
����������
�������

Citation: Choudhary, R.; Shukla, S.

Reduced-Kernel Weighted Extreme

Learning Machine Using Universum

Data in Feature Space (RKWELM-UFS)

to Handle Binary Class Imbalanced

Dataset Classification. Symmetry 2022,

14, 379. https://doi.org/10.3390/

sym14020379

Academic Editor: Alexander

Shelupanov

Received: 20 January 2022

Accepted: 10 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Reduced-Kernel Weighted Extreme Learning Machine Using
Universum Data in Feature Space (RKWELM-UFS) to Handle
Binary Class Imbalanced Dataset Classification
Roshani Choudhary * and Sanyam Shukla

Department of Computer Science and Engineering, Maulana Azad National Institute of Technology,
Bhopal 462003, India; sanyamshukla@gmail.com or sanyamshukla@manit.ac.in
* Correspondence: choudhary.roshani99@gmail.com or 173112005@stu.manit.ac.in

Abstract: Class imbalance is a phenomenon of asymmetry that degrades the performance of tradi-
tional classification algorithms such as the Support Vector Machine (SVM) and Extreme Learning
Machine (ELM). Various modifications of SVM and ELM have been proposed to handle the class
imbalance problem, which focus on different aspects to resolve the class imbalance. The Universum
Support Vector Machine (USVM) incorporates the prior information in the classification model by
adding Universum data to the training data to handle the class imbalance problem. Various other
modifications of SVM have been proposed which use Universum data in the classification model
generation. Moreover, the existing ELM-based classification models intended to handle class imbal-
ance do not consider the prior information about the data distribution for training. An ELM-based
classification model creates two symmetry planes, one for each class. The Universum-based ELM clas-
sification model tries to create a third plane between the two symmetric planes using Universum data.
This paper proposes a novel hybrid framework called Reduced-Kernel Weighted Extreme Learning
Machine Using Universum Data in Feature Space (RKWELM-UFS) to handle the classification of
binary class-imbalanced problems. The proposed RKWELM-UFS combines the Universum learning
method with a Reduced-Kernelized Weighted Extreme Learning Machine (RKWELM) for the first
time to inherit the advantages of both techniques. To generate efficient Universum samples in the
feature space, this work uses the kernel trick. The performance of the proposed method is evaluated
using 44 benchmark binary class-imbalanced datasets. The proposed method is compared with
10 state-of-the-art classifiers using AUC and G-mean. The statistical t-test and Wilcoxon signed-rank
test are used to quantify the performance enhancement of the proposed RKWELM-UFS compared to
other evaluated classifiers.

Keywords: class imbalance; classification; Reduced Kernel Extreme Learning Machine;
Universum samples

1. Introduction

The performance of a classification problem is affected by various data complexity
measures such as class imbalance, class overlapping, length of the decision boundary,
small disjuncts of classes, etc. In the classification domain, most of the real-world prob-
lems are class imbalanced. Examples of such problems are cancer detection [1,2], fault
detection [3], intrusion detection system [4], software test optimization [5], speech quality
assessment [6], pressure prediction [7], etc. In a problem when the number of samples in
one class outnumbers the numbers of samples in some other class, it is considered as a class
imbalanced/asymmetric problem. The class with a greater number of instances is the ma-
jority class and the class with fewer instances is the minority class. In real-world problems,
usually, the minority class instances have more importance than the majority class.

Traditional classifiers such as the support vector machine (SVM), Naive Bayes, decision
tree, and extreme learning machine (ELM) are biased towards the correct classification

Symmetry 2022, 14, 379. https://doi.org/10.3390/sym14020379 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020379
https://doi.org/10.3390/sym14020379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1475-2396
https://doi.org/10.3390/sym14020379
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020379?type=check_update&version=2

Symmetry 2022, 14, 379 2 of 23

of majority class data. Various approaches have been proposed to handle such class-
imbalanced classification problems, which can be classified as data sampling, algorithmic
and hybrid methods [8].

In classification, the idea of using additional data along with the original training
data has been used widely for better training of the model. The virtual example method,
oversampling method, noise injection method, and Universum data creation method are
some examples that use additional data. The oversampling method generates additional
data in the majority class to balance the data distribution in the classes. In the virtual
example and noise injection methods, labeled synthetic data are created that may not come
from the same distribution as the original data. Universum data creation methods allow
the classifier to encode prior knowledge by representing meaningful concepts in the same
domain as the problem at hand as stated in [9]. In Universum learning-based classification
models, the Universum data are added to the training data to enhance performance.
Universum data are data that do not belong to any of the target classes. The two main
factors which affect the performance of Universum data are the number of Universum data
created and the method used for the creation of Universum data. Different methods have
been used for the creation of Universum; among those, the two most common methods
widely used are the use of examples from other classes and random averaging [9].

Several methods have been proposed that use Universum data in the training of
SVM based classifiers to handle the class imbalance problem, such as the Universum
Support Vector Machine (USVM) [9], Twin support vector machine with Universum data
(TUSVM) [10], and Cost-Sensitive Universum-SVM (CS-USVM) [11]. A Universum support
vector machine-based model for EEG signal classification has been proposed in [12]. A
nonparallel support vector machine for a classification problem with Universum learning
has been proposed in [13]. An improved non-parallel Universum support vector machine
and its safe sample screening rules are proposed in [14]. Tencer et al. [15] used Universum
data with other classifiers such as fuzzy models to demonstrate its usefulness in combi-
nation with fuzzy models. Recently, a Multiple Universum Empirical Kernel Learning
(MUEKL) [16] classifier has been proposed to handle class imbalance by combining the
Universum learning with Multiple Empirical Kernel Learning (MEKL).

Extreme Learning Machine (ELM) [17] is a single hidden-layer feed-forward neural
network designed for regression and classification with fast speed and better generaliza-
tion performance, but it cannot handle the classification of class-imbalanced problems
effectively. Various ELM based models have been proposed to handle the classification
of class imbalance problems, such as Weighted Extreme Learning Machine (WELM) [18],
Class-Specific Cost Regulation Extreme Learning Machine (CCR-ELM) [19], Class-Specific
Kernelized Extreme Learning Machine (CSKELM) [20], Reduced-Kernelized Weighted
Extreme Learning Machine (RKWELM) [21], UnderBagging-based Kernelized Weighted Ex-
treme Learning Machine (UBKWELM) [22], and UnderBagging-based Reduced-Kernelized
Weighted Extreme Learning Machine (UBRKWELM) [21]. The proposed work is motivated
by the idea that none of the existing ELM-based models for classification encode prior
knowledge in the training model using Universum data.

This work proposes a novel hybrid classification model called Reduced-Kernel Weighted
Extreme Learning Machine using Universum data in Feature Space (RKWELM-UFS) which
incorporates the Universum data in the RKWELM model. The contributions of the pro-
posed approach are listed below.

1. This work is the first attempt that utilized the Universum data in a Reduced-Kernelized
Weighted Extreme Learning Machine (RKWELM)-based classification model to handle
the class imbalance problem.

2. The Weighted Kernelized Synthetic Minority Oversampling Technique (WKSMOTE) [23]
is an oversampling-based classification method in which the synthetic samples are
created in the feature space of the Support Vector Machine (SVM). Inspired by
WKSMOTE, the proposed work creates the Universum samples in the feature space.

Symmetry 2022, 14, 379 3 of 23

3. The proposed method uses the kernel trick to create the Universum samples in the fea-
ture space between randomly selected instances of the majority and minority classes.

4. In a classification problem, the samples located near the decision boundary contribute
more to better training. The creation of Universum samples in feature space ensures
that the Universum samples lie near the decision boundary.

The rest of the paper is structured as follows. In the related work section, Universum
learning, class imbalance learning, ELM classifier, and its variants are discussed in detail.
The proposed work section provides a detailed explanation of the proposed RKWELM-UFS
classifier. The experimental setup and result analysis section provide the specification of
the dataset used in the experiments, parameter settings of the proposed algorithm, the
evaluation metrics used for performance evaluation, and the experimental results obtained
in form of various tables and figures. The last section provides the concluding remarks and
future research directions.

2. Related Work

The following section provides the literature related to Universum learning, class
imbalance learning, and some of the existing ELM-based models to handle class imbal-
ance learning.

2.1. Universum Learning

The idea of using Universum data is close to the idea of using the prior knowledge
in Bayesian classifiers [9]. However, there is a conceptual difference between the two
approaches, i.e., the prior knowledge is knowledge about decision rules used in Bayesian
inference, while the Universum is knowledge about the admissible collection of examples.
Similarly to the Bayesian prior probability, the Universum data encode prior information.

It has been observed by various researchers [9,15,24] that the effect of Universum
is dependent on the quality of Universum samples created. A safe sample screening
rule for Universum support vector machines, in which the non-contributed data can be
identified and safely eliminated before the training process, can obtain the same solution
as solving the original problem is proposed in [25]. An improved version of the non-
parallel Universum support vector machine and its safe sample screening rule is proposed
in [14]. It is suggested in [24] that not all the Universum samples are helpful for effective
classification, so they proposed selecting the informative Universum samples for semi-
supervised learning, which is a method used to identify informative samples among
the Universum samples. An empirical study on the Universum support vector machine
(USVM), which describes some practical conditions for evaluating the effectiveness of
random averaging for the creation of Universum data, is performed in [26].

2.2. Class Imbalance Learning

The classification performance of traditional classifiers degrades when there is an
imbalance in the ratio of the majority and minority class data. Different approaches have
been used in classification to deal with the problem of class imbalance. Table 1 provides
the categorization of the proposed methods and other methods used in this work for com-
parison. Table 1 also provides the strategy and basic ideas used in the respective methods.
The broad categories of these approaches are discussed in the following subsections.

2.2.1. Data Level Approach

The data-level methods are based on balancing the ratio of data to convert an imbal-
anced classification problem into a balanced classification problem. These methods can be
seen as data pre-processing methods because they try to handle the class imbalance present
in the data before the classification model generation. The data-level approaches can be
broadly categorized as under-sampling, oversampling and, hybrid sampling methods.

Symmetry 2022, 14, 379 4 of 23

Table 1. Categorization and comparison of the proposed method and other methods in comparison
used to handle classification of class imbalance problems.

Category Strategy Method Basic Idea of the Method

Algorithmic Cost Sensitive WELM This method minimizes the weighted least-square
error to handle the class imbalance.

CCR-KELM This method assigns a class-specific regularization
parameter to handle class imbalance.

RKELM This method uses a reduced number of centroids in
kernels function to handle class imbalance

Data-level Under-sampling Random-Under-sampling This method uses random under-sampling to
balance the imbalanced training data.

Oversampling SMOTE This method creates artificial minority class samples
to balance the imbalanced training data.

CSMOTE
This method generates some artificial samples
whose dimension is equal to 5 times the number of
minority samples.

Universum USVM This method creates Universum data to sift the
separating hyper plane of the SVM classifier

MUEKL This method combines Multiple Empirical Kernel
Learning with the Universum learning.

Hybrid Data-level combined
with Ensemble RUS-Boost This method combines RUS with boosting.

UBKELM This method uses random under-sampling with
KELM-based ensemble.

UBRKELM This method uses random under-sampling with
RKELM-based ensemble.

Cost-sensitive combined
with Ensemble BWELM This method combines boosting with WELM.

Data-level combined
with cost sensitive

RKWELM-UFS (the
proposed method)

The proposed method creates a Universum sample
in the feature space and uses RKWELM as the
classification algorithm.

The under-sampling methods remove some of the data (i.e., the majority samples)
to decrease the imbalance ratio of a training dataset. These methods may suffer from
data loss, as some of the important samples may be removed. The efficiency of an under-
sampling method lies in its ability to select the right samples which can be removed from
the dataset. The under-sampling methods reduce the time complexity of a given class-
imbalanced classification problem. A combined weighted multi-objective optimizer for
instance reduction in a two-class imbalanced data problem is proposed in [27]. Clustering-
Based Under-Sampling (CBUS) [28] uses clustering of majority class data for the under-
sampling. Fast Clustering-Based Under-Sampling (FCBUS) [29] is a modified version
of CBUS which clusters the minority class data for under-sampling to reduce the time
complexity of CBUS.

The oversampling method adds some additional data (in the minority class) to de-
crease the imbalance ratio of the training dataset. The additional samples are obtained by
creating synthetic minority class samples or replicating the existing minority class samples.
These methods can lead to over-fitting problems in model generation. The oversampling
methods increase the time complexity of a given class imbalance classification problem.
The synthetic minority oversampling technique (SMOTE) [30] is a popular oversampling
method, widely used to handle class imbalance, in which synthetic minority samples are
created. Several variants of SMOTE have been proposed to further enhance the perfor-
mance of class imbalance dataset classification, such as Borderline SMOTE, Borderline
SMOTE1, Borderline SMOTE2, Safe- Level-SMOTE, MSMOTE [31], and CSMOTE [32]. The
hybrid sampling methods such as SCUT [16] try to reduce the class imbalance by using
both oversampling and under-sampling.

Symmetry 2022, 14, 379 5 of 23

2.2.2. Algorithmic Approach

There are some approaches in which the classification algorithm is able to handle
class imbalance problems, such as cost-sensitive and one-class learning approaches. The
cost-sensitive methods assign a different cost to the misclassification of different classes.
In an imbalance problem, generally, the misclassification cost of minority class samples is
higher than the misclassification cost of majority class samples. The efficiency of any cost-
sensitive method lies in the selection of misclassification costs for different classes. Multiple
Random Empirical Kernel Learning (MREKL) [33] is a cost-sensitive classification model
which emphasizes the importance of samples located in overlapping regions of positive
and negative classes and ignores the effects of noisy samples to achieve better performance
in class imbalance problems. Weighted Extreme Learning Machine (WELM) [18] is a
weighted version of Extreme Learning Machine (ELM) [17] that minimizes the weighted
error by incorporating a weight matrix in the optimization problem of ELM. Class-Specific
Extreme Learning Machine (CSELM) [34] is a variant of WELM which replaces the weight
matrix with two constant weight values for each class. Class-Specific Kernel Extreme
Learning Machine (CSKELM) [20] is the modification of CSELM which uses the Gaussian
kernel function to map the input data to feature space. Class-Specific Cost-Regulation
Extreme Learning Machine (CCR-KELM) [19] is the variant of KELM which uses different
regularization perimeters for the classes.

The one-class learning approach is also called single-class learning. In these methods,
the classifier learns only one class as the target class. In this approach generally, the minority
class is considered as the target class. Multi-Kernel Support Vector Data Description with
boundary information proposes a novel method called MKL-SVDD [35] by introducing
Multi- Kernel Learning (MKL) into the traditional Support Vector Data Description (SVDD)
based on the boundary information to form one-class learning.

2.2.3. Hybrid Approach

In a hybrid approach, multiple classification approaches are combined to handle a
class imbalance problem. Some hybrid techniques combine ensemble techniques with data
sampling methods such as over-sampling or under-sampling to handle class imbalance
problems. RUSBoost [36] is a hybrid technique that combines random under-sampling
with boosting to create an ensemble of classifiers. UBKELM [22] and UBRKELM [21] are
two hybrid classification models that combine underbagging with KELM and RKELM
respectively. BPSO-AdaBoost-KNN [37] is a method that implements BPSO as the feature
selection algorithm and then designs an AdaBoost-KNN classifier to convert the traditional
weak classifier into a strong classifier. UBoost: Boosting with the Universum [38] is a
technique that combined the Universum sample creation with a boosting framework. An
Adaptive-Boosting (AdaBoost) algorithm [39] uses multiple iterations to learn multiple
classifiers in a serial manner to generate a single strong learner.

Some hybrid techniques combine cost-sensitive approaches with ensemble techniques
such as Ensemble of Weighted Extreme Learning Machine (EWELM) [40] and Boosting
Weighted Extreme Learning machine (BWELM) [41]. In EWELM, the weight of each com-
ponent classifier in the ensemble is optimized by using a differential evolution algorithm.
BWELM is a modified AdaBoost framework that combines multiple Weighted ELM-based
classifiers in a boosting manner. The main idea of BWELM is to find the better weights in
each base classifier.

2.3. Extreme Learning Machine (ELM) and Its Variants to Handle Class Imbalance Learning

ELM [17,42] is a generalized single hidden-layer feed-forward neural network, which
provides good generalization performance and disposes of the iterative time-consuming
training process. It uses the Moore–Penrose pseudoinverse for computing the weights
between the hidden and the output layer which make it fast. For a given classification
dataset with N training samples {(xi, ti)}N

i=1, where xi = [xi1, xi2,......., xin]
Tε Rn is the

input feature vector and ti = [ti1, ti2,......., tim]
Tε Rm is the output label vector. Here, the

Symmetry 2022, 14, 379 6 of 23

vector/matrix transpose is denoted by superscript T. During the training time, these
weights are randomly generated and are not changed further. The hidden neurons bias
matrix is denoted by b = b1

[
, b2 , ..bj, .. bL

]T
ε RL, where bj is the bias of the jth hidden

neuron. In ELM, for a given training/testing sample, i.e., xi, the hidden layer output h(xi)
is calculated as follows:

h(xi) = G(axi + b) (1)

Here, G(.) is the activation function of the hidden neurons. In ELM, for a binary
classification problem, the decision function, i.e., f (xi) for a sample xi is given as:

f (xi) = sign(h(xi)β) (2)

where β is the output weight matrix. The hidden layer output matrix H can be written
as follows:

H =


h1(x1) h2(x1) . hL(x1)
h1(x2) h2(x2) . hL(x2)

. . . .
h1(xN) h2(xN) . hL(xN)


N×L

(3)

ELM minimizes the training error and the norm of the output weights as:

Minimize : ‖Hβ− T‖2 and ‖β‖ (4)

In the original implementation of ELM [17], the minimal norm least-square method
instead of the standard optimization method was used to find β.

β = H+T (5)

where H+ is the Moore–Penrose generalized inverse of matrix H. In [17,42] the orthogonal
projection method is used to calculate H+, which can be used in two cases.

When HT H is nonsingular then,

H+ =
(

HT H
)−1

HT

When HT H is singular then

H+ = HT
(

HHT
)−1

In ELM the constrained optimization-based problem for classification with multiple
output nodes was formulated as follows:

Minimize =
1
2
‖β‖2 + C

1
2

N

∑
i=1

‖ξi‖2 (6)

Subjected to: h(xi)β = tT
i − ξT

i , i = 1, . . . , N
The output layer weights β can be obtained using two solutions
Case 1. Where the Number of Training Samples is Not Huge:

β = HT
(

I
C
+ HHT

)−1
T (7)

Case 2. Where the Number of Training Samples is Huge:

β =

(
I
C
+ HT H

)−1
HT H (8)

Symmetry 2022, 14, 379 7 of 23

2.3.1. Weighted Extreme Learning Machine (WELM)

Conventional ELM does not account for good generalization performance while
dealing with the class-imbalance learning problems. Weighted Extreme Learning Machine
(WELM) [18] is a cost-sensitive version of ELM which was proposed for handling the
class-imbalanced learning problem effectively. In cost-sensitive learning methods, the
different cost is assigned to the misclassification of different class samples. In WELM, two
generalized weighting schemes were proposed. These generalized weighting schemes
assign weights to the training samples as per their class distribution. In WELM [18], the
following optimization problem is formulated:

Minimize =
1
2
‖β‖2 +

1
2

CW
N

∑
i=1

‖ξi‖2 (9)

Subjected to: h(xi)β = tT
i − ξT

i , i = 1, . . . , N
Here, C is the regularization parameter and W = diag(Wii) is a N × N diagonal

matrix whose diagonal elements are the weights assigned to the training samples. The two
weighting schemes proposed by WELM are:

Weighting scheme W1:

Wii =
1
qk

(10)

Here, k = ti and qk is the total number of samples belonging to kth class.
Weighting scheme W2:

Wii =


0.618

qk i f (qk > qavg)

1
qk i f (qk <= qavg)

(11)

Here, qavg represents the average number of samples for all classes. Weight Wii
is assigned to the ith samples. Samples belonging to the minority class will be assigned
weights equal to 1/qi, in both the weighting schemes. The second weighting scheme assigns
a lesser weight to the majority class samples compared to the first weighting scheme. The
two variants of WELM are sigmoid node-based WELM and Gaussian kernel-based WELM,
which are described as follows.

• Sigmoid node-based Weighted Extreme Learning Machine

The Sigmoid node-based WELM uses random input weights and Sigmoid activation
function i.e., G(.), to find the hidden layer output matrix H given in Equation (3). The
solution of the optimization problem of WELM as given in [18] is reproduced below:

β =


HT
(

I
C + WHHT

)−1
WT i f (N > L)(

I
C + HTWH

)−1
HTWH i f (N > L)

(12)

The two solutions are given for two cases. The first solution is given for the case
when the number of training samples is smaller than the number of selected hidden layer
neurons. The second solution is given for the case where the number of selected hidden
layer neurons is smaller than the number of training samples.

• Gaussian kernel-based Weighted Extreme Learning Machine (KWELM)

In KELM [42], the kernel matrix of the hidden layer is represented as follows:

Ω =


K(x1, x1) K(x1, x2) . K(x1, xN)
K(x2, x1) K(x2, x2) . K(x2, xN)

. . . .
K(xN , x1) K(xN , x2) . K(xN , xN)


N×N

(13)

Symmetry 2022, 14, 379 8 of 23

The Gaussian kernel-based WELM maps the input data to the feature space as follows:

K
(

xi, xj
)
= exp

(
−‖xi − xj‖2

σ2

)
(14)

Here, σ represents the kernel width parameter, xi represents the ith sample and xj
represents the jth centroid; (i, j ∈ 1, 2, . . . N). K

(
xi, xj

)
represents the distance of the jth

centroid xj to the ith input sample xi. The number of Gaussian kernel functions i.e., the
centroids used in [32] was equal to the number of training samples. On applying Mercer’s
condition, the kernel matrix of KELM [42] can be represented as given below:

ΩKELM = HHT : ΩKELMi,j = h(xi).h
(
xj
)
= K

(
xi, xj

)
(15)

The output of KWELM is determined in [18] which is represented as follow:

f (x) = sign


K(x, x1)

.

.
K(x, xN)


T(

I
C
+ WΩKELM

)−1
WT (16)

Compared to the Sigmoid node-based WELM, KWELM has better classification per-
formance, as stated in [18].

2.3.2. Reduced Kernel Weighted Extreme Learning Machine (RKWELM)

Reduced-Kernel Extreme Learning Machine (RKELM) [43] is a fast and accurate
kernel-based supervised algorithm for classification. Unlike Support Vector Machine (SVM)
or Least-Square SVM (LS-SVM), which identify the support vectors or weight vectors
iteratively, the RKELM randomly selects a subset of the available data samples as centroids
or mapping samples. The weighted version of RKELM i.e., Reduced-Kernel Weighted
Extreme Learning Machine (RKWELM) is proposed in [21] for class imbalance learning.
In RKWELM, a reduced number of kernels are selected, which act as the centroids. The
number of Gaussian kernel functions used in RKWELM is denoted as Ñ where Ñ ⊂ N. The
kernel matrix of the hidden layer can be reproduced as given by the following equation.

ΩRKELM =


K(x1, x1) K(x1, x2) . K(x1, xN)
K(x2, x1) K(x2, x2) . K(x2, xN)

. . . .
K(xN , x1) K(xN , x2) . K

(
xN , xÑ

)


N×Ñ

(17)

Here, xi represents the ith sample and xj represents the jth centroid (i ∈ 1, 2, . . . N)

and (j ∈ 1, 2, . . . N). In the case when
(

N == Ñ
)

, the output of RKWELM can be given
by the following equation.

The final output of RKWELM, as given in [43], is computed as:

f (x) = sign

 K(x, x1)
.

K
(
x, xÑ

)
T(

I
C
+ ΩT

RKELMWΩRKELM

)−1
ΩT

RKELMWT (18)

2.3.3. UnderBagging-Based Kernel Extreme Learning Machine (UBKELM)

UnderBagging-Based Kernel Extreme Learning Machine (UBKELM) [22] is an en-
semble of KELM. UBKELM creates several balanced training subsets by random under-
sampling of the majority class samples. K is the number of balanced subsets that are created
by selecting M number of majority samples and all the minority samples in each subset,
where M is the number of minority samples in the training dataset and K is the ceiling

Symmetry 2022, 14, 379 9 of 23

value of the imbalance ratio of the training dataset. In the subset creation, the majority
samples are selected using the random under-sampling method. There are two variants
of UBKELM, i.e., UnderBagging-Based Kernel Extreme Learning Machine-Max Voting
(UBKELM-MV) and UnderBagging-Based Kernel Extreme Learning Machine-Soft Voting
(UBKELM-SV) in which the ultimate outcome of the ensemble is computed by majority
voting and soft voting respectively.

2.3.4. UnderBagging-Based Reduced-Kernelized Weighted Extreme Learning Machine

UnderBagging-based Reduced-Kernelized Weighted Extreme Learning Machine
(UBRKELM) [21] is an ensemble of Reduced Kernelized Weighted Extreme Learning Ma-
chine (RKWELM). The UBRKELM creates several balanced training subsets and learns
multiple classification models with these balanced training subsets using RKWELM as the
classification algorithm. K is the number of balanced subsets that are created by selecting
M number of majority samples and all the minority samples in each subset, where M
is the number of minority samples in the training dataset and K is the ceiling value of
the imbalance ratio of the training dataset. In UBRKELM the reduced number of kernel
functions is used as centroids to learn an RKELM model. Two variants of UBRKWELM
are proposed, UBRKWELM-MV and UBRKWELM-SV, in which the final outcome of the
ensemble is computed by majority voting and soft voting respectively.

3. Proposed Method

This work proposes a novel Reduced-Kernel Weighted Extreme Learning Machine
using Universum data in Feature Space (RKWELM-UFS) to handle the class imbalance
classification problem. In the proposed work, the Universum data along with the original
training data is provided to the classifier for training purposes, to improve its learning
capability. The proposed method creates Universum samples in the feature space because
the mapping of input data from the input space to the feature space is not conformal.

The following subsections describe the process of creation of the Universum samples
in the input space, the process of creation of the Universum samples in the feature space,
the proposed RKWELM-UFS classifier, and the computational complexity of the proposed
RKWELM-UFS classification model. Algorithm 1 provides the pseudo-code of the proposed
RKWELM-UFS.

3.1. Generation of Universum Samples in the Input Space

To generate a Universum sample xu between a majority sample xm and a minority
sample xn, the following equation can be used:

xu = xm + δ(xn − xm) (19)

where δ represents a random number in the uniform distribution U [0, 1].

3.2. Generation of Universum Samples in the Feature Space

To generate a Universum sample in the feature space between a majority sample xm
and a minority sample xn the following equation can be utilized:

φ(xmn) = φ(xm) + δmn(φ(xn)− φ(xm)) (20)

where, φ(.) is the feature transformation function which is generally unknown and δmn is
a random number between [0, 1]. The proposed work uses δmn = 0.5. Similarly to SVM,
LS-SVM, and PSVM, the transformation function φ(.) need not be known to users; instead,
its kernel function K(xm, xn) can be deployed. If a feature mapping φ(.) is unknown to
users, one can apply Mercer’s conditions on ELM to define a kernel matrix for KELM [17]
as follows:

ΩKELM = HHT : ΩKELMm,n = K(xm, xn) = φ(xm)
T .φ(xn) (21)

Symmetry 2022, 14, 379 10 of 23

In the proposed work, we have to calculate the kernel function K
(

xi, xmn
j

)
, where xi

represents the original target training sample and xmn
j is the Universum sample. Accord-

ing to [23] without computing φ(xi) and (xmn
j), we can obtain the corresponding kernel

K
(

xi, xmn
j

)
using the following equation:

K
(

xmn
j , xi

)
= φ(xi)

T φ
(

xmn
j

)
= φ(xi)

T(φ(xm) + δmn(φ(xn)− (φ(xm))) =

φ(xi)
T(φ(xm) + δmnφ(xi)

Tφ(xn)− δmnφ(xi)
Tφ(xm) = K(xi, xm)+

δmnK(xi, xn) + δmnK(xi, xm)K
(

xmn
j , xi

)
= (1− δmn)K(xi, xm) + δmnK(xi, xn)

(22)

3.3. Proposed Reduced-Kernel Weighted Extreme Learning Machine Using Universum Samples in
Feature Space (RKWELM-UFS)

Training of an ELM [42] based classifier requires the computation of the output layer
weight matrix β. The proposed RKWELM-UFS uses the same equation as RKWELM [21] to
obtain the output layer weight matrix β which is reproduced below:

β =

(
I
C
+ ΩT

RKELM−UFS WΩRKELM−UFS

)−1
ΩT

RKELM−UFS WT (23)

where, W is the diagonal weight matrix, which gives different weights to the majority class,
the minority class, and the Universum instances using Equation (10), T is the target vector
in which the class label for Universum samples is set to 0 (given the class label of majority
and minority class are +1 and −1 respectively), and ΩRKELM−UFS is the kernel matrix of
the proposed RKWELM-UFS.

In the proposed work, the Universum instances are added to the training process
along with the original training instances. The reason behind computing β in the same
manner as RKWELM is that the proposed RKWELM-UFS computes the kernel matrix
ΩRKELM−UFS by deploying the original training instances excluding the Universum in-
stances as centroids. The value of ΩRKELM−UFS is obtained by augmentation of the two ma-
trices ΩRKELM and ΩUFS . The following subsections describe the computation of ΩRKELM ,
ΩUFS and ΩRKELM−UFS.

3.3.1. Computation of ΩKELM

The proposed work computes the kernel matrix for the N number of original training
instances termed as ΩKELM in the same manner as it was computed in the KELM [42],
which is represented as:

ΩKELM =


K(x1, x1) K(x1, x2) . K(x1, xN)
K(x2, x1) K(x2, x2) . K(x2, xN)

. . . .
K(xN , x1) K(xN , x2) . K(xN , xN)


N×N

(24)

3.3.2. Computation of ΩUFS

Equation (20) can be used to create a Universum sample φ(xmn) between two original
training samples φ(xm) and φ(xn) in feature space. As we have discussed the transforma-
tion function φ(.) is unknown to the user, so the computation of φ(xmn) is not possible
here. For convenience, we will refer to the Universum sample φ(xmn) as φ(ui). In the
proposed work without computing φ(ui), we can directly compute the corresponding
kernel K

(
ui, xj

)
. K(ui, xj) is calculated using Equation (22). In the proposed algorithm, only

the original training samples are used as centroids, so the matrix ΩUFS for p number of
Universum samples and N number of original training samples can be represented as:

Symmetry 2022, 14, 379 11 of 23

ΩUFS =


K(u1, x1) K(u1, x2) . K(u1, xN)
K(u2, x1) K(u2, x2) . K(u2, xN)

. . . .
K
(
up, x1

)
K
(
up, x2

)
. K

(
up, xN

)


p×N

(25)

3.3.3. Computation of ΩRKELM−UFS

The addition of Universum samples in the training process requires that the original
kernel matrix i.e., ΩRKELM be augmented to include the matrix ΩUFS. The final hidden
layer output kernel matrix of the proposed RKWELM-UFS is obtained by augmentation of
the two matrices ΩKELM and ΩUFS which is denoted as ΩRKELM−UFS.

ΩRKELM−UFS =



K(x1, x1) K(x1, x2) . K(x1, xN)
K(x2, x1) K(x2, x2) . K(x2, xN)

. . . .

. . . .
K(xN , x1) K(xN , x2) . K(xN , xN)
K(u1, x1) K(u1, x2) . K(u1, xN)
K(u2, x1) K(u2, x2) . K(u2, xN)

. . . .

. . . .
K
(
up, x1

)
K
(
up, x2

)
. K

(
up, xN

)


((N+P)×N)

(26)

The output of RKWELM-UFS can be obtained using Equation (18) used in RKWELM,
which is reproduced below:

f (x) = sign



K(xt, x1)
.

K(xt, xi)
.
.

K(xt, xN)



T

(
I
C
+ ΩT

RKELM−UFS WΩRKELM−UFS

)−1
ΩT

RKELM−UFS WT (27)

Here xt represents the test instance and xi represent the training instance for i = 1, 2, . . . , N.

Algorithm 1 Pseudocode of the proposed RKWELM-UFS

INPUT: Training Dataset X(xi, ti)
N
i=1

Number of Universum samples to be generated: p
OUTPUT:
1: Calculate the kernel matrix ΩKELM ε (N × N) as shown in Equation (24) for the N number of
original training instances using Equation (21).
2: Calculate the kernel matrix ΩUFS ε (p× N) as shown in Equation (25) for the N number of
training instances and p number of Universum instances as follows.

for j = 1 to p
Randomly select one majority instance xm
Randomly select one minority instance xn

for i = 1 to N

calculate K
(

xmn
j , xi

)
using Equation (22)

End
End

3: Augment the matrix ΩKELM with the matrix ΩUFS to obtain the reduced kernel matrix
using Universum samples ΩRKELM−UFS shown in Equation (26).
4: To obtain the output weight matrix β use the Equation (23).
5: To determine the class label of an instance x use the Equation (27).

Symmetry 2022, 14, 379 12 of 23

3.4. Computational Complexity

For training of the ELM-based classification algorithm, it is necessary to obtain the
output layer weight matrix i.e., β. For the proposed RKWELM-UFS β is obtained using
Equation (23) which is reproduced below:

β =

(
I
C
+ ΩT

RKELM−UFS WΩRKELM−UFS

)−1
∗ΩT

RKELM−UFS WT (28)

Here, ΩRKELM−UFS is a matrix of size (N + p)× N, where N is the number of training
instances and p is the number of Universum samples. The weight matrix, i.e., W, is of
size (N + p) × (N + p) and the target matrix i.e., T is of size (N + p) × (c) where c is
the number of target class labels; here, the number of target class labels is 2 because we
are using the binary classification problems. To compute ΩRKELM−UFS first we need to
compute the ΩRKELM and ΩUFS. In the following steps the computational complexity of
computing β is identified step by step:

1. The computational complexity of calculating ΩRKELM i.e., the kernel matrix shown
in Equation (24) is O

(
nN2), where n is the number of features of training data in

input space.
2. The computational complexity of calculating matrix ΩUFS shown in Equation (25)

is O(p).
3. The computational complexity of the output weights β can be calculated as

3.1 Matrix multiplications: (ΩT
RKELM−UFS WΩRKELM−UFS)

Computational complexity: O
(

2N(N + p)2
)

3.2 Computational complexity of computing the inverse of N × N matrix com-
puted in Step 3.1 is O

(
N3)

3.3 Computational complexity of matrix multiplications
(

ΩTWT
)

is

O
(

N2(N + p) + Nc(N + p)
)

3.4 Computational complexity of matrix multiplication of 2 matrices obtained in
Step 3.1 and Step 3.3 is O

(
N2c

)
The final computational complexity of calculating β is O(2N(N + p)2 + N3 + N2(N + p)

+ N2n + N2c + Nc(N + p) + p). The computational complexity can be simplified to O
(

N3)
because the value of c is 2, the value of n is smaller than N, and the maximum value of p
can be N.

4. Experimental Setup and Result Analysis

This section provides the experiments performed to evaluate the proposed work,
which includes the specification of the datasets used for experimentation, the parameter
settings of the proposed algorithm, the evaluation metrics used for performance compari-
son, and the results obtained through experiments and performance comparison with the
state-of-the-art classifiers.

4.1. Dataset Specifications

The proposed work uses 44 binary class-imbalanced datasets for performing the
experiments. These datasets are downloaded from the KEEL dataset repository [44,45]
in 5-fold cross-validation format. Table 2 provides the specification of these datasets. In
Table 2, # Attributes denote the number of features, # Instances denotes the number of
instances and, IR denotes the class imbalance ratio in the presented datasets. The class
imbalance ratio (IR) for the binary class dataset can be defined as follows:

IR =
number o f instances in majority class
number o f instances in minority class

(29)

Symmetry 2022, 14, 379 13 of 23

Table 2. Specification of 44 benchmark datasets from KEEL dataset repository.

Dataset Name # Attributes IR (%) # Instances Dataset Name # Attributes IR (%) # Instances

abalone9-18 8 16.70 731 glass6 9 6.43 214
ecoli-01 7 0.54 220 haberman 3 2.81 306
ecoli-013726 7 43.80 281 iris0 4 2.00 150
ecoli-01235 7 9.26 244 new-thyroid1 5 5.14 215
ecoli-01465 6 13.00 280 new-thyroid2 5 5.14 215
ecoli-01472356 7 10.65 336 page-blocks134 10 16.14 472
ecoli-014756 6 12.25 332 pima 8 1.87 768
ecoli-015 6 11.00 240 segment0 19 6.02 2308
ecoli-02345 7 9.06 202 shuttle-c0c4 9 13.78 1829
ecoli-026735 7 9.53 224 Shuttle-c2c4 9 24.75 129
ecoli-0345 7 9.00 200 Vehicle0 18 3.25 846
ecoli-03465 7 9.25 205 Vehicle1 18 2.91 846
ecoli-034756 7 9.25 257 Vehicle2 18 2.89 846
ecoli-0465 6 9.13 203 Vehicle3 18 3.00 846
ecoli-06735 7 9.41 222 vowel0 13 9.97 988
ecoli-0675 6 10.00 220 wisconsin 9 1.86 683
ecoli1 7 3.39 336 yeast05679vs4 8 10.00 528
Ecoli2 7 5.54 336 yeast1289vs7 8 31.00 947
glass016vs2 9 10.00 192 yeast1458vs7 8 28.00 693
glass0123vs456 9 4.00 214 yeast1vs7 7 15.00 459
glass1 9 1.85 214 yeast1vs8 8 24.00 482
glass4 9 16.00 214 yeast3 8 8.13 1484

The datasets used for the experiments are normalized using min-max normalization
in the range [1, −1] using the following equation:

x′ =
(

x−minn

maxn −minn

)
∗ 2− 1 (30)

Here, the original feature value of nth feature is denoted by x, minimum value of nth
feature is denoted by minn and the maximum value of nth feature is denoted by maxn.

4.2. Evaluation Matrix

The confusion matrix, also called the error matrix, can be employed to evaluate the
performance of a classification model. It allows the visualization of the performance of an
algorithm. In a confusion matrix TP denotes True Positive, TN denotes True Negative, FP
denotes False Positive, and FN denotes False Negative.

Accuracy is not a suitable measure to evaluate the performance of a classifier when
dealing with a class-imbalanced problem. The other performance matrices used for the
performance evaluation in such problems are G-mean and AUC (area under the ROC
curve). The AUC defines the measure of the entire area under the ROC curve in two
dimensions. The ROC known as receiver operating characteristic curve is a graph that
shows the performance of the model by plotting TPrate and TNrate on the graph.

Gmean =
√

TPrate ∗ TNrate

AUC = 1+TPrate −TNrate
2

Here,

TPrate =
TP

TP + FN
and TNrate =

TN
TN + FP

4.3. Parameter Settings

The proposed RKWELM-UFS creates Universum samples between randomly selected
pairs of majority and minority samples. Because of the randomness, this work presents the

Symmetry 2022, 14, 379 14 of 23

mean (denoted as tstR or TestResult) and standard deviation (denoted as std) of the test G-
mean and test AUC obtained for 10 trials. The proposed RKWELM-UFS has two parameters,
namely the regularization parameter C and the Kernel width parameter σ (denoted as KP).
The optimal values of these parameters are obtained using grid search, by varying them on
the range

{
2−18, 2−16, . . . , 248, 250} and

{
2−18, 2−16, . . . , 218, 220} respectively.

4.4. Experimental Results and Performance Comparison

The proposed RKWELM-UFS is compared with three sets of algorithms used to
handle class imbalance learning. The first set contains the existing approaches which use
Universum samples in the classification model generation to handle class-imbalanced
problems such as MUEKL [16] and USVM [9]. The second set of approaches consists of the
single classifiers such as KELM [46], WKELM [18], CCR-KELM [19], and WKSMOTE [23]
which are used to handle class-imbalanced problems. The third set contains the popular
ensemble classifiers such as RUSBoost [36], BWELM [41], UBRKELMMV [21], UBRKELM-
SV [21], UBKELM-MV [22], and UBKELM-SV [22].

The statistical t-test and Wilcoxon signed-rank test are used to evaluate the perfor-
mance of the proposed RKWELM-UFS and other methods in consideration. In the t-test
result, the value of H (null hypothesis) is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

In the Wilcoxon signed-rank test result, the value of H (null hypothesis) is 1 if the test
rejects the null hypothesis that there is no difference between the grade medians at the
5% significance level. In the statistical tests, the p-value indicates the level of significant
difference between the compared algorithms; the lower the p-value, the higher the signifi-
cant difference between the compared algorithms. This work uses AUC and G-mean as
the measures of the performance evaluation. The AUC results of classifiers MUEKL and
USVM shown in Table 3 are obtained from the work MUEKL [16].

Table 3. Performance comparison of the proposed RKWELM-UFS with other existing Universum-
based classifiers in terms of average AUC (std, KP, and C denote the standard deviation, Kernel
width parameter, and regularization parameter, respectively.

Dataset MUEKL
Test Result% ± std.

USVM
Test Result% ± std. (KP, C) RKWELM-UFS

Test Result% ± std.

abalone9-18 75.06 ± 12.53 69.92 ± 12.75 (26, 226) 94.97 ± 0.52
ecoli-01 98.67 ± 1.83 97.29 ± 2.5 (22, 28) 98.67 ± 0.00
ecoli-01235 90.68 ± 17.67 85.27 ± 14.45 (2−2, 2−18) 92.68 ± 0.00
ecoli013726 85.00 ± 22.36 92.88 ± 1.63 (24, 2−2) 95.99 ± 0.00
ecoli-01465 90.00 ± 13.69 89.62 ± 11.34 (210, 250) 94.34 ± 1.56
ecoli01472356 88.00 ± 7.28 86.73 ± 9.4 (22, 26) 93.95 ± 0.11
ecoli-014756 91.51 ± 4.76 88.13 ± 4.05 (212, 242) 94.93 ± 0.04
ecoli-015 91.59 ± 10.77 88.41 ± 9.62 (28, 234) 95.91 ± 0.04
ecoli-02345 93.89 ± 7.89 88.93 ± 10.36 (28, 234) 94.53 ± 0.08
ecoli-026735 86.51 ± 11.9 78.82 ± 12.03 (22, 24) 90.22 ± 0.09
ecoli-0345 92.22 ± 11.73 91.11 ± 11.65 (28, 240) 91.59 ± 3.29
ecoli-03465 91.96 ± 6.76 88.24 ± 7.94 (210, 244) 97.15 ± 0.07
ecoli-034756 94.49 ± 5.20 88.40 ± 11.89 (210, 240) 95.55 ± 0.00
ecoli-0465 92.23 ± 10.97 89.19 ± 11.15 (26, 234) 94.70 ± 0.06
ecoli-06735 89.50 ± 16.97 86.00 ± 16.62 (2−2, 20) 92.68 ± 0.06
ecoli-0675 91.75 ± 7.05 87.50 ± 7.55 (26, 240) 91.59 ± 0.21
ecoli1 90.48 ± 6.29 87.16 ± 5.03 (22, 211) 93.62 ± 0.29
ecoli2 94.31 ± 4.47 88.78 ± 5.23 (20, 28) 95.35 ± 0.04
glass1 79.66 ± 7.41 67.64 ± 4.64 (2−4, 24) 81.67 ± 0.25
glass6 93.06 ± 7.08 90.63 ± 6.33 (26, 210) 93.41 ± 0.21
haberman 64.27 ± 4.35 62.84 ± 4.56 (28, 242) 68.17 ± 0.73
new-thyroid1 100.00 ± 0.00 96.03 ± 3.7 (2−4, 224) 100.00 ± 0.00
new-thyroid2 100.00 ± 0.00 94.37 ± 4.49 (28, 242) 99.98 ± 0.04

Symmetry 2022, 14, 379 15 of 23

Table 3. Cont.

Dataset MUEKL
Test Result% ± std.

USVM
Test Result% ± std. (KP, C) RKWELM-UFS

Test Result% ± std.

page-blocks134 84.21 ± 19.45 71.49 ± 16.64 (20, 212) 100.00 ± 0.00
pima 73.03 ± 3.11 70.16 ± 5.63 (20, 24) 79.62 ± 0.05
Segment0 99.22 ± 0.90 89.02 ± 3.74 (2−4, 22) 99.93 ± 0.00
shuttle-c0c4 100.00 ± 0.00 99.77 ± 0.27 (22, 2−8) 100.00 ± 0.00
shuttle-c2c4 100.00 ± 0.00 100.00 ± 0.00 (24, 218) 100.00 ± 0.00
vehicle0 99.18 ± 0.66 81.28 ± 6.51 (24, 234) 99.88 ± 0.13
vehicle1 77.43 ± 4.15 62.37 ± 5.14 (26, 232) 90.26 ± 0.45
vehicle2 99.15 ± 0.68 83.59 ± 1.52 (22, 228) 99.73 ± 0.00
vehicle3 76.47 ± 4.81 65.08 ± 3.32 (28, 240) 89.88 ± 0.25
vowel0 100.00 ± 0.00 93.61 ± 3.63 (2−10, 2−18) 100.00 ± 0.00
wisconsin 97.99 ± 0.61 97.09 ± 1.77 (212, 242) 99.08 ± 0.09
yeast3 87.72 ± 2.18 89.60 ± 2.12 (210, 238) 95.09 ± 0.12

Average 90.26 ± 6.73 85.34 ± 6.83 94.15 ± 0.25

4.4.1. Performance Analysis in Terms of AUC

Tables 3–5 provide the performance of the proposed RKWELM-UFS and other classifi-
cation models in terms of AUC. The reported test AUC of the proposed RKWELM-UFS
given in Tables 3–5 is the averaged test AUC obtained in 10 trials, using 5-fold cross-
validation in each trial. Table 3 provides the performance of the proposed RKWELM-UFS
and the existing Universum-based classifiers MUEKL and USVM on 35 datasets in terms of
average AUC, where the RKWELM outperforms the other classifiers on 32 datasets. Table 4
provides the performance of the proposed RKWELM-UFS and the existing single classifiers
like KELM, WKELM, CCR-KELM, and WKSMOTE on 21 datasets in terms of average AUC,
where the RKWELM outperforms the other classifiers on 14 datasets. Table 5 provides the
performance of the proposed RKWELM-UFS and the existing ensemble of classifiers such
as RUSBoost, BWELM, UBRKELM-MV, UBRKELMSV, UBKELM-MV, UBKELM-SV on
21 datasets in terms of average AUC, where the RKWELM outperforms the other classifiers
on 10 datasets.

Table 4. Performance comparison of the proposed RKWELM-UFS with existing single classifiers in
terms of average AUC (std., KP, and C denotes the standard deviation, Kernel width parameter, and
regularization parameter, respectively.

Dataset KELM
Test Result%

WKELM
Test Result%

CCR-KELM
Test Result%

WKSMOTE
Test Result% (KP, C) RKWELM-UFS

Test Result% ± std.

abalone9vs18 83.81 95.24 83.81 90.91 (26, 226) 94.97 ± 0.52
ecoli01vs5 89.50 92.39 89.50 96.22 (28, 234) 95.91 ± 0.04
glass0123vs456 93.84 97.03 93.84 98.86 (2−2, 24) 97.66 ± 0.54
glass016vs2 81.36 84.11 81.36 83.52 (216, 240) 88.25 ± 0.16
glass4 88.08 93.37 88.00 94.86 (28, 236) 93.34 ± 0.07
haberman 63.91 67.81 63.91 67.34 (28, 242) 68.17 ± 0.73
iris0 100.00 100.00 100.00 100.00 (2−10, 2−18) 100.00 ± 0.00
newthyroid1 99.60 100.00 99.60 99.71 (2−4, 224) 100.00 ± 0.00
newthyroid2 99.60 100.00 99.60 99.92 (28, 242) 99.98 ± 0.04
pageblock13vs4 98.00 100.00 98.00 99.96 (20, 212) 100.00 ± 0.00
pima 74.14 78.30 74.14 79.18 (20, 24) 79.62 ± 0.05
segment0 97.89 98.07 99.80 99.91 (2−4, 22) 99.93 ± 0.00
shuttleC0vsC4 100.00 100.00 100.00 100.00 (22, 2−8) 100.00 ± 0.00
shuttleC2vsC4 100.00 100.00 100.00 100.00 (24, 218) 100.00 ± 0.00
vowel0 100.00 100.00 100.00 57.38 (2−10, 2−18) 100.00 ± 0.00

Symmetry 2022, 14, 379 16 of 23

Table 4. Cont.

Dataset KELM
Test Result%

WKELM
Test Result%

CCR-KELM
Test Result%

WKSMOTE
Test Result% (KP, C) RKWELM-UFS

Test Result% ± std.

wisconsin 98.15 98.75 98.15 98.8 (212, 242) 99.08 ± 0.09
yeast05679vs4 74.54 85.72 74.54 78.8 (2−2, 26) 85.63 ± 0.37
yeast1289vs7 65.45 78.73 65.45 77.51 (26, 228) 79.96 ± 0.66
yeast1458vs7 61.76 70.63 61.76 74.91 (26, 218) 71.49 ± 0.41
yeast1vs7 72.15 81.00 72.15 82.89 (24, 216) 83.67 ± 0.10
yeast2vs8 79.39 83.55 79.39 85.55 (2−2, 248) 85.56 ± 0.00

Average 86.72 90.70 86.81 88.87 91.58 ± 0.18

Table 5. Performance Comparison of the proposed RKWELM-UFS with existing ensemble of classi-
fiers in terms of average AUC (std, KP, and C denote the standard deviation, Kernel width parameter,
and regularization parameter, respectively).

Dataset RUSBoost
TstR ± std.

BWELM
TstR

UBRKELM
MV

TstR ± std.

UBRKELM
SV

TstR ± std.

UBKELM
MV

TstR ± std.

UBKELM SV
TstR ± std. (KP, C)

RKWELM
UFS

TstR ± std.

abalone9vs18 93.67 ± 0.87 94.13 96.74 ± 1.21 96.84 ± 0.68 96.79 ± 0.55 96.55 ± 0.50 (26, 226) 94.97 ± 0.52
ecoli01vs5 93.94 ± 2.37 93.94 97.53 ± 0.30 97.00 ± 0.09 94.90 ± 2.34 94.13 ± 2.25 (28, 234) 95.91 ± 0.04
glass0123vs456 97.48 ± 0.72 96.57 97.61 ± 0.97 97.40 ± 0.34 97.36 ± 0.80 97.35 ± 0.00 (2−2, 24) 97.66 ± 0.54
glass016vs2 59.25 ± 4.34 85.43 87.10 ± 1.39 87.00 ± 1.40 86.07 ± 0.46 86.74 ± 1.58 (216, 240) 88.25 ± 0.16
glass4 96.18 ± 2.78 96.37 97.51 ± 2.49 97.51 ± 1.91 97.38 ± 0.19 97.83 ± 0.00 (28, 236) 93.34 ± 0.07
haberman 70.38 ± 4.29 68.22 68.50 ± 0.15 68.36 ± 0.22 69.25 ± 0.97 69.32 ± 1.46 (28, 242) 68.17 ± 0.73
iris0 54.85 ± 5.12 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.0 ± 0.0 (2−10, 2−18) 100.0 ± 0.0
newthyroid1 99.70 ± 0.51 100.00 100.00 ± 0.00 100.00 ± 1.11 100.00 ± 0.00 100.00 ± 0.00 (2−4, 224) 100.00 ± 0.00
newthyroid2 99.60 ± 0.21 100.00 100.00 ± 0.00 99.98 ± 0.52 100.00 ± 0.00 100.00 ± 0.00 (28, 242) 99.98 ± 0.04
pageblock13vs4 99.86 ± 0.2 98.00 99.97 ± 1.90 99.91 ± 0.13 100.00 ± 0.00 99.68 ± 0.28 (20, 212) 100.00 ± 0.00
pima 79.91 ± 0.93 79.10 80.03 ± 1.14 80.78 ± 0.48 79.87 ± 0.42 80.55 ± 0.48 (20, 24) 79.62 ± 0.05
segment0 100.0 ± 0.0 99.89 99.95 ± 0.00 99.91 ± 0.13 99.84 ± 0.00 99.64 ± 5.80 (2−4, 22) 99.93 ± 0.00
shuttleC0vsC4 80.00 ± 6.67 99.20 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (22, 2−8) 100.00 ± 0.00
shuttleC2vsC4 81.91 ± 7.10 99.20 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (24, 218) 100.00 ± 0.00
vowel0 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.0 ± 0.0 (2−10, 2−18) 100.0 ± 0.00
wisconsin 98.37 ± 0.31 98.15 99.05 ± 0.00 98.98 ± 0.14 98.72 ± 0.15 99.08 ± 0.14 (212, 242) 99.08 ± 0.09
yeast05679vs4 87.97 ± 1.02 84.08 86.09 ± 0.30 86.25 ± 1.28 85.86 ± 0.84 88.75 ± 1.07 (2−2, 26) 85.63 ± 0.37
yeast1289vs7 74.91 ± 1.81 78.44 80.59 ± 0.84 80.60 ± 0.53 80.52 ± 0.08 80.59 ± 0.07 (26, 228) 79.96 ± 0.66
yeast1458vs7 65.94 ± 2.14 70.72 72.77 ± 0.00 72.77 ± 1.08 72.98 ± 2.11 73.08 ± 1.37 (26, 218) 71.49 ± 0.41
yeast1vs7 86.53 ± 2.05 82.89 82.90 ± 1.17 82.41 ± 0.76 84.06 ± 1.29 86.09 ± 0.58 (24, 216) 83.67 ± 0.10
yeast2vs8 79.92 ± 2.45 84.42 84.32 ± 2.14 84.62 ± 1.29 84.08 ± 0.12 84.35 ± 0.00 (2−2, 248) 85.56 ± 0.00

Average 85.73 ± 2.19 90.89 91.94 ± 0.67 91.92 ± 0.58 91.79 ± 0.49 92.08 ± 0.74 91.58 ± 0.18

Figure 1a–c shows the boxplot diagram for the AUC results of the classifiers on various
datasets shown in Tables 3–5 respectively. The boxplot creates a visual representation of
the data to visualize the performance. It can be seen in Figure 1a,b that the proposed
method RKWELM-UFS has the highest median value and smallest inter-quantile range,
which shows that the RKWELM-UFS is performing better than MUEKL, USVM, KELM,
WKELM, CCR-KELM, and WKSMOTE. It can be seen in Figure 1c that RKWELM-UFS is
performing better than RUSBoost. Table 6 provides the t-test results and Table 7 provides
the Wilcoxon Signed-rank test results on the AUC of various algorithms provided in
Tables 3–5 for comparison. The results provided in Tables 6 and 7 suggest that the proposed
RKWELM-UFS performs significantly better than MUEKL, USVM, KELM, WKELM, CCR-
KELM, RUSBoost, and BWELM, and its performance is approximately similar to that
of WKSMOTE, UBRKELM-MV, UBRKELM-SV, UBKELMMV, and UBKELM-SV in terms
of AUC.

Symmetry 2022, 14, 379 17 of 23

1

Figure 1. Boxplot diagrams; each box visually represents the performance in terms of average AUC
of algorithms labeled on X axis. (a) Boxplot for results of Table 3. (b) Boxplot for results given in
Table 4. (c) Boxplot for results given in Table 5.

Table 6. T-test results for performance comparison in terms of AUC between the methods given in
Tables 3–5.

Methods Compared Stats p H (0.05)

MUEKL vs. RKWELM-UFS [−5.610820138186867; −2.152174147527417] 6.32 × 10−5 1
USVM vs. RKWELM-UFS [−11.440221923933274; −6.167915218923865] 8.34 × 10−8 1

KELM vs. RKWELM-UFS [−6.93534639982032; −2.78405360017968] 8.98 × 10−5 1
WKELM vs. RKWELM-UFS [−1.46246304953657; −0.301698855225338] 4.81 × 10−3 1

CCR-KELM vs. RKWELM-UFS [−6.88366104582675; −2.66145323988753] 1.33 × 10−4 1
WKSMOTE vs. RKWELM-UFS [−6.99623994510679; 1.56922089748774] 2.01 × 10−1 0

RUSBoost vs. RKWELM-UFS [−11.4335320049264; −0.266820376026017] 0.040906 1
BWELM vs. RKWELM-UFS [−1.21328125091469; −0.165166368132924] 0.012527 1

UBRKELM-MV vs. RKWELM-UFS [−0.169420432040612; 0.87763947965966] 0.17363 0
UBRKELM-SV vs. RKWELM-UFS [−0.196630485917308; 0.872468581155405] 0.20219 0
UBKELM-MV vs. RKWELM-UFS [−0.352563193428057; 0.776972717237582] 0.44236 0
UBKELM-SV vs. RKWELM-UFS [−0.184407389564474; 1.18500738956447] 0.14312 0

Symmetry 2022, 14, 379 18 of 23

Table 7. Wilcoxon Signed-rank test results for performance comparison in terms of AUC between the
methods given in Tables 3–5.

Methods Compared Zval Signedrank p-Value H (0.05)

MUEKL vs. RKWELM-UFS −4.62478463 12.00 3.75 × 10−6 1
USVM vs. RKWELM-UFS −5.086213249 0.00 3.65 × 10−7 1

KELM vs. RKWELM-UFS −3.621365173 0 2.93 × 10−4 1
WKELM vs. RKWELM-UFS 0 10 2.62 × 10−3 1

CCR-KELM vs. RKWELM-UFS −3.621365173 0 2.93 × 10−4 1
WKSMOTE vs. RKWELM-UFS −1.763789403 45 7.78 × 10−2 0

RUSBoost vs. RKWELM-UFS −2.015964161 51 0.043803724 1
BWELM vs. RKWELM-UFS −2.765775456 22 0.005678762 1

UBRKELM-MV vs. RKWELM-UFS 1.189301687 91 0.234320972 0
UBRKELM-SV vs. RKWELM-UFS 0.930757842 86 0.351978842 0
UBKELM-MV vs. RKWELM-UFS 0 73 0.488708496 0
UBKELM-SV vs. RKWELM-UFS 1.241010456 92 0.214601886 0

4.4.2. Performance Analysis in Terms of G-mean

Tables 8 and 9 provide the performance of the proposed RKWELM-UFS and other
classification models in terms of the G-mean. The reported test G-mean of the proposed
RKWELM-UFS given in Tables 8 and 9 is the averaged test g-mean obtained in 10 tri-
als, using 5-fold cross-validation in each trial. Table 8 provides the performance of the
proposed RKWELM-UFS and the existing single classifiers such as KELM, WKELM, CCR-
KELM, and WKSMOTE on 21 datasets in terms of average G-mean, where the RKWELM
outperforms the other classifiers on 16 datasets. Table 9 provides the performance of
the proposed RKWELM-UFS and the existing ensemble of classifiers such as RUSBoost,
BWELM, UBRKELM-MV, UBRKELMSV, UBKELM-MV, and UBKELM-SV on 21 datasets
in terms of average Gmean, where the RKWELM outperforms the other classifiers on
seven datasets.

Table 8. Performance Comparison of the proposed RKWELM-UFS with existing single classifiers in
terms of average G-mean (std., KP, and C denote the standard deviation, Kernel width parameter,
and regularization parameter, respectively).

Dataset KELM Test
Result%

WKELM
Test Result%

CCR-KELM
Test Result%

WKSMOTE
Test Result% (KP, C) RKWELM-UFS

TestResult% ± std.

abalone9vs18 72.71 89.76 76.56 91.94 (26, 226) 92.23 ± 0.57
ecoli01vs5 88.36 91.34 88.36 88.00 (210, 242) 93.01 ± 0.11
glass0123vs456 93.26 95.41 93.26 94.19 (2−2, 24) 96.06 ± 0.55
glass016vs2 63.20 83.59 81.36 79.00 (216, 240) 84.46 ± 0.50
glass4 85.93 91.17 87.22 89.00 (28, 236) 91.49 ± 0.14
haberman 57.23 66.26 59.71 65.21 (24, 212) 66.02 ± 0.57
iris0 100.00 100.00 100.00 100.00 (2−10, 2−18) 100.00 ± 0.00
newthyroid1 99.16 99.72 99.16 88.69 (2−2, 212) 99.44 ± 0.00
newthyroid2 99.44 99.72 99.44 90.72 (2−6, 2−18) 99.44 ± 0.00
pageblock13vs4 97.89 98.07 97.84 97.38 (20, 216) 100.00 ± 0.00
pima 71.16 75.58 73.61 74.00 (20, 24) 75.60 ± 0.19
segment0 97.89 98.07 99.57 100.00 (2−8, 2−18) 99.54 ± 0.00
shuttleC0vsC4 100.00 100.00 100.00 100.00 (22, 2−8) 100.00 ± 0.00
shuttleC2vsC4 94.14 100.00 100.00 100.00 (24, 218) 100.00 ± 0.00
vowel0 100.00 100.00 100.00 100.00 (2−10, 2−18) 100.00 ± 0.00
wisconsin 97.22 97.70 97.18 96.33 (212, 242) 97.89 ± 0.07
yeast05679vs4 68.68 82.21 82.24 81.00 (2−2, 26) 81.03 ± 0.47

Symmetry 2022, 14, 379 19 of 23

Table 8. Cont.

Dataset KELM Test
Result%

WKELM
Test Result%

CCR-KELM
Test Result%

WKSMOTE
Test Result% (KP, C) RKWELM-UFS

TestResult% ± std.

yeast1289vs7 60.97 71.41 59.28 69.83 (2−2, 20) 73.35 ± 0.05
yeast1458vs7 59.89 69.32 66.24 67.00 (2−4, 26) 67.54 ± 0.09
yeast1vs7 64.48 77.72 68.32 76.00 (22, 22) 77.77 ± 0.15
yeast2vs8 77.24 77.89 78.91 80.00 (20, 226) 81.36 ± 1.42

Average 83.28 88.81 86.11 87.06 89.74 ± 0.17

Table 9. Performance Comparison of the proposed RKWELM-UFS with existing ensemble of clas-
sifiers in terms of average G-mean (std., KP, and C denote the standard deviation, Kernel width
parameter, and regularization parameter, respectively).

Dataset RUSBoost
TstR ± std.

BWELM
TstR

UBRKELM
MV

TstR ± std.

UBRKELM
SV

TstR ± std.

UBKELM
MV

TstR ± std.

UBKELM SV
TstR ± std. (KP, C)

RKWELM
UFS

TstR ± std.

abalone9vs18 86.40 ± 1.33 90.12 92.28 ± 0.00 92.30 ± 0.00 91.53 ± 0.96 91.07 ± 3.45 (26, 226) 92.23 ± 0.57
ecoli01vs5 88.92 ± 1.55 89.36 93.53 ± 0.00 93.09 ± 0.09 93.63 ± 0.43 94.02 ± 1.07 (210, 242) 93.01 ± 0.11
glass0123vs456 93.74 ± 0.84 94.21 95.67 ± 0.68 95.91 ± 0.51 95.24 ± 0.90 95.45 ± 0.25 (2−2, 24) 96.06 ± 0.55
glass016vs2 52.46 ± 3.04 84.21 84.26 ± 0.50 84.42 ± 0.35 84.48 ± 0.43 83.89 ± 1.29 (216, 240) 84.46 ± 0.50
glass4 87.31 ± 2.82 90.30 91.69 ± 2.10 91.57 ± 2.86 92.91 ± 2.82 92.86 ± 3.30 (28, 236) 91.49 ± 0.14
haberman 53.36 ± 7.21 65.14 66.34 ± 0.13 70.20 ± 4.23 66.70 ± 0.88 66.49 ± 1.50 (24, 212) 66.02 ± 0.57
iris0 19.85 ± 10.38 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (2−10, 2−18) 100.0 ± 0.0
newthyroid1 98.05 ± 0.95 100.00 99.55 ± 0.20 99.61 ± 0.14 99.29 ± 0.49 99.47 ± 0.13 (2−2, 212) 99.44 ± 0.00
newthyroid2 96.94 ± 0.91 99.72 99.44 ± 0.13 99.44 ± 0.13 99.13 ± 0.00 99.30 ± 0.08 (2−6, 2−18) 99.44 ± 0.00
pageblock13vs4 97.96 ± 1.21 99.89 99.41 ± 0.12 99.91 ± 0.13 100.00 ± 0.00 100.00 ± 0.00 (20, 216) 100.00 ± 0.00
pima 70.34 ± 1.45 75.48 76.11 ± 0.21 76.22 ± 0.22 75.76 ± 0.31 75.84 ± 0.34 (20, 24) 75.60 ± 0.19
segment0 99.99 ± 0.00 99.89 99.80 ± 0.13 99.68 ± 0.28 99.63 ± 1.10 99.64 ± 5.80 (2−8, 2−18) 99.54 ± 0.00
shuttleC0vsC4 60.00 ± 13.33 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (22, 2−8) 100.00 ± 0.00
shuttleC2vsC4 68.50 ± 15.89 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (24, 218) 100.00 ± 0.00
vowel0 100.00 ± 0 100.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 (2−10, 2−18) 100.00 ± 0.00
wisconsin 95.46 ± 0.77 97.18 97.81 ± 0.00 97.81 ± 0.00 97.72 ± 0.20 97.79 ± 0.18 (212, 242) 97.89 ± 0.07
yeast05679vs4 77.55 ± 1.63 80.96 81.82 ± 1.98 82.62 ± 0.09 82.24 ± 0.33 83.45 ± 2.29 (2−2, 26) 81.03 ± 0.47
yeast1289vs7 67.83 ± 2.96 72.67 75.54 ± 0.84 75.27 ± 0.12 74.28 ± 1.05 74.73 ± 1.72 (2−2, 20) 73.35 ± 0.05
yeast1458vs7 59.59 ± 3.43 69.87 69.54 ± 1.48 69.54 ± 1.74 71.24 ± 1.69 70.15 ± 1.31 (2−4, 26) 67.54 ± 0.09
yeast1vs7 73.49 ± 1.79 77.72 78.90 ± 7.44 78.41 ± 0.76 77.73 ± 0.00 77.90 ± 1.54 (22, 22) 77.77 ± 0.15
yeast2vs8 72.16 ± 1.83 78.35 80.77 ± 2.42 80.10 ± 0.22 80.05 ± 2.44 81.69 ± 1.51 (20, 226) 81.36 ± 1.42

Average 77.39 ± 3.59 89.34 90.08 ± 0.80 90.30 ± 0.58 90.08 ± 0.58 90.10 ± 1.21 89.74 ± 0.17

Figure 2a,b shows the boxplot diagram for the G-mean results of the classifiers on
various datasets shown in Tables 8 and 9, respectively. It can be seen in Figure 2a that
the proposed RKWELM-UFS has the highest median value and smallest inter-quantile
range, which shows that the RKWELM-UFS is performing better than KELM, WKELM,
CCR-KELM, and WKSMOTE in terms of the G-mean. It can be seen in Figure 2b that
RKWELM-UFS is performing better than RUSBoost and BWELM in terms of the G-mean.
Table 10 provides the t-test results and Table 11 provides the Wilcoxon signed-rank test
results on the G-mean of various algorithms provided in Tables 8 and 9 for comparison. The
results provided in Tables 10 and 11 suggest that the proposed RKWELM-UFS performs
significantly better than KELM, CCR-KELM, WKSMOTE, and RUSBoost, and performs
approximately similarly to WKELM, BWELM, UBRKELM-MV, UBRKELM-SV, UBKELM-
MV, UBKELM-SV in terms of the G-mean.

Symmetry 2022, 14, 379 20 of 23

2

Figure 2. Boxplot diagrams; each box visually represents the performance in terms of average G-mean
of algorithms labelled on X axis. (a) Boxplot for G-mean results given in Table 8. (b) Boxplot for
G-mean results given in Table 9.

Table 10. T-test results for performance comparison in terms of G-mean between the methods given
in Tables 8 and 9.

Methods Compared Stats p H (0.05)

KELM vs. RKWELM-UFS [−8.97586793133104; −3.15547492581182] 3.12 × 10−4 1
WKELM vs. RKWELM-UFS [−1.10027216529072; 0.0251197843383338] 6.01 × 10−2 0
CCR-KELM vs. RKWELM-UFS [−5.34275272694909; −1.13049489209853] 4.44 × 10−3 1
WKSMOTE vs. RKWELM-UFS [−3.63784233634963; −0.927786235078946] 2.18 × 10−3 1

RUSBoost vs. RKWELM-UFS [−20.961933935114; −3.45036130298126] 0.0086978 1
BWELM vs. RKWELM-UFS [−1.12033850136527; 0.0575670727938417] 7.45 × 10−2 0
UBRKELM-MV vs. RKWELM-UFS [−0.0326448040855254; 0.626063851704572] 0.074868 0
UBRKELM-SV vs. RKWELM-UFS [−0.0440133837744108; 0.984099098060123] 0.070939 0
UBKELM-MV vs. RKWELM-UFS [−0.207557995239237; 0.715262757143997] 0.26467 0
UBKELM-SV vs. RKWELM-UFS [−0.0647504586179029; 0.780074268141712] 0.092621 0

Symmetry 2022, 14, 379 21 of 23

Table 11. Wilcoxon signed-rank test results for performance comparison in terms of G-mean between
the methods given in Tables 8 and 9.

Methods Compared Zval Signed Rank p-Value H (0.05)

KELM vs. RKWELM-UFS −3.723555406 0 1.96 × 10−4 1
WKELM vs. RKWELM-UFS −1.822772421 38 6.83 × 10−2 0
CCR-KELM vs. RKWELM-UFS −3.289998425 7 1.00 × 10−3 1
WKSMOTE vs. RKWELM-UFS −3.479350852 3 5.03 × 10−4 1

RUSBoost vs. RKWELM-UFS −3.882597643 1 1.03 × 10−4 1
BWELM vs. RKWELM-UFS −1.917193327 36 5.52 × 10−2 0
UBRKELM-MV vs. RKWELM-UFS 1.585826579 110 0.112778655 0
UBRKELM-SV vs. RKWELM-UFS 1.917193327 117 0.055213376 0
UBKELM-MV vs. RKWELM-UFS 0.723922766 82 0.469113152 0
UBKELM-SV vs. RKWELM-UFS 1.525663664 97.5 0.127093648 0

5. Conclusions and Future Work

The use of additional data for training along with the original training data has been
employed in many approaches. The Universum data are used to add prior knowledge
about the distribution of data in the classification model. Various ELM-based classification
models have been suggested to handle the class imbalance problem, but none of these
models use prior knowledge. The proposed RKWELM-UFS is the first attempt that employs
Universum data to enhance the performance of the RKWELM classifier. This work generates
the Universum samples in the feature space using the kernel trick. The reason behind the
creation of the Universum instances in the feature space is that the mapping of input data
to the feature space is not conformal. The proposed work is evaluated on 44 benchmark
datasets with an imbalance ratio between 0:45 to 43:80 and a number of instances between
129 to 2308. The proposed method is compared with 10 state-of-the-art methods used for
class-imbalanced dataset classification. G-mean and AUC are used as metrics to evaluate
the performance of the proposed method. The paper also incorporates statistical tests to
verify the significant performance difference between the proposed and compared methods.

In Universum data-based learning, it has been observed that the efficiency of such
classifiers depends on the quality and volume of Universum data created. The methodology
of choosing or creating the appropriate Universum samples should be the subject of further
research. In the proposed work, the Universum samples are created between randomly
selected pairs of majority and minority class samples. In the future, some strategic concepts
can be used to select the majority and minority samples instead of random selection. In
the future, Universum data can be incorporated in other ELM-based classification models
to enhance their learning capability on class imbalance problems. The future work also
includes the development of a multi-class variant of the proposed RKWELM-UFS.

Author Contributions: Conceptualization, R.C.; methodology, R.C. and S.S.; Software, R.C.; val-
idation, R.C. and S.S.; formal analysis, R.C.; investigation, R.C.; resources, data curation, R.C.;
writing—original draft preparation, R.C.; writing—review and editing, S.S. supervision, S.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The work received no funding from any organization, institute, or person.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2022, 14, 379 22 of 23

References
1. Schaefer, G.; Nakashima, T. Strategies for addressing class imbalance in ensemble classification of thermography breast cancer features.

In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 2362–2367.
2. Sadewo, W.; Rustam, Z.; Hamidah, H.; Chusmarsyah, A.R. Pancreatic Cancer Early Detection Using Twin Support Vector Machine

Based on Kernel. Symmetry 2020, 12, 667. [CrossRef]
3. Hao, W.; Liu, F. Imbalanced Data Fault Diagnosis Based on an Evolutionary Online Sequential Extreme Learning Machine.

Symmetry 2020, 12, 1204. [CrossRef]
4. Mulyanto, M.; Faisal, M.; Prakosa, S.W.; Leu, J.-S. Effectiveness of Focal Loss for Minority Classification in Network Intrusion

Detection Systems. Symmetry 2020, 13, 4. [CrossRef]
5. Tahvili, S.; Hatvani, L.; Ramentol, E.; Pimentel, R.; Afzal, W.; Herrera, F. A novel methodology to classify test cases using natural

language processing and imbalanced learning. Eng. Appl. Artif. Intell. 2020, 95, 103878. [CrossRef]
6. Furundzic, D.; Stankovic, S.; Jovicic, S.; Punisic, S.; Subotic, M. Distance based resampling of imbalanced classes: With an

application example of speech quality assessment. Eng. Appl. Artif. Intell. 2017, 64, 440–461. [CrossRef]
7. Mariani, V.C.; Och, S.H.; dos Santos Coelho, L.; Domingues, E. Pressure prediction of a spark ignition single cylinder engine

using optimized extreme learning machine models. Appl. Energy 2019, 249, 204–221. [CrossRef]
8. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
9. Weston, J.; Collobert, R.; Sinz, F.; Bottou, L.; Vapnik, V. Inference with the universum. In Proceedings of the 23rd International

Conference on Machine Learning, New York, NY, USA, 25 June 2006; pp. 1009–1016.
10. Qi, Z.; Tian, Y.; Shi, Y.J. Twin support vector machine with Universum data. Neural Netw. 2012, 36, 112–119. [CrossRef]
11. Dhar, S.; Cherkassky, V. Cost-sensitive Universum-svm. In Proceedings of the 2012 11th International Conference on Machine

Learning and Applications, Boca Raton, FL, USA, 12–15 December 2012; pp. 220–225.
12. Richhariya, B.; Tanveer, M.J. EEG signal classification using Universum support vector machine. Expert Syst. Appl. 2018, 106,

169–182. [CrossRef]
13. Qi, Z.; Tian, Y.; Shi, Y. A nonparallel support vector machine for a classification problem with Universum learning. J. Comput.

Appl. Math. 2014, 263, 288–298. [CrossRef]
14. Zhao, J.; Xu, Y.; Fujita, H.J. An improved non-parallel Universum support vector machine and its safe sample screening rule.

Knowl. Based Syst. 2019, 170, 79–88. [CrossRef]
15. Tencer, L.; Reznáková, M.; Cheriet, M.J. Ufuzzy: Fuzzy models with Universum. Appl. Soft Comput. 2017, 59, 1–18. [CrossRef]
16. Wang, Z.; Hong, S.; Yao, L.; Li, D.; Du, W.; Zhang, J. Multiple universum empirical kernel learning. Eng. Appl. Artif. Intell. 2020,

89, 103461. [CrossRef]
17. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
18. Zong, W.; Huang, G.-B.; Chen, Y.J. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242.

[CrossRef]
19. Xiao, W.; Zhang, J.; Li, Y.; Zhang, S.; Yang, W. Class-specific cost regulation extreme learning machine for imbalanced classification.

Neurocomputing 2017, 261, 70–82. [CrossRef]
20. Raghuwanshi, B.S.; Shukla, S. Class-specific kernelized extreme learning machine for binary class imbalance learning. Appl. Soft

Comput. 2018, 73, 1026–1038. [CrossRef]
21. Raghuwanshi, B.S.; Shukla, S. Underbagging based reduced kernelized weighted extreme learning machine for class imbalance

learning. Eng. Appl. Artif. Intell. 2018, 74, 252–270. [CrossRef]
22. Raghuwanshi, B.S.; Shukla, S. Class imbalance learning using UnderBagging based kernelized extreme learning machine.

Neurocomputing 2019, 329, 172–187. [CrossRef]
23. Mathew, J.; Pang, C.K.; Luo, M.; Leong, W.H. Classification of imbalanced data by oversampling in kernel space of support vector

machines. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 4065–4076. [CrossRef]
24. Chen, S.; Zhang, C. Selecting informative Universum sample for semi-supervised learning. In Proceedings of the Twenty-First

International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009.
25. Zhao, J.; Xu, Y.J. A safe sample screening rule for Universum support vector machines. Knowl. Based Syst. 2017, 138, 46–57.

[CrossRef]
26. Cherkassky, V.; Dai, W. Empirical study of the Universum SVM learning for high-dimensional data. In Proceedings of the

International Conference on Artificial Neural Networks, Limassol, Cyprus, 14–17 September 2009; pp. 932–941.
27. Hamidzadeh, J.; Kashefi, N.; Moradi, M. Combined weighted multi-objective optimizer for instance reduction in two-class

imbalanced data problem. Eng. Appl. Artif. Intell. 2020, 90, 103500. [CrossRef]
28. Lin, W.-C.; Tsai, C.-F.; Hu, Y.-H.; Jhang, J.-S. Clustering-based undersampling in class-imbalanced data. Inf. Sci. 2017, 409, 17–26.

[CrossRef]
29. Ofek, N.; Rokach, L.; Stern, R.; Shabtai, A. Fast-CBUS: A fast clustering-based undersampling method for addressing the class

imbalance problem. Neurocomputing 2017, 243, 88–102. [CrossRef]
30. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]

http://doi.org/10.3390/sym12040667
http://doi.org/10.3390/sym12081204
http://doi.org/10.3390/sym13010004
http://doi.org/10.1016/j.engappai.2020.103878
http://doi.org/10.1016/j.engappai.2017.07.001
http://doi.org/10.1016/j.apenergy.2019.04.126
http://doi.org/10.1016/j.neunet.2012.09.004
http://doi.org/10.1016/j.eswa.2018.03.053
http://doi.org/10.1016/j.cam.2013.11.003
http://doi.org/10.1016/j.knosys.2019.01.031
http://doi.org/10.1016/j.asoc.2017.05.018
http://doi.org/10.1016/j.engappai.2019.103461
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1016/j.neucom.2012.08.010
http://doi.org/10.1016/j.neucom.2016.09.120
http://doi.org/10.1016/j.asoc.2018.10.011
http://doi.org/10.1016/j.engappai.2018.07.002
http://doi.org/10.1016/j.neucom.2018.10.056
http://doi.org/10.1109/TNNLS.2017.2751612
http://doi.org/10.1016/j.knosys.2017.09.031
http://doi.org/10.1016/j.engappai.2020.103500
http://doi.org/10.1016/j.ins.2017.05.008
http://doi.org/10.1016/j.neucom.2017.03.011
http://doi.org/10.1613/jair.953

Symmetry 2022, 14, 379 23 of 23

31. Zhu, T.; Lin, Y.; Liu, Y. Synthetic minority oversampling technique for multiclass imbalance problems. Pattern Recognit. 2017, 72,
327–340. [CrossRef]

32. Agrawal, A.; Viktor, H.L.; Paquet, E. SCUT: Multi-class imbalanced data classification using SMOTE and cluster-based under-
sampling. In Proceedings of the 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K), Lisbon, Portugal, 12–14 November 2015; pp. 226–234.

33. Wang, Z.; Chen, L.; Fan, Q.; Li, D.; Gao, D. Multiple Random Empirical Kernel Learning with Margin Reinforcement for imbalance
problems. Eng. Appl. Artif. Intell. 2020, 90, 103535. [CrossRef]

34. Raghuwanshi, B.S.; Shukla, S. Class-specific extreme learning machine for handling binary class imbalance problem. Neural Netw.
2018, 105, 206–217. [CrossRef]

35. Guo, W.; Wang, Z.; Hong, S.; Li, D.; Yang, H.; Du, W. Multi-kernel Support Vector Data Description with boundary information.
Eng. Appl. Artif. Intell. 2021, 102, 104254. [CrossRef]

36. Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE
Trans. Syst. Man Cybern.-Part A Syst. Hum. 2009, 40, 185–197. [CrossRef]

37. Haixiang, G.; Yijing, L.; Yanan, L.; Xiao, L.; Jinling, L. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class
imbalanced data classification. Eng. Appl. Artif. Intell. 2016, 49, 176–193. [CrossRef]

38. Shen, C.; Wang, P.; Shen, F.; Wang, H. UBoost: Boosting with theUniversum. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34,
825–832. [CrossRef]

39. Freund, Y.; Schapire, R.; Abe, N.J. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 1612.
40. Zhang, Y.; Liu, B.; Cai, J.; Zhang, S. Ensemble weighted extreme learning machine for imbalanced data classification based on

differential evolution. Neural Comput. Appl. 2017, 28, 259–267. [CrossRef]
41. Li, K.; Kong, X.; Lu, Z.; Wenyin, L.; Yin, J. Boosting weighted ELM for imbalanced learning. Neurocomputing 2014, 128, 15–21.

[CrossRef]
42. Huang, G.B.; Zhou, H.M.; Ding, X.J.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE

Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [CrossRef] [PubMed]
43. Deng, W.Y.; Ong, Y.S.; Zheng, Q.H. A Fast Reduced Kernel Extreme Learning Machine. Neural Netw. 2016, 76, 29–38. [CrossRef]

[PubMed]
44. Alcala-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac, J.; Garcia, S.; Sanchez, L.; Herrera, F. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. J. Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
45. Alcala-Fdez, J.; Sanchez, L.; Garcia, S.; del Jesus, M.J.; Ventura, S.; Garrell, J.M.; Otero, J.; Romero, C.; Bacardit, J.; Rivas, V.M.; et al.

KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2009, 13, 307–318. [CrossRef]
46. Zeng, Y.J.; Xu, X.; Shen, D.Y.; Fang, Y.Q.; Xiao, Z.P. Traffic Sign Recognition Using Kernel Extreme Learning Machines with Deep

Perceptual Features. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1647–1653. [CrossRef]

http://doi.org/10.1016/j.patcog.2017.07.024
http://doi.org/10.1016/j.engappai.2020.103535
http://doi.org/10.1016/j.neunet.2018.05.011
http://doi.org/10.1016/j.engappai.2021.104254
http://doi.org/10.1109/TSMCA.2009.2029559
http://doi.org/10.1016/j.engappai.2015.09.011
http://doi.org/10.1109/TPAMI.2011.240
http://doi.org/10.1007/s00521-016-2342-4
http://doi.org/10.1016/j.neucom.2013.05.051
http://doi.org/10.1109/TSMCB.2011.2168604
http://www.ncbi.nlm.nih.gov/pubmed/21984515
http://doi.org/10.1016/j.neunet.2015.10.006
http://www.ncbi.nlm.nih.gov/pubmed/26829605
http://doi.org/10.1007/s00500-008-0323-y
http://doi.org/10.1109/Tits.2016.2614916

	Introduction
	Related Work
	Universum Learning
	Class Imbalance Learning
	Data Level Approach
	Algorithmic Approach
	Hybrid Approach

	Extreme Learning Machine (ELM) and Its Variants to Handle Class Imbalance Learning
	Weighted Extreme Learning Machine (WELM)
	Reduced Kernel Weighted Extreme Learning Machine (RKWELM)
	UnderBagging-Based Kernel Extreme Learning Machine (UBKELM)
	UnderBagging-Based Reduced-Kernelized Weighted Extreme Learning Machine

	Proposed Method
	Generation of Universum Samples in the Input Space
	Generation of Universum Samples in the Feature Space
	Proposed Reduced-Kernel Weighted Extreme Learning Machine Using Universum Samples in Feature Space (RKWELM-UFS)
	Computation of KELM
	Computation of UFS
	Computation of RKELM - UFS

	Computational Complexity

	Experimental Setup and Result Analysis
	Dataset Specifications
	Evaluation Matrix
	Parameter Settings
	Experimental Results and Performance Comparison
	Performance Analysis in Terms of AUC
	Performance Analysis in Terms of G-mean

	Conclusions and Future Work
	References

