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Abstract: Pose estimation is one of the most complicated and compromising problems for under-
ground mining machine tracking, and it is particularly important for hydraulic support autonomous
following mining machine (AFM) policy-making system. In this paper, a low-cost infrared vision-
based system through an Efficient Perspective-n-Point (EPnP) algorithm is proposed. To improve
efficiency and simplify computation, a traditional EPnP algorithm is modified through a nature-
inspired heuristic optimization algorithm. The optimized algorithm is integrated into the AFM
policy-making system to estimate the relative pose (R-Pose) estimation between hydraulic support
and the mining machine’s shearer drum. Simple yet effective numerical simulations and industrial
experiments were carried out to validate the proposed method. The pose estimation error was ≤1%
under normal lighting and illuminance, and ≤2% in a simulated underground environment, which
was accurate enough to meet the needs of practical applications. Both numerical simulation and
industrial experiment proved the superiority of the approach.

Keywords: fully mechanized underground working face; pose estimation; EPnP; optimization;
computer vision

1. Introduction

The pose estimation of intelligent equipment on a fully mechanized underground
working face is particularly complicated and significant for unmanned mining. One of the
most challenging problems is hydraulic support autonomous following mining machine
(AFM), which is aimed at mining machine tracking. The relative pose (R-Pose) between
hydraulic support and the mining machine’s shearer drum is the most important parameter
for ensuring AFM safety and efficiency. The effective monitoring of the R-Pose using the
traditional approach, based on inclinometer or computational estimation, cannot give a
global view that considers coal-seam geological conditions and hardness indeterminacy,
nor can it indicate equipment straightness within a limited monitoring space. Consequently,
a major production accident is inevitable.

In the present study, we propose an ArUco-based Perspective-n-Point (PnP) solution
for R-Pose estimation and to establish an AFM policy-making system that integrates R-Pose
estimation. To improve accuracy and efficiency and simplify computation, the PnP solution
is optimized by the nature-inspired heuristic optimization algorithm virus colony search
(VCS). The main novelty of the work is the proposed VCS-optimized Efficient Perspective-n-
Point (EPnP) algorithm, which was first applied in underground mining machine tracking.
The organization of the paper is as follows: In Section 2, related works about vision-
based pose estimation, PnP problem and the heuristic algorithm for PnP solution are
reviewed. Section 3, the theoretical foundations of vision-based pose estimation and the
VCS algorithm are presented. In Section 4, the methodology used for the whole detection
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procedure is demonstrated. In Section 5, key technologies, including the system architecture,
AFM policy-making flowchart and the VCS-optimized E-PnP algorithm are described. In
Section 6, numerical simulation is conducted and industrial experiments carried out with
physical equipment. Conclusions are summarized in Section 7.

2. Literature Review
2.1. Vision-Based Pose Estimation

In essence, the proposed AFM policy-making system uses computer vision to es-
timate the R-Pose. At present, vision-based pose estimation is widely used in aircraft
visual inspection [1], autonomous vehicles [2], civil construction [3] and human body pose
recognition [4]. Concerning robotic grasping, Guoguang Du et al. [5], conducted a compre-
hensive survey that reviewed three key tasks during vision-based robotic grasping: object
localization, object pose estimation and grasp estimation. Due to the characteristics of tex-
turelessness and self-occlusion, Jia [6] proposed a machine-vision-based method for 6D pipe
pose estimation. By combing vision and tactile sensors, Dan et al. [7] proposed a novel, accu-
rate positioning method for object pose estimation in robotic manipulation. Praneet et al. [8]
developed OpenMonkeyStudio, a deep-learning-based markerless motion capture system
to estimate a 3D pose in freely moving macaques in large unconstrained environments.
To quantitatively analyze impaired movement from neurological and musculoskeletal
diseases, Łukasz Kidziński [9] proposed a deep neural network to predict clinically rel-
evant motion parameters from an ordinary video of a patient. Valliappan [10] also used
vision-based technology for eye-tracking, which uses machine learning to demonstrate
accurate smartphone-based eye tracking without any additional hardware. Vision-based
pose estimation has also been applied in aerospace. For example, Thaweerath [11] et al.
proposed a deep convolutional neural network for noncooperative docking operations
through vision-based spacecraft pose estimation. Sukkeun Kim et al. [12], proposed a kind
of vision-based pose estimation for fixed-wing aircraft using one-short looking and PnP.

2.2. PnP Problem

The Perspective-n-Point (PnP) pose problem concerns the estimation of the relative
pose between a calibrated camera and an object from a set of n 3D coordinates points
(x,y,z) and their 2D projections with known (u,v) pixel coordinates. As early in 1989,
Radu et al. [13] provided an analytic solution to the Perspective 4-Point problem. The
most classical was proposed by Moreno [14] in 2007, a non-iterative solution that grew
linearly and had limited computational complexity. Then, Li et al. [15] proposed a non-
iterative solution that could robustly retrieve the optimum by solving a seventh-order
polynomial. Wang Ping [16] proposed a simple, robust and fast algorithm that translated
the pose estimation problem into an optimal problem requiring only a seventh-order
and fourth-order univariate polynomial to be solved. It made the processes more easily
understandable and significantly improved performance. Recently, other novel solutions
have been proposed. For example, Zhou [17] proposed an efficient PnP solution using
an uncalibrated camera of unknown focal length. Yu [18] presented an efficient algebraic
solution to the perspective 3-point problem in which the camera pose was estimated from
three given 3D–2D correspondence sets. Zhou [19], however, estimated the camera pose
using n ≥ 3 2D–3D line correspondences. Thus, the problem was turned into a Perspective-
n-Line problem. Finally, a complete, accurate, and efficient solution was proposed by
solving the minimal (n = 3) problem and the least-squares problem (n > 3) in different
ways. Particularly noteworthy are the new approaches via machine learning that were
studied as well. Liu et al. [20] proposed a deep convolutional neural network (CNN) model
that simultaneously solves for both the six degrees of freedom (6-DoF) absolute camera
pose and the 2D–3D correspondences. More intelligent and heuristic PnP solutions need
further discussion.
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2.3. Heuristic Optimization

Based on the research trend of vision-based pose estimation, optimization is the key
to intelligent and heuristic PnP solutions. Recently, nature-inspired optimization has
been widely used in image processing [21], text document clustering [22], industrial data
mining [23] and decision-making problems [24]. The algorithms most commonly used in
computer vision are ant colony [25], particle swarm [26], bee colony [27], Grey Wolf [28],
and Cockroach Colony [29]. In 2019, Mohit et al. [30] proposed a novel nature-inspired
algorithm: Squirrel search. The typical optimization benchmark functions were tested,
and six well-known optimization algorithms were compared to it. The results showed
the superiority of the proposed algorithm. Then, Ghasemi-Marzbali [31] presented a
novel nature-inspired meta-heuristic optimization; bear smell search algorithm (BSSA) that
took into account powerful global and local search operators. Neetesh [32] demonstrated
the dynamic foraging behavior of Agama lizards and built a mathematical model to
simulate their foraging methods as an the artificial lizard search optimization (ALSO)
algorithm. Among these approaches, virus colony search (VCS) [33] is a novel nature-
spired algorithm that simulates diffusion and infection strategies for virus-infected host
cells to survive and propagate in the cell environment. Because it considers convergence
and accuracy simultaneously, the VCS is particularly suitable for global numerical and
engineering optimization problems. Thus, in this paper, the VCS algorithm was applied
to PnP optimization, and a heuristic EPnP-based pose estimation approach for hydraulic
support autonomous followed.

3. Theoretical Foundations

The key to vision-based R-Pose estimation is the PnP solution. To improve estimation
accuracy, an R-Pose estimation method based on the VCS-optimized EPnP algorithm was
proposed, which is of great significance for AFM policymaking.

3.1. EPnP-Based Pose Estimation

The essence of the R-Pose estimation is to obtain the relative pose between the camera
and ArUco maker through n 3D points (x, y, z) and their 2D projection coordinates (µ, v).
To solve the PnP problem, Lepetit et al. [14] proposed an efficient PnP (EPnP) algorithm
with a time complexity of only O(n). During the solution, four coordinate systems were
established: ArUco maker, imaging plane, camera and world. According to the small-hole
imaging principle, the conversion equation between the camera coordinate and world
coordinate can be calculated as follows:

ZC

 u
v
1

 =

 fu 0 u0 0
0 fv v0 0
0 0 1 0

[ R T
O 1

]
Xw
Yw
Zw
1

 (1)

where R is the 3 × 3 rotation matrix; T is the 3 × 1 displacement vector; fu = f /dx;
fv = f /dy; and f is the focal length of camera. The first matrix on the right of the above
formula is the internal parameter matrix. The second is the rigid body transformation
matrix, i.e., the external parameter matrix. [u v 1]T is the projective pixel point on the
marker image and [Xw Yw Zw]

T is the 3D coordinate of reference point on the marker in the
world coordinate. To solve R and T, four control points cj

B(j = 1, 2, 3, 4) were introduced
to express the coordinates of the reference point on the marker. The coordinates of the
reference and control points can be converted as follows:

pi
B =

4

∑
j=1

aijc
j
B, i = 1, 2, . . . , N (2)
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where pj
B is the reference point on the marker, and the vector aij is the coordinate of

the spatial reference point in Euclidean space. According to the invariance of the linear
relationship under a Euclidean transformation, the relationship can be calculated as follows:

pi
C =

4

∑
j=1

aijc
j
C, i = 1, 2, . . . , N (3)

Furthermore, we get

kiqi =
4

∑
j=1

aijc
j
C, i = 1, 2, . . . , N (4)

It is converted into a system of linear equations with the following formula:

Mx = 0, x =
[ (

c1
C
)T (

c2
C
)T (

c3
C
)T (

c4
C
)T
]

(5)

The above equations have 4 control points and 12 unknown variables, and x is the
right zero space of M. The solution of x is the kernel space of M, which can be obtained by
solving the zero-space characteristic sequence for MT M. x can be obtained by choosing
the linear combination sequence corresponding to the minimum zero-space error. The
coordinates of the control points in the camera coordinate are restored. In the process of
solving x, it was necessary to select an appropriate linear combination:

x =
N

∑
i=1

βivi (6)

The desirable range of the zero-space dimension for MT M is N = 1, 2, 3, 4. According
to different value of N, there will be different solution strategies. In the computation process
of EPnP, the reprojection error (RE) can be calculated corresponding to N is 1, 2, 3 and 4
respectively. Then the result is the one corresponding to the minimum projection error.
Suppose the optimization variable is β = [β1, β2, β3, β4], then the optimization objectives
are set to the following equation.

f (β) = ∑
(i,j)s.t.i<j

(
‖ci

C − cj
C‖

2
− ‖ci

B − cj
B‖

2
)

(7)

where ‖ci
B − cj

B‖
2

is the distance in the object-coordinate system. The coordinates of the
control point under the camera coordinate are shown as follows:

ci
C =

4

∑
j=1

β jvi
j (8)

After obtaining the pose R and T of the ArUco maker in the camera coordinate through
the above calculation, the pose of the shearer drum can be calculated.

3.2. VCS-Based Optimization

The VCS algorithm simulates the process of virus infection and diffusion into host
cells in the cellular environment. The process is divided into three stages: virus diffusion,
host–cell infection and host–immune response. According to the characteristics of the three
stages of virus growth, the VCS algorithm was demonstrated as follows:

Step 1: Initialize the VCS parameters, including the dimension of optimization problem
D, search range [LB, UB], virus and host-cell population size N, and maximum number
of iterations gMax. The whole variable space is divided into two groups: virus Vpop and
host Hpop.
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Step 2: For virus diffusion, each individual virus will randomly generate new individ-
uals. To find the global optimization, the Gaussian random method was used to generate
them. The calculation was presented as follows:

V′pop,i = Gaussian
(

Gg
best, log(g)/g ·

(
Vpop,i − Gg

best

))
+
(

r1Gg
best − r2Vpop,i

)
(9)

where i is the index of randomly selected individuals i = [1, 2, 3, . . . , N]; N is the size of
the population; Gg

best is the global optimal solution in the gth iteration; and r1and r2 are
random coefficients within [0, 1].

Step 3: The process of virus infection is essentially an interactive process of material
conversion between host cells and the virus, which can be simulated by the CMA-based
evolutionary method [34]. The host individual can be updated as follows:

Hg
pop,i = Xg

mean + δ
g
i · Ni(0, Cg) (10)

where Ni(0, Cg) is the mean; the covariance matrix is the Gaussian distribution for Cg ∈ <D×D;
D is the dimension of the problem; δ

g
i is the step size; Xg

mean is the parental vector with
dimension number λ = bN/2c; and its initial value is calculated as

X0
mean =

∑N
i=1 Vpop,i

N
(11)

and can be updated as follows:

Xg+1
mean = ln(λ + 1)/

(
λ

∑
j=1

ln(λ + 1)− ln(j)

)
(12)

The step size δ
g
i and covariance matrix Cg are updated through Equations (16) and (17),

respectively.

δ
g+1
i = δ

g
i × exp

(
cσ

dσ

(
‖pg+1

σ ‖
E‖N(0, I)‖

))
(13)

Cg+1 = ξ1Cg + c1 pg+1
c

(
pg+1

c

)T
+ c

λ

λ

∑
i=1

wi
Vpop,i − Xg

mean

σg ·

(
Vpop,i − Xg

mean

)T

σg (14)

where coefficient ξ1 = (1− c1 − cλ). Coefficient c1 and cλ are calculated as follows:

c1 =
1

λw

((
1− 1

λw

)
min

{
1,

2λw − 1

(N + 2)2 + λw

}
+

1
λw

2

(N +
√

2)
2

)
(15)

cλ = (λw − 1)c1 (16)

pg+1
σ and pg+1

c are evolutionary paths, which can be calculated as follows:

pg+1
σ = (1− cσ)pg

σ +

√
cσ(2− cσ)λw

σg (Cg)−1/2
(

Xg+1
mean − Xg

mean

)
(17)

pg+1
c = (1− cc)pg

c +
hσ

√
cc(2− cc)λw

σg (Cg)−1/2
(

Xg+1
mean − Xg

mean

)
(18)

(Cg)−1/2 is a symmetric positive matrix that satisfies (Cg)−1/2(Cg)−1/2 = (Cg)−1; the
cumulative coefficients are cσ = (λw + 2)/(N + λw + 3),cc = 4/(N + 4) and dσ = 1+ cσ +
2max

{
0,
(√

λw − 1/
√

N + 1
)}

.
Step 4: Host-cell immunity. This process actually screens for viruses and maintains

the virus’s strong viability. Therefore, it is necessary to evaluate and sort the fitness of the
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virus individual and carry out retention and evolution operations on it according to the
sorted value. The specific calculation is as follows:{

V ′′pop,i,j = Vpop,i,j i f r > Prrank(i)

V ′′pop,i,j = Vpop,k,j + rand ·
(

Vpop,h,j −Vpop,i,j

)
otherwise

(19)

where k, i, h are unequal integers with random selection, and j ∈ [1, 2, 3, . . . , d]. The
defined boundary value of sorted individual fitness is Prrank(i) = (N − i + 1)/N.

Step 5: If it reaches the specified end condition, the final individual is retained and
its fitness value is calculated. If the stop condition is not reached, return to Step 1.2, and
continue searching.

4. Methodology

According to Lepetit et al. [14], our methodology is a four-step optimization problem
based on an EPnP-based pose estimation. Let the reference points be pj

B, and the 4 control

points used for expressing their world coordinate be cj
B(j = 1, 2, 3, 4). The coordinates of

the reference point and the control point can be converted as Equation (2). According to the
invariance of the linear relationship under the Euclidean transformation, the relationship
can be calculated as Equation (3). Furthermore, we get

kiqi =
4

∑
j=1

aijc
j
C, i = 1, 2, . . . , N

It is converted into a system of linear equations with the formula

Mx = 0, x =
[ (

c1
C
)T (

c2
C
)T (

c3
C
)T (

c4
C
)T
]

The above equations have 4 control points and 12 unknown variables. x is the right
zero space of M. The solution of x is the kernel space of M, which can be obtained by
solving the zero-space characteristic sequence for MT M. x can be obtained by choosing
the linear combination sequence corresponding to the minimum zero space error. The
coordinates of the control points in the camera coordinate are restored. In the process of
solving x, it is necessary to select an appropriate linear combination, which is also presented
in Equation (6).

The desirable range of zero space dimension for MT M is N = 1, 2, 3, 4. According to
different value of N, there will be different solution strategies. In the computation process
of EPnP, the reprojection error (RE) can be calculated corresponding to n is 1, 2, 3 and 4
respectively. Then the result is the one corresponding to the minimum projection error.
Suppose the optimization variable is β = [β1, β2, β3, β4], then the optimization objectives
are set to be Equation (7). The coordinates of the control point under camera coordinate
are calculated by Equation (8). After obtaining the pose R and T of the ArUco maker in
the camera coordinate through the above calculation, the pose of the shearer drum can
be calculated.

The installation position of ArUco marker is shown in Figure 1. The local coordinates
{OB} and {O′B} are set at the center point P0 of the ArUco maker and the center point P5
of the shearer drum, respectively. For the convenience of calculation, {OB} is installed
parallel to the coordinate axis {O′B}. Then, the pose of {O′B} can be calculated from the

pose of {OB} through the translation transformation
→
lr .
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Figure 1. Installation position of the ArUco maker.

By using ArUco library, the estimated pose can be described as a translation vector
Tvec and a rotation vector Rvec, which can be converted into the rotation matrix R:

R = cos(θ)I + (1− cos(θ))rrT + sin(θ)

∣∣∣∣∣∣
0 −rz ry
rz 0 −rx
−ry rx 0

∣∣∣∣∣∣ (20)

where θ is the rotation angle, and rx, ry, rz are the components of the unit vector of the
rotation vector on the x, y and z axes. The pose matrix of the ArUco marker is then described
as follows:

TB
p =

[
R Topt
O 1

]
(21)

According to the transformation relationship between {OB} and {O′B}, the pose matrix
at the center point of shearer drum is

TB′
p =

[
R Topt +

→
l r

O 1

]
(22)

So far, the relative pose detection between the hydraulic support and shearer drum is
realized. Then, through the structural parameters of the shearer rocker arm and drum, the
current position and cutting interference state of the mining machine was obtained.

5. Key Technologies
5.1. System Architecture

The key of the AFM is to realize the R-Pose perception between the hydraulic support
and mining machine as well as to avoid cutting interference between the hydraulic support
and shearer drum. In the proposed system, an infrared camera was installed on the top
beam of the hydraulic support, and an ArUco marker was installed on the rocker arm of
the mining machine. Considering that the ArUco marker may be blocked during actual
coal mining, it is appropriately translated along the rocker arm direction. The pose of the
shearer drum can be calculated from the pose of the ArUco maker through translation
transformation. Image processing and marker recognition are carried out through the local
controller. The architecture of the AFM policy-making system is shown in Figure 2.
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Figure 2. Architecture of the AFM policy-making system.

5.2. Flowchart of the Proposed Approach

Figure 3 presents the flowchart of the AFM policy-making system, which is aimed at
estimating the relative pose between hydraulic support and shearer drum. Since the fully
mechanized underground working face environment has high dust and low illumination,
the marker image contains a lot of noise. Therefore, it is necessary to denoise the image be-
fore marker detection. By identifying each corner of the marker, the 3D–2D correspondence
set is obtained, and the problem of R-Pose estimation is transformed into the PnP problem.
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Figure 3. The flowchart of the AFM policy-making method.

Firstly, the internal parameters of the camera should be calibrated. The chosen infrared
camera provides built-in night vision to overcome the uneven brightness and low illumina-
tion. Images are acquired through an Ethernet interface. The marker installed on the rocker
arm of the mining machine adopts the standard marker in the ArUco library. According to
the method proposed by Garrido-Jurado [35], the marker with any identification can be
selected from different types of dictionaries. Each marker contains a unique dictionary ID,
and the marker image size is 200 × 200 (pixels). The physical length of the marker is all
you need for recognition.

Then, the calibrated camera is used to obtain the installation position parameters of
camera and the installation position parameters of the marker. The ArUco marker image
is collected by infrared camera. A series of 3D–2D correspondence sets can be obtained
through image segmentation and recognition and the corner detection of ArUco marker.
R-Pose estimation can be transformed into a PnP problem using the 3D–2D correspondence
set. On this basis, the relative posture of the hydraulic support and the shearer drum can
be obtained by combining with the installation position parameters. Both the position of
the mining machine and the cutting interference state can be detected.
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Finally, according to the position of the mining machine and cutting interference state,
the AFM policy can be obtained through further operation, which is beyond the scope of
this paper.

5.3. VCS-EPnP Estimation

During the EPnP process, the Gauss Newton method was applied for β optimization,
while the selection of an initial value had a great impact on the optimization results. To
make it simple and effective, an optimized EPnP algorithm was proposed based on the VCS
(EPnP-VCS) to estimate the R-Pose. The VCS is capable of heuristically searching for the best
β. The linear optimal combination of β∗ corresponding to the minimum reprojection error
was solved through numerical iteration. The EPnP-VCS algorithm focuses on searching for
an appropriate β∗ to obtain the optimal linear combination scheme. The specific process of
the EPnP-VCS algorithm is shown in Figure 4. The calculation steps of the algorithm are
described as follows:
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Step 1. Initialize parameters required by the VCS algorithm, including data dimension
D, search range [LB, UB], population size N, and the maximum number of iterations gMax.
At the same time, before collecting the infrared image of the ArUco marker, the calibration
of the infrared camera was carried out to obtain the internal parameter matrix A.

Step 2. Define the coordinates of control points cj
B(j = 1, 2, 3, 4); calculate the linear

combination coefficient of 3D points; and calculate the kernel of M according to Mx = 0.
Step 3. Estimate the corresponding pose Rest, Test and calculate the reprojection error

in various cases (i.e., N = 1, 2, 3, 4) taking into consideration the linear combination
corresponding to the minimum zero-space error of MT M. The results corresponding to
the minimum reprojection error in the four combinations are to be compared, and the
estimated reference point coordinates, rotation vector Rest, translation vector Test and linear
combination parameters aij are used for VCS optimization.

Step 4. Randomly set the initial value of the search variable β; initialize the VCS
parameters; and estimate the pose estimation Rest, Test corresponding to β through the
heuristic search in the three stages of VCS—diffusion, infection and immunity.
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Step 5. Calculate the reprojection error by using Rest and Test, the parameter matrix
in the infrared camera and the coordinates of the reference point. If the reprojection error
meets the requirements or reaches the maximum number of iterations, the current optimal
linear combination β∗ is stored; Otherwise, return to Step 4.

Step 6. Calculate Ropt and Topt using the optimal linear combination β∗ and obtain the
final solution.

6. Numerical Simulation and Experimental Study
6.1. Numerical Simulation

For numerical simulation and comparison, the EPnP-VCS, EPnP and EPnP-Gaussian
are implemented in MATLAB R2019a. Both hardware configuration and software parame-
ters of the simulation are shown in Table 1:

Table 1. Hardware configurations and parameters of the VCS algorithm.

Hardware Configure Parameter Name Numerical Value

Processor Intel Core i7, 2.5 GHz Maximum iterations 100
RAM 8 G Population size 20

Operating system Win 10, x64 Variable boundary [−30, 30]
Software tool MATLAB Data maintenance 4

The specific simulation steps are as follows:
Firstly, the calibration parameters of the infrared camera are specified. The focal length

is f = 1, the pixel length on the x axis and y axis is fx = fy = 800, respectively. The image
size is 640× 480 px and the internal parameter matrix is A = [800, 0, 320; 0, 800, 240; 0, 0, 1].
The simulated spatial position of the infrared camera is shown in Table 2. If the number
of the 3D–2D correspondence set is n = 500, then its spatial coordinates are shown in
Figure 5a.

Table 2. Simulated camera position.

x y z x y z x y z

−1.611 0.398 4.607 0.364 −0.822 8.325 0.473 −1.491 7.145
0.781 1.463 7.491 0.495 −0.380 4.188 1.279 1.540 7.076
−0.524 −0.191 8.039 −1.935 0.253 6.213 1.500 0.530 4.246
−1.722 0.221 8.795 1.663 1.553 8.324 −1.371 −1.369 8.158
−1.073 1.384 4.732 −1.334 0.887 6.399 −1.249 0.418 5.622

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Secondly, the ground-truth image of the simulation experiment is obtained through
the projection of infrared-camera coordinates on the imaging plane-coordinate system. To
simulate the possible deviation of image acquisition in the real situation, Gaussian noise
with variance σ is added to the ground-truth image. The obtained true value and simulated
image are shown in Figure 5b.

Then, rotation matrix and translation vector of the infrared camera are set R = [0.727,
−0.685, 0.045, 0; 0.686, 0.725, −0.0600, 0; 0.009, 0.074, 0.997, 0; 0, 0, 0, 1]. To establish the
3D–2D correspondence set, the infrared camera is transformed to a specific position by
using the rotation matrix and translation vector. Then, a set of 3D points is obtained as the
reference point set.

Finally, the EPnP, EPnP-Gaussian and EPnP-VCS were applied to solve the pose of the
generated 3D–2D correspondence set. The results are shown in Figures 6–8, respectively.
According to the data handling method [36], the errors used in left part are a reprojection
error using a calculated rotation matrix and translation vector. The errors used in right part
are the differential error of camera’s position in x, y, z directions.

As can be seen from Figure 6b, the estimation error of the infrared camera’s position in
x, y, z directions are too large (±0.15). The deviation on the z axis is particularly obvious, and
the mean error of reprojection is 12.411. After optimizing the EPnP through the Gaussian
Newton method, the estimation error in x, y, z directions shows improvement. The error
has been reduced to within ±0.04. However, as shown in Figure 7, the deviation on the z
axis is still large, i.e., the reprojection error is 12.365. Finally, the EPnP-VCS was applied
for comparison. The estimation error in x, y, z directions was significantly decreased. As
shown in Figure 8, not only was the error is reduced to ±0.03, but the estimation deviation
on the z axis was greatly improved, and the reprojection error was only 12.261.
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Based on the above analysis, the EPnP-VCS did not need an empirical initial value of
β and had high solution accuracy. Meanwhile, it was found that the population number of
the VCS had a certain impact on the stability of the EPnP-VCS. Therefore, the population
size was set to 20, 50, 100 and 200, respectively, and the above three methods were repeated
100 times. Th simulation results are shown in Figure 9. The errors are the mean square error.
It can be seen from the figure that both the EPnP-Gaussian and EPnP-VCS greatly reduced
the reprojection error. The EPnP-VCS had more accurate results than the EPnP-Gaussian
with increased population.
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Through the statistics of the reprojection error of the repeated simulations compared
with the non-optimized EPnP, the EPnP-Gaussian and EPnP-VCS had more accurate solu-
tions in most cases. Moreover, the average minimum reprojection error of the EPnP-VCS
was the smallest. To study the algorithm stability of the EPnP-VCS, we establish different
3D–2D correspondence sets, repeated the above EPnP-VCS simulations and counted its
variance. The results are shown in Table 3.

Table 3. Statistical result of reprojection error produced by repetitive simulation.

Size
EPnP EPnP-Gaussian EPnP-VCS

Mean Variance Mean Variance Mean Variance

20 12.64772 0.096387 12.50771 0.084461 12.50349 0.091663
50 12.59365 0.091691 12.49178 0.085643 12.48746 0.087089
100 12.60194 0.075147 12.50164 0.063751 12.49039 0.060059
200 12.6094 0.114787 12.49762 0.090848 12.47782 0.059655

To validate the uncertainty and reliability further in a more explicit way, the results
are demonstrated in Figure 10. When the population of the VCS was small, its overall
solution accuracy was still higher than that of the EPnP-Gaussian and EPnP, but the error
changed greatly and the stability was insufficient. With the increase of population, its
stability gradually improved, but the computational time also increased accordingly. In
practical application, the computational time can be reduced by improving the calculation
capacity of equipment and using parallel operation to meet the application requirements of
real-time monitoring in a fully mechanized mining face.
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Figure 10. Uncertainty and reliability validation by repetitive simulation.

6.2. Industrial Experiments

In this experiment, the image of the ArUco marker was collected by an infrared camera.
The image was processed by the denoising method proposed in our previous study [37].
The denoised image was used for R-Pose estimation by EPnP-VCS. To verify the estimation
error, a lidar sensor, M16 of Leddar Tech, was used to measure the true distance between
the infrared camera and ArUco marker. The M16 sensor and its installation position are
shown in Figure 11.
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Figure 11. Sensor installation for AFM policy-making experiment.

As shown in Figure 12a–c, three R-Pose statuses are demonstrated under normal
lighting conditions. The ground-truth distances between the marker and the infrared
camera are 1217, 1228 and 1248 mm, respectively. The recognized reference coordinate and
corner positions are shown in Figure 12d–f. By the project coordinates of each corner in the
imaging plane-coordinate system, the 3D–2D correspondence set was obtained.
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Then, through the EPnP-VCS, the 3D–2D correspondence set was used for pose
estimation to obtain the rotation vector Rvec and translation vector Tvec between the infrared
camera and ArUco marker. To analyze the error with real distance measured by M16, the
spatial distance was calculated by Rvec and Tvec, and the error generated by the final pose
estimation is shown in Table 4.



Symmetry 2022, 14, 385 15 of 17

Table 4. Pose estimation errors under normal lighting and illuminance.

Pose State True Value (/cm) Estimated (/cm) Error (%)

1 130 131.25 0.96
2 125 125.83 0.66
3 123 122.89 0.09

The maximum error between the measured distance estimated by vision and the
true distance measured by M16 was no more than 1%, which easily met the accuracy
requirements in the fully mechanized mining face. In addition, in this experiment the
uneven illumination at night was used to simulate the underground environment of a fully
mechanized mining face with poor illumination. The original images collected at night are
shown in Figure 13a–c. The corner detection results are shown in Figure 13d–f.
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Figure 13. Three relative pose status under simulated underground environment.

Finally, the error between the measured and estimated distances was obtained by the
EPnP-VCS, as shown in Table 5. There was little correlation between the estimation errors
and those under normal illumination (no more than 2%), so the scheme is feasible.

Table 5. Pose estimation errors under simulated underground environment.

Pose State True Value (/cm) Estimated (/cm) Error (%)

1 130 130.29 0.22
2 125 126.84 1.47
3 123 123.56 0.46

7. Conclusions

In this paper, an ArUco-based PnP solution for R-Pose estimation was proposed and
an AFM policy-making system was established with the integration of R-Pose estimation.
To improve both efficiency and accuracy and to simplify computation, the PnP solution
was optimized by the VCS. Both the methodology and key technologies were presented.
For validation, numerical simulations were carried out using 500 simulated 3D–2D cor-
respondence. Simulation results showed that the pose estimation error was ≤1% under
normal lighting and illuminance, and ≤2% under a simulated underground environment.
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Then, the simulated industrial experiment was established with real underground mining
machines. A M16 laser sensor was installed to provide the ground truth. The proposed
vision detection method was tested under normal lighting and illuminance, and a simulated
underground environment. The result of the experiment was consistent with that of the
numerical simulation, which proved the superiority of the approach.
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