 0.00% (0) 1.93% (112) 98.07% (5678)

Only the method of Chen et al. [17] (ADOBF) provides both two- and three-class
video forgery identification results. They use seven state-of-the-art steganalysis features,
namely CC + PEV [18], SPAM [32], CDF [33], CF* [16], SRM [27], CC-JRM [34], and
J + SRM [34], extracted from the conventional motion residuals. Table 5 shows seven evalua-
tion metrics in three-class object-based video-tampering identification. As shown in Table 5,
CC + JRM and J + SRM features achieve high PFACC and DFACC metrics while exhibiting
poor FFACC. In contrast, the proposed method achieves low DFACC because 5.11% of
double-compressed frames are misclassified as tampered-with frames and 0.27% of these
frames are regarded as pristine frames. All FFACC values except ours exhibit low scores
compared to the other metrics. However, the proposed method achieves the highest FFACC,
Precision, Recall, and F1 score. Therefore, the proposed method can be efficiently applied to
frame identification of object-based video forgery.
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Table 5. Seven evaluation metrics for various methods in three-class identification. Numbers in bold
indicate the highest performance and those in italics represent the second place.

Method PFACC FFACC DFACC TFACC Precision Recall F1 Score

ADOBF [17]: CC + PEV [18] 99.90% 83.94% 95.22% 95.71% 90.48% 91.80% 91.13%
ADOBF [17]: SPAM [32] 99.71% 76.86% 89.03% 92.47% 78.90% 83.04% 80.92%

ADOBF [17]: CF* [33] 99.50% 77.55% 93.64% 94.15% 87.06% 85.87% 86.46%
ADOBF [17]: CDF [16] 99.96% 84.07% 95.67% 95.88% 90.20% 91.01% 90.60%
ADOBF [17]: SRM [27] 99.91% 76.40% 93.21% 93.70% 83.10% 82.86% 82.89%

ADOBF [17]: CC-FRM [34] 99.96% 84.93% 97.82% 96.59% 93.15% 91.51% 92.32%
ADOBF [17]: J + SRM [34] 99.99% 84.90% 97.56% 96.59% 92.80% 91.58% 92.18%

Proposed 99.89% 98.07% 94.62% 97.97% 97.08% 97.53% 97.30%

6. Discussion

In the field of video-frame tampering detection, three-class identification is more useful
than two-class identification. However, most methods use only two-class identification
except for the Chen et al. method [17]. Because the proposed approach uses both two- and
three-class identifications, it can be applied to tampered-with video-frame classification.
The fact that a frame is not tampered with but only double-compressed can be an indication
that there is a possibility of manipulation of the video sequence to which the frame belongs.
Therefore, detecting not only forged but also double-compressed frames can be useful
evidence for video-tampering detection. From Tables 4 and 5, we can see that most of
double-compressed frames are misclassified as tampered-with frames in the proposed
approach. Determining what has not been forged as tampered with can cause some costs;
however, determining what has been tampered with as not forged can produce serious
problems. From this viewpoint, the fact that double-compressed frames are classified as
forged frames does not cause serious problems.

7. Conclusions

In this paper, we introduced an object-based video-tampering detection network
using symmetrically overlapped motion residual features. Three motion residuals with
overlapped and different temporal windows were created to enhance the discriminability of
video frames. After forming patches on the proposed motion residuals, these features were
fed as input to the basic CNN. We trained two networks of two different pairs. The first
network trained on a pair consisting of forged and non-forged frames to determine whether
a frame has been tampered with. The second network trained on a pair of pristine and
double-compressed frames in combination with the first network to solve the three-class
identification, which classifies a frame into pristine, double-compressed, and forged. The
simulation results revealed that the proposed video-frame identification produced more
accurate performance in both two- and three-class identifications for various metrics.

Author Contributions: T.H.K. proposed the framework of this work, carried out the whole experi-
ments, and drafted the manuscript. C.W.P. created the input dataset and helped with the experiment.
I.K.E. initiated the main algorithm of this work, supervised the whole work, and wrote the final
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology
(NRF-2018R1D1A1B07046213).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alsmirat, M.A.; Al-Hussien, R.A.; Al-Sarayrah, W.T.; Jararweh, Y.; Etier, M. Digital video forensics: A comprehensive survey. Int.

J. Adv. Intell. Paradig. 2020, 15, 437–456. [CrossRef]
2. Javed, A.R.; Jalil, Z.; Zehra, W.; Gadekallu, T.R.; Suh, D.Y.; Piran, M.J. A comprehensive survey on digital video forensics:

Taxonomy, challenges, and future directions. Eng. Appl. Artif. Intell. 2021, 106, 104456. [CrossRef]

http://doi.org/10.1504/IJAIP.2020.106040
http://doi.org/10.1016/j.engappai.2021.104456


Symmetry 2022, 14, 364 14 of 15

3. Wang, W.; Farid, H. Exposing digital forgeries in video by detecting double MPEG compression. In Proceedings of the 8th
Workshop on Multimedia and Security, Geneva, Switzerland, 26 September 2006; pp. 37–47. [CrossRef]

4. Vazquez-Padin, D.; Fontani, M.; Bianchi, T.; Comesana, P.; Piva, A.; Barni, M. Detection of video double encoding with GOP size
estimation. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Costa Adeje, Spain, 2–5
December 2012; pp. 151–156. [CrossRef]

5. Milani, S.; Bestagini, P.; Tagliasacchi, M.; Tubaro, S. Multiple compression detection for video sequences. In Proceedings of the
IEEE 14th International Workshop on Multimedia Signal Processing, Banff, AB, Canada, 17–19 September 2012; pp. 112–117.
[CrossRef]

6. Jiang, X.; Wang, W.; Sun, T.; Shi, Y.Q.; Wang, S. Detection of double compression in MPEG-4 videos based on Markov statistics.
IEEE Signal Process. Lett. 2013, 20, 447–450. [CrossRef]

7. Stamm, M.C.; Lin, W.S.; Liu, K.R. Temporal forensics and anti-forensics for motion compensated video. IEEE Trans. Inf. Forensics
Secur. 2012, 7, 1315–1329. [CrossRef]

8. Gironi, A.; Fontani, M.; Bianchi, T.; Piva, A.; Barni, M. A video forensic technique for detecting frame deletion and insertion. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp.
6226–6230. [CrossRef]

9. Yang, J.; Huang, T.; Su, L. Using similarity analysis to detect frame duplication forgery in videos. Multimed. Tools Appl. 2016, 75,
1793–1811. [CrossRef]

10. Vaishnavi, D.; Subashini, T.S. Application of local invariant symmetry features to detect and localize image copy move forgeries.
J. Inf. Secur. Appl. 2019, 44, 23–31. [CrossRef]

11. Li, Y.; Zhou, J. Fast and effective image copy-move forgery detection via hierarchical feature point matching. IEEE Trans. Inf.
Forensics Secur. 2019, 14, 1307–1322. [CrossRef]

12. Park, J.Y.; Kang, T.A.; Moon, Y.H.; Eom, I.K. Copy-move forgery detection using scale invariant feature and reduced local binary
pattern histogram. Symmetry 2020, 12, 492. [CrossRef]

13. Ricaho, C.; Gaobo, Y.; Ningbo, Z. Detection of object-based manipulation by the statistical features of object contour. Forensic Sci.
Int. 2014, 236, 164–169. [CrossRef]

14. Tan, S.; Chen, S.; Li, B. GOP based automatic detection of object-based forgery in advanced video. In Proceedings of the
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, China, 16–19 December
2015; pp. 719–722. [CrossRef]

15. Kodovsky, J.; Fridrich, J. Calibration revisited. In Proceedings of the 11th ACM workshop on Multimedia and security, Princeton,
NJ, USA, 7–8 September 2009; pp. 63–74. [CrossRef]

16. Kodovsky, J.; Fridrich, J. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444.
[CrossRef]

17. Chen, S.; Tan, S.; Li, B.; Huang, J. Automatic detection of object-based forgery in advanced video. IEEE Trans. Circuits Syst. Video
Technol. 2016, 26, 2138–2151. [CrossRef]

18. Penvy, T.; Fridrich, J. Merging Markov and DCT features for multi-class JPEG steganalysis. In Proceedings of the SPIE Security,
Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, USA, 2 March 2007; p. 650506. [CrossRef]

19. Saddique, M.; Asghar, K.; Bajwa, U.I.; Hussain, M.; Habib, Z. Spatial video forgery detection and localization using texture
analysis of consecutive frames. Adv. Electr. Comput. Eng. 2019, 19, 97–108. [CrossRef]

20. Sitara, K.; Mehtre, B.M. Differentiating synthetic and optical zooming for passive video forgery detection: An anti-forensic
perspective. Digit. Investig. 2019, 30, 1–11. [CrossRef]

21. Aloraini, M.; Sharifzadeh, M.; Schonfeld, D. Sequential and patch analyses for object removal video forgery detection and
localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 917–930. [CrossRef]

22. Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018,
2018, 7068349. [CrossRef]

23. Yao, Y.; Shi, Y.; Weng, S.; Guan, B. Deep learning for detection of object-based forgery in advanced video. Symmetry 2018, 10, 3.
[CrossRef]

24. Kohli, A.; Gupta, A.; Singhal, D. CNN based localisation of forged region in object-based forgery for HD videos. IET Image Process.
2020, 14, 947–958. [CrossRef]

25. Yang, Q.; Yu, D.; Zhang, Z.; Yao, Y.; Chen, L. Spatiotemporal trident networks: Detection and localization of object removal
tampering in video passive forensics. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4131–4144. [CrossRef]

26. Qian, Y.; Dong, J.; Wang, W.; Tan, T. Deep learning for steganalysis via convolutional neural networks. In Proceedings of the SPIE
9409, Media Watermarking, Security, and Forensics, San Francisco, CA, USA, 9–11 February 2015; p. 94090J. [CrossRef]

27. Fridrich, J.; Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882.
[CrossRef]

28. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
29. Qadir, G.; Yahaya, S.; Ho, A.T.S. Surrey university library for forensic analysis (SULFA) of video content. In Proceedings of the

IET Conference on Image Processing, London, UK, 3–4 July 2012; p. 94090J. [CrossRef]
30. Bestagini, P.; Milani, S.; Tagliasacchi, M.; Tubaro, S. Local tampering detection in video sequences. In Proceedings of the 2013 IEEE

15th International Workshop on Multimedia Signal Processing, Pula, Italy, 30 September–2 October 2013; pp. 488–493. [CrossRef]

http://doi.org/10.1145/1161366.1161375
http://doi.org/10.1109/WIFS.2012.6412641
http://doi.org/10.1109/MMSP.2012.6343425
http://doi.org/10.1109/LSP.2013.2251632
http://doi.org/10.1109/TIFS.2012.2205568
http://doi.org/10.1109/icassp.2014.6854801
http://doi.org/10.1007/s11042-014-2374-7
http://doi.org/10.1016/j.jisa.2018.11.001
http://doi.org/10.1109/TIFS.2018.2876837
http://doi.org/10.3390/sym12040492
http://doi.org/10.1016/j.forsciint.2013.12.022
http://doi.org/10.1109/APSIPA.2015.7415366
http://doi.org/10.1145/1597817.1597830
http://doi.org/10.1109/TIFS.2011.2175919
http://doi.org/10.1109/TCSVT.2015.2473436
http://doi.org/10.1117/12.696774
http://doi.org/10.4316/AECE.2019.03012
http://doi.org/10.1016/j.diin.2019.05.001
http://doi.org/10.1109/TCSVT.2020.2993004
http://doi.org/10.1155/2018/7068349
http://doi.org/10.3390/sym10010003
http://doi.org/10.1049/iet-ipr.2019.0397
http://doi.org/10.1109/TCSVT.2020.3046240
http://doi.org/10.1117/12.2083479
http://doi.org/10.1109/TIFS.2012.2190402
http://doi.org/10.1049/cp.2012.0422
http://doi.org/10.1109/MMSP.2013.6659337


Symmetry 2022, 14, 364 15 of 15

31. Aloraini, M.; Sharifzadeh, M.; Agarwal, C.; Schonfeld, D. Statistical sequential analysis for object-based video forgery detection.
Electron. Imag. 2019, 2019, 543-1–543-7. [CrossRef]

32. Pevny, T.; Bas, P.; Fridrich, J. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 2010, 5, 215–224.
[CrossRef]

33. Kodovsky, J.; Pevny, T.; Fridrich, J. Modern steganalysis can detect YASS. In Proceedings of the SPIE 7541, Media Forensics and
Security II, San Jose, CA, USA, 18–20 January 2010; p. 754102. [CrossRef]

34. Kodovsky, J.; Fridrich, J. Steganalysis of JPEG images using rich models. In Proceedings of the SPIE 8303, Media Watermarking,
Security, and Forensics, Burlingame, CA, USA, 23–25 January 2012; p. 83030A. [CrossRef]

http://doi.org/10.2352/ISSN.2470-1173.2019.5.MWSF-543
http://doi.org/10.1109/TIFS.2010.2045842
http://doi.org/10.1117/12.838768
http://doi.org/10.1117/12.907495

	Introduction 
	Object-Based Video Forgery and Detection 
	Symmetrically Overlapped Motion Residual 
	Motion Residual 
	Proposed Overlapped Motion Resiual 
	Patch Generation of Overlapped Motion Resiual 

	Proposed Frame Identification 
	Basic Network 
	Training 
	Classification 

	Experimental Results 
	Dataset 
	Experimental Setup 
	Results 
	Two-Class Identification 
	Three-Class Identification 


	Discussion 
	Conclusions 
	References

