
����������
�������

Citation: Alzbier, A.M.T.; Chen, C.

DGAN-KPN: Deep Generative

Adversarial Network and Kernel

Prediction Network for Denoising

MC Renderings. Symmetry 2022, 14,

395. https://doi.org/10.3390/

sym14020395

Academic Editor: Antonio Palacios

Received: 5 January 2022

Accepted: 10 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

DGAN-KPN: Deep Generative Adversarial Network and
Kernel Prediction Network for Denoising MC Renderings
Ahmed Mustafa Taha Alzbier 1,2 and Chunyi Chen 1,*

1 School of Computer Science and Technology, Changchun University of Science and Technology,
Changchun 130022, China; amt4047@gmail.com

2 School of Computer and Information Technology, Omdurman Islamic University, Omdurman 382, Sudan
* Correspondence: chenchunyi@cust.edu.cn

Abstract: In this paper, we present a denoising network composed of a kernel prediction network
and a deep generative adversarial network to construct an end-to-end overall network structure.
The network structure consists of three parts: the Kernel Prediction Network (KPN), the Deep
Generation Adversarial Network (DGAN), and the image reconstruction model. The kernel prediction
network model takes the auxiliary feature information image as the input, passes through the source
information encoder, the feature information encoder, and the kernel predictor, and finally generates
a prediction kernel for each pixel. The generated adversarial network model is divided into two parts:
the generator model and the multiscale discriminator model. The generator model takes the noisy
Monte Carlo-rendered image as the input, passes through the symmetric encoder–decoder structure
and the residual block structure, and finally outputs the rendered image with preliminary denoising.
Then, the prediction kernel and the preliminarily denoised rendered image is sent to the image
reconstruction model for reconstruction, and the prediction kernel is applied to the preliminarily
denoised rendered image to obtain a preliminarily reconstructed result image. To further improve the
quality of the result and to be more robust, the initially reconstructed rendered image undergoes four
iterations of filtering for further denoising. Finally, after four iterations of the image reconstruction
model, the final denoised image is presented as the output. This denoised image is applied to the
loss function. We compared the results from our approach with state-of-the-art results by using
the structural similarity index (SSIM) values and peak signal-to-noise ratio (PSNR) values, and we
reported a better performance.

Keywords: deep learning; generative adversarial network; kernel prediction network; Monte Carlo
rendering; auxiliary features; high frequency

1. Introduction

Due to the continuous development of deep learning methods in recent years, there
have been many works using deep learning to denoise ordinary images; therefore, the
convolution neural network has been widely used in the research of image denoising.
Pathak et al. [1] used an encoder to encode and trained to generate images conditioned on
context, in which the encoders learn a representation that is competitive with other models
trained with auxiliary supervision, which captures the appearance, the semantics of visual
structures, and complete image restoration. Bert et al. [2] showed a dynamic parameter
network structure in which the parameters of the kernel are dynamically adjusted according
to the input, because it has high flexibility and avoids a large number of increases, with the
condition of the model parameters. Bako et al. [3] proposed a denoising algorithm based
on convolutional neural networks, which decomposes the image into diffuse reflection
and specular reflection. Therefore, the two parts are trained separately. In addition,
for image effects that are not reflected in the input features or included in the training
data, the results after denoising will appear blurry. Further, using a fixed filter solves

Symmetry 2022, 14, 395. https://doi.org/10.3390/sym14020395 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020395
https://doi.org/10.3390/sym14020395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5446-7859
https://doi.org/10.3390/sym14020395
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020395?type=check_update&version=1

Symmetry 2022, 14, 395 2 of 15

the drawback, but the method is still dependent on filtering kernels in a wide range and
becomes acceptably field-limited.

Vogels et al. [4] proposed another denoising network structure based on kernel pre-
diction. In this work, they showed three network structures that can be used in different
situations. The first network for a single frame of the input image has four parts: a source
encoder, a spatial feature extractor, a kernel predictor, and weight reconstruction. The
spatial feature extractor includes multiple residual network structure blocks [5]. The second
and third network structures are temporal denoisers for multi-frame and multi-standard
images. Each frame is first passed through a separate original encoder and spatial feature
extractor, and then combined and inputted to the temporal feature extractor and kernel
predictor to obtain the final denoised image.

Recently, Mildenhall et al. [6] also proposed a denoising process for images taken with
a camera held by a hand, and then using a convolutional neural network structure. This
network structure can learn to obtain a kernel that follows spatial changes; the kernel can
denoise or register the image, and the trained network has a good denoising effect on most
noisy images. Mao et al. [7] proposed a novel deep self-encoding network structure for
image restoration. This network has an encoder and a decoder. The encoder and decoder
are symmetrical in structure, with convolutional and reversed layers, respectively. In
particular, this network also uses skip connections, which can effectively solve the difficulty
in deep network training and the problem of gradient disappearance, and can, at the same
time, transfer image detail information from the convolutional layer to the deconvolution.
The layering helps to build a clear real image. The above work has proven that deep
learning has very good performance in image restoration and image denoising.

At present, the use of deep learning methods to denoise the Monte Carlo-rendered
images has gradually attracted attention. Unlike general image restoration, in the process
of denoising the Monte Carlo-rendered image, in addition to the color information of the
pixels, additional auxiliary information can be used, such as depth, normal, and albedo.

The Monte Carlo denoising method of the joint kernel prediction network and genera-
tion adversarial network proposed in this paper uses the generation adversarial network to
perform preliminary denoising on the Monte Carlo-rendered image, and then applies the
prediction kernel output by the kernel prediction network to the preliminary denoising
image to obtain the final result. The difference between the method in this paper and
the existing kernel prediction Monte Carlo denoising method is reflected in the following
aspects [3,4,8]. First, as an improvement of the kernel prediction network method, this
paper introduces an adversarial generation network to generate preliminary denoising
results and denoise on this basis, instead of directly applying the prediction kernel to
the original noisy rendered image. For support, the two work together to assemble the
two into an end-to-end denoising network for joint training. Secondly, a loss function is
added to support collaborative training of the kernel prediction network and the generative
adversarial network to improve the scene detail retention ability and the scene clarity
and contrast.

The denoising network in this article is used to process input images with a low
sampling rate such as 4 spp, and it can obtain better results. In addition, when constructing
the dataset, this article deliberately uses multiple renderers to generate supervised data,
which effectively improves the generalization ability of the network. The kernel prediction
network in our model takes the auxiliary information images of the Monte Carlo rendering
as the input, and the adversarial generation network takes the noisy rendered image itself
as the input. This processing method can ensure that each part of the network can encode
more image features, thereby capturing more scene details.

In order to further solve the problems of the above two methods and improve the
denoising effect of Monte Carlo-rendered images, the main contributions of this paper are
the following three points:

• In the first part of this paper, we propose a new end-to-end Monte Carlo denoising
rendered image based on the deep learning network structure, and we use the kernel

Symmetry 2022, 14, 395 3 of 15

prediction network to optimize the generalization ability of the denoising method for
better scene structure and detail retention capabilities.

• We introduce a loss function based on adversarial training to make network training
more stable and effective, to improve the clarity and contrast of the denoised image,
and to retain more image details.

• We prove that a few auxiliary features can improve the noise reduction effect and
solve the loss of high-frequency details of our approach to some extent.

• Our approach is applied to the deep convolutional neural network and makes the
learning ability of the network more powerful, with less time-consuming processing.

2. Related Work

In recent years, the Generative Adversarial Network (GAN) [9] has also been shown
to achieve good results in image restoration and high-resolution image generation [10–14].
Moreover, generative adversarial networks have also played a role in image denoising
works [15]. Regarding the problem of image denoising by Monte Carlo rendering, in 2019,
Xu et al. [16] found that the recent Monte Carlo denoising method based on deep learning
is more dependent on artificial optimization goals. Therefore, they proposed a method to
denoise the Monte Carlo-rendered image by introducing a generative adversarial network.
The network then processed the highlights and diffuse components in the rendered im-
age. Finally, the denoised image was output directly and excellent results were obtained.
Therefore, the generative adversarial network has considerable potential in the problem
of Monte Carlo-rendered image denoising. Unlike the work of Xu et al. [16], Monte Carlo
denoising is based on the kernel prediction network, and the generative adversarial net-
work is integrated into the kernel prediction network as a preliminary denoising generation
model. In 2019, Xin et al. [17] extracted structure and texture details from auxiliary features
in the rendering stage. Then, they used a fusion sub-network to obtain the details map, and
finally used the dual-encoder network to denoise MC renderings. However, this method
consumes processing time. Ghrabi et al. [8] proposed a network structure with permutation
invariance, used a multilayer coding structure to encode sample data to obtain the splat
kernel, and then used this check to reconstruct the input image, making their method the
best state-of-the-art method that uses the kernel prediction network and is based on sam-
ples. Unfortunately, increasing the number of samples increases the time consumption of
the method. In 2020, Munkberg et al. [18] suggested extracting the compressed information
representation of each sample by separating the sample into a fixed number of sections,
called layers. Through a data-based method, this method learns the unique kernel weight
of each pixel in each layer and how to filter the composite layer. This adjustment enables
the degreaser operation to achieve a good trade-off between cost and quality. In addition,
it provides an effective way to control performance and memory properties, because the
algorithm table is the number of layers rather than the number of samples. Moreover, via
the separation of two-layer samples, the denoiser achieves an interaction rate and produces
an image quality similar to that of the larger network.

Again in 2020, Yifan et al. [19] proposed the Adversarial Denoising for MC Renderings
network, which used many convoluted dense blocks to extract rich information of auxiliary
buffers, and then used these various hierarchical features to modify the noisy features
in the residual blocks. Furthermore, they presented the channel mechanism and spatial
interest to exploit property dependencies between channels and spatial features.

In 2021, Yu et al. [20] modified the standard self-attention mechanism to the auxiliary
feature guided self-attention module to denoising Monte Carlo rendering based on a deep
learning network, which effectively involves the complex denoising process.

Generally, Monte Carlo-rendered image denoising based on deep learning is mainly
divided into two categories. One is based on methods of the kernel prediction network [3,4],
which uses network estimation to generate a prediction kernel and applies this prediction
kernel to the noise input to obtain the final denoised image. The other is to directly map the
noise input to the high-quality rendered images; the network is used to directly generate

Symmetry 2022, 14, 395 4 of 15

the final denoising rendered image. Thus, the key idea of this paper is to combine the
strategies of these two methods to build a Monte Carlo-rendered image denoising model.
This is because the method based on kernel prediction is effective in the restoration and
preservation of scene structure and scene details. However, the adaptability is poor when
the denoised renderer of the image is different from the renderer used in the training
set, but the network that directly outputs the denoising results will have relatively good
generalization ability.

This paper proposes a method to generate realistic rendered images using an end-to-
end network structure. First, the renderer is used to render the 3D model at a low sampling
per pixel to obtain a low-resolution image. Therefore, the rendering time is relatively short;
then, the proposed new image denoising network is used to obtain a high-quality image.

3. The Method
3.1. Model Architecture

In this paper, we propose a new network structure based on the kernel prediction
network and the Deep Generation Adversarial Network (DGAN) to build this function.
The kernel prediction model alone or the DGAN model with noise input can be used to
generate denoised rendered images [3,4,16]. The difference between these two models is
that the kernel prediction network first learns the prediction kernel from the input data
and then applies the prediction kernel to the pixels of the noise image. The DGAN learns
the connection between the noise pixel and the real pixel as the target, and maps the noise
pixel to the reference real pixel, thereby directly generating a denoised image close to the
real image. The kernel prediction network can restore the scene structure well and retain
the details of the scene, and the DGAN-based method can have better generalization ability.
The characteristics of these two models inspired this paper to combine the two to obtain a
better denoising effect promotion and generalization ability improvement.

Generally, the idea of combining these two models is not complicated, but we have
made many improvements to make these networks work together: First, we improved the
previous kernel prediction network [3,6,21] and improved the feature encoder, making it
have a better ability to capture scene details and have a better adaptability to input data
from different renderers. Secondly, the DGAN network structure contains 4 discriminant
networks of different scales as discriminators to supervise the encoding of details at differ-
ent scales. In addition, to improve the reconstruction quality, the result after the prediction
kernel reconstruction is used as a new noise image and the network is used again for the
second denoising. This process is repeated many times to obtain the final denoised image.
Finally, we propose adding a loss function to the network, which can be trained stably
while improving the detail retention ability of the denoising results, the sharpness, and the
contrast in the final image.

In addition, the loss function must accurately capture the difference between the
estimated pixel value and the real pixel value, and it is easy to adjust and optimize. In
Section 3.1.4, we introduce the proposed loss function. Finally, to avoid overfitting in our
network, we made a dataset that contains a large amount of data. It takes a lot of time and
computational cost to make a dataset that contains a large number of real images, noisy
images, and auxiliary features.

Figure 1. This network structure consists of three parts: the deep generation adversarial
network model, kernel prediction network model, and image reconstruction model.

3.1.1. Deep Generation Adversarial Network (DGAN)

For a deep-generation adversarial network, the generator is divided into three parts,
the first part being the encoder. The encoder contains 4 convolutional layers, and each
convolutional layer contains convolution, and three operations of instance normalization
and ReLu activation. After the encoder, there are several residual blocks and a structure
that combines the input and output information [5]. The specific structure of a residual
block contains 2 convolutional layers, and each convolutional layer has 512 convolution

Symmetry 2022, 14, 395 5 of 15

kernels with a size of 3× 3 and a stride size of 1; similarly, each convolutional layer is
composed of four parts: convolution, instance normalization, and ReLu activation. The
residual block introduces a skip connection by adding between the convolutional layers.
Then, the decoding part is similar to the encoding part. Therefore, the encoding part is
upsampling after the output of the fourth convolutional layer and the eighth convolutional
layer, and the output of the fourth convolutional layer and the fourth convolutional layer of
the decoding part is jointly upsampled through a skip connection. Then, they are combined
after upsampling.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 16

Encoder Decoder

Loss

Function

Iterations
Fake

Image

Real

 Image

DGAN

Output

KPN

Output

KPN Discriminator

Generator

Auxiliary Features

Noise Image

M
C

 R
e
n
d
e
ri

n
g

Residual

Block

Skip

Connection

Figure 1. The overall structure of the proposed method.

3.1.1. Deep Generation Adversarial Network (DGAN)

For a deep-generation adversarial network, the generator is divided into three parts,

the first part being the encoder. The encoder contains 4 convolutional layers, and each

convolutional layer contains convolution, and three operations of instance normalization

and ReLu activation. After the encoder, there are several residual blocks and a structure

that combines the input and output information [5]. The specific structure of a residual

block contains 2 convolutional layers, and each convolutional layer has 512 convolution

kernels with a size of 3 × 3 and a stride size of 1; similarly, each convolutional layer is

composed of four parts: convolution, instance normalization, and ReLu activation. The

residual block introduces a skip connection by adding between the convolutional layers.

Then, the decoding part is similar to the encoding part. Therefore, the encoding part is

upsampling after the output of the fourth convolutional layer and the eighth convolu-

tional layer, and the output of the fourth convolutional layer and the fourth convolutional

layer of the decoding part is jointly upsampled through a skip connection. Then, they are

combined after upsampling.

To simplify the description in this section, a network layer composed of these three

operations is collectively referred to as a convolutional layer. The first convolutional layer

contains 64 convolution kernels, the number of output channels is 64, and for each convo-

lution kernel, the size is 3 × 3 and the stride size is 2. Similarly, the number of convolu-

tion kernels of the second convolution layer and the third convolution layer is 128, 256,

and 512, respectively, the size of the convolution kernel is constant 3 × 3, and the stride

size is 2.

3.1.2. The Kernel Prediction Network (KPN)

The difference between the kernel prediction network (KPN) and the general method

of denoising using neural networks is that the kernel prediction network does not directly

output a denoised image, but the kernel predictor estimates a filter kernel of size 𝑘 × 𝑘

for each pixel of the noise image, where, in the implementation of this article, 𝑘 = 19. The

kernel predictor contains three convolutional layers, each convolutional layer is filled with

zeros, the size of the kernel is 1 × 1 convolution kernel, the stride size is 1, and the num-

ber of output channels of each convolutional layer is 19 × 19 = 361. These prediction

kernels enter the reconstruction model and the denoising structure of DGAN to generate

clean images.

As different input images may be rendered by different renderers or rendering sys-

tems, and thus obtained by different samplers or calculation methods, these inputs are

Figure 1. The overall structure of the proposed method.

To simplify the description in this section, a network layer composed of these three
operations is collectively referred to as a convolutional layer. The first convolutional
layer contains 64 convolution kernels, the number of output channels is 64, and for each
convolution kernel, the size is 3 × 3 and the stride size is 2. Similarly, the number of
convolution kernels of the second convolution layer and the third convolution layer is 128,
256, and 512, respectively, the size of the convolution kernel is constant 3× 3, and the stride
size is 2.

3.1.2. The Kernel Prediction Network (KPN)

The difference between the kernel prediction network (KPN) and the general method
of denoising using neural networks is that the kernel prediction network does not directly
output a denoised image, but the kernel predictor estimates a filter kernel of size k × k
for each pixel of the noise image, where, in the implementation of this article, k = 19.
The kernel predictor contains three convolutional layers, each convolutional layer is filled
with zeros, the size of the kernel is 1× 1 convolution kernel, the stride size is 1, and the
number of output channels of each convolutional layer is 19× 19 = 361. These prediction
kernels enter the reconstruction model and the denoising structure of DGAN to generate
clean images.

As different input images may be rendered by different renderers or rendering systems,
and thus obtained by different samplers or calculation methods, these inputs are likely to
have different noise characteristics, and then the network structure must have applicability
to these different inputs [8]. As the first part of the encoder, it is proposed to make the
network have this applicability, by extracting relatively low-level and common features
in the input information to unify complex input information and reduce the impact of
different inputs.

Symmetry 2022, 14, 395 6 of 15

Enlarging the size of the convolution kernel helps expand the perceptual domain to
obtain more details about the neighborhood information. The output information obtained
after the input information passes through these 2 convolutional layers is compared with the
original input information through the skip structure as the final output. The introduction
of residual blocks in the denoising processing of Monte Carlo-rendered images has been
successful in related research work [22]. It has two advantages: First, as the input image
is noisy, with many missing pixels and wrong pixel values, the image is very sparse.
Therefore, the input is combined before and after through the residual block to obtain
more feature information. Second, the residual block can effectively solve the problem of
gradient disappearance caused by the excessive depth of the network during the training
process, and the convergence of the loss function during the training process can be faster
and more stable.

3.1.3. Image Reconstruction

Recall that the pre-denoising image output of the generation network is ẑ, the kernel
obtained by KPN K =

{
kp, p ∈ z

}
, where kP is a k× k matrix, and its x row and column

elements y are marked as kp(x, y). To ensure that the weight range of each kernel falls in the
interval [0,1], and the sum is equal to 1 [21], we first use the SoftMax function to normalize:

K̂P(x, y) =
Kp(x, y)

1
|S| ∑1≤s,t≤k exp

(
Kp(x, y)

) (1)

The meaning of each element in the prediction kernel K̂P is the degree of influence of
each pixel area in the domain k× k around the pixel p. S is the set of kernel sizes. Therefore,
the final reconstructed image can be calculated as follows [21]:

ź(p) =
1
|S|∑1≤s,t≤k K̂P(x, y)ź(p + (x, y)) (2)

Through weights normalizing, we can estimate the final color value included in each
pixel area in the image, which can greatly reduce the search space of the output estimation
value in the denoising process, and avoid phenomena such as the color shift effect. Secondly,
normalization can also make the gradient of the weight value relatively stable, avoiding
large gradient oscillations caused by the high-dynamic-range characteristics of the input
image during the training process.

3.1.4. Loss Function Design

The network proposed in this article is made up of KPN and DGAN. Thus, designing
a reasonable loss function is a very important issue that enables these two networks to
work together and improve the quality of denoising. Specifically, our loss function consists
of three parts.

Generate the loss function LDGAN : The generator is responsible for using the input
noise image to generate a preliminary denoising rendered image, and the discriminator
is responsible for comparing the generated image with the real image. Our dataset is
M = {mi = (xi, fi), gi : i = 1, 2, . . . , N}, where R is the number of denoise elimination
iterations. We set it in our work as 4 iterations, and then considering the generator as G,
and the discriminator is set as D = Di, i = {1, 2, 3, 4}. The training process for generating
an adversarial network is a process of optimizing the loss function LDGAN , such as [23]:

minGmaxDLDGAN(G, D) (3)

minGmaxD ∑R
i=1 LDGAN(G, Di) (4)

During this, the optimization function (Equation (4)) in the optimization process is
used to solve the parameter value of each Di. Thus, LDGAN reaches the maximum, this Di
is fixed, and then we solve for G to minimize LGAN(G, Di).

G∗ = minGmaxD ∑R
i=1 LDGAN(G, Di) (5)

Symmetry 2022, 14, 395 7 of 15

The generator G∗ at this time has the model parameters to produce a reasonable
denoised image by Equation (5). On the contrary, we adopt a different general discriminator
form [15]. As for the loss function LDGAN(G, Di) of a single discriminator, instead of letting
the discriminator output a probability value to judge the true or false of the sample, L1 is
used to measure the loss between the two samples, namely [15]:

LDGAN(G, Di) = E
[

1
|z|∑p∈z ‖Di(z(p), g(p))− Di(z(p), G(p))‖1

]
(6)

Among them, |z| is the total number of pixels in the image, Di(z(p), g(p)) represents
the pixel value of the input image z(p), and the corresponding real image pixel g(p) is the
output obtained as the input of the i th discriminator. The same principle Di(z(p), G(z(p)))
represents the output obtained by taking the generator output G(z(p)) corresponding to
z(p) as the input of the i th discriminator. E represents the mathematical expectation, which
is the average calculation of the loss values calculated for all samples in the dataset.

Equation (6) is only used when training a single adversarial generation network. When
KPN and DGAN are trained together, Equation (6) becomes the following form:

LDGAN(G, Di) = E
[

1
|z|∑p∈z ‖Di(z(p), g(p))− Di(z(p), ź(p))‖1

]
(7)

The output of the generator G(z(p)) becomes the estimated value of the pixel after the
prediction kernel obtained by KPN is applied to the output of the generator ź(p).

In kernel prediction loss function LK, the true value of the prediction kernel cannot
be obtained, because there is no such label in the dataset. Thus, we use real images gi for
supervision and, at the same time, make the two networks work together. Therefore, LK is
defined as:

Lkernel = ∑zi

1
|zi|∑p∈z ‖ź(p)− g(p)‖1 (8)

Some state-of-the-art studies [16,24,25] found that comparing L1 loss with L2 loss
can also reduce speckle noise-like artifacts in the reconstructed image, because L1 is more
sensitive to outliers, such as brighter highlights, which have a great influence on error.
Compared with L1 loss, L2 loss will be more robust to outliers, which is also confirmed in
previous literature. However, L1 loss or L2 loss usually obtained a higher peak signal-to-
noise ratio (PSNR) [26], but the result of the blurring of high-frequency components led to
a blurry texture. Therefore, it is necessary to adopt other loss functions to compensate for
the high-frequency details. Therefore, we add tone loss function LT . To make the generated
denoised image details have better definition, have a better denoising effect on low-contrast
and darker noisy images, and improve its contrast, it is subject to the method inspired
by [27], added as a new loss function item to improve the denoising effect of the image. LT
has the following form:

LTone = ∑zi

1
|zi|∑p∈c ‖

ź(p)
1 + ź(p)

− g(p)
1 + g(p)

‖
1

(9)

Equation (9) is inspired by tone mapping, which can map the pixels in the image from
a small range to a larger range so that the picture can be clearer and brighter. It is a common
method in image processing. This penalty item can improve the contrast and clarity of the
scene. Finally, the overall loss function Ltotal defines a mixture of the above three terms:

Ltotal = αLDGAN + βLkernel + ωLTone (10)

Among them, α, β, ω, we set the balance parameters as 0.003, 0.008, and 0.09, respec-
tively. Typically, by using such a loss function to make the overall network structure work
together, it becomes an end-to-end overall structure.

Finally, this article chooses the gradient magnitude similarity deviation as the image
noise estimate because it is relative to other indicators such as the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) [21], because it has achieved good results in
public databases for image quality evaluation and the calculation speed is relatively fast.

Symmetry 2022, 14, 395 8 of 15

3.2. Auxiliary Feature

We use the Monte Carlo path-tracing algorithm to render a 3D model, and each pixel
needs to shoot a ray from the camera. Then, it records the information when the ray tracer
intersects the 3D model for the first time and saves it in the geometry buffer. The saved
information includes the texture and material information such as the surface normal,
world coordinates, and reflection coefficient of the patch where the intersection point is
located, as well as the position of the point in the world coordinate system and the visibility
of direct light. This paper does not record information related to a specific scene, such as
the position of the light source, intensity, and other attributes of the scene.

The MC images may differ when compared to the ground-truth images, which are
clearer and higher-resolution compared to the latter. These differences in training and
test data can lead to discrepancies in the actual models. Therefore, it is essential to have
datasets that have consistent auxiliary feature images.

Figure 2. The auxiliary feature images include surface normal features (3 channels),
RGB color features (3 channels), world position features (3 channels), texture value1 features
(3 channels), texture value2 features (3 channels), and the depth feature (1 channel), which
contain 13 channels in total, such as the following:

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16

𝐿𝑇𝑜𝑛𝑒 = ∑
1

|𝑧𝑖|𝑧𝑖

∑ ‖
�́�(𝑝)

1 + �́�(𝑝)
−

𝑔(𝑝)

1 + 𝑔(𝑝)
‖

1𝑝∈𝑐
 (9)

Equation (9) is inspired by tone mapping, which can map the pixels in the image from

a small range to a larger range so that the picture can be clearer and brighter. It is a com-

mon method in image processing. This penalty item can improve the contrast and clarity

of the scene. Finally, the overall loss function 𝐿𝑡𝑜𝑡𝑎𝑙 defines a mixture of the above three

terms:

𝐿𝑡𝑜𝑡𝑎𝑙 =∝ 𝐿𝐷𝐺𝐴𝑁 + 𝛽𝐿𝑘𝑒𝑟𝑛𝑒𝑙 + 𝜔𝐿𝑇𝑜𝑛𝑒 (10)

Among them, 𝛼, 𝛽, 𝜔, we set the balance parameters as 0.003, 0.008, and 0.09, respec-

tively. Typically, by using such a loss function to make the overall network structure work

together, it becomes an end-to-end overall structure.

Finally, this article chooses the gradient magnitude similarity deviation as the image

noise estimate because it is relative to other indicators such as the Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index (SSIM) [21], because it has achieved good

results in public databases for image quality evaluation and the calculation speed is rela-

tively fast.

3.2. Auxiliary Feature

We use the Monte Carlo path-tracing algorithm to render a 3D model, and each pixel

needs to shoot a ray from the camera. Then, it records the information when the ray tracer

intersects the 3D model for the first time and saves it in the geometry buffer. The saved

information includes the texture and material information such as the surface normal,

world coordinates, and reflection coefficient of the patch where the intersection point is

located, as well as the position of the point in the world coordinate system and the visibil-

ity of direct light. This paper does not record information related to a specific scene, such

as the position of the light source, intensity, and other attributes of the scene.

The MC images may differ when compared to the ground-truth images, which are

clearer and higher-resolution compared to the latter. These differences in training and test

data can lead to discrepancies in the actual models. Therefore, it is essential to have da-

tasets that have consistent auxiliary feature images.

Figure 2. The auxiliary feature images include surface normal features (3 channels),

RGB color features (3 channels), world position features (3 channels), texture value1 fea-

tures (3 channels), texture value2 features (3 channels), and the depth feature (1 channel),

which contain 13 channels in total, such as the following:

 MC Image Surface Normal RGB Color World Position Texture Value 1 Texture Value 2 Depth

Figure 2. The auxiliary features are rendered with 4 spp; note that in some scenes the depth feature is
only white color.

3.3. Dataset and Training

We faced a challenge in the rarity of image datasets, which is hard to find because
of the proprietary values. Therefore, crowdsourcing images can be used to address this
challenge, and one of the publicly available datasets is the PBRT dataset [28].

Continuous training of the model involves a large and effective dataset. The training
dataset of the state-of-the-art is not public. Therefore, we preferred a reasonably interesting
dataset consisting of 21 curated scenes available for use with PBRT [28], which can represent
different types of scenes and then modify the environment maps and camera parameters.
Therefore, the dataset provides complex scenes that are rendered with 4096 spp such as:

Figure 3 shows examples of reference images rendered with tungsten, and this process
is time-intensive, up to several days for some scenes.

Symmetry 2022, 14, 395 9 of 15

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 16

Figure 2. The auxiliary features are rendered with 4 spp; note that in some scenes the depth feature

is only white color.

3.3. Dataset and Training

We faced a challenge in the rarity of image datasets, which is hard to find because of

the proprietary values. Therefore, crowdsourcing images can be used to address this chal-

lenge, and one of the publicly available datasets is the PBRT dataset [28].

Continuous training of the model involves a large and effective dataset. The training

dataset of the state-of-the-art is not public. Therefore, we preferred a reasonably interest-

ing dataset consisting of 21 curated scenes available for use with PBRT [28], which can

represent different types of scenes and then modify the environment maps and camera

parameters. Therefore, the dataset provides complex scenes that are rendered with 4096

spp such as:

Figure 3 shows examples of reference images rendered with tungsten, and this pro-

cess is time-intensive, up to several days for some scenes.

Figure 3. Example of our dataset reference images with 4096 spp.

In contrast, we divide the training process into two phases. First, the DGAN is

trained, including the generator model and the multiscale discriminator model. During

training, the standard method in [9] is used to optimize the setting of training parameters,

the loss function uses Equation (6) and uses the ADAM optimizer [29], and the parameter

settings of the remaining optimizer follow [30] to set the recommended parameters. The

initial learning rate is set to 0.0001, the learning rate is fixed before the first 200 epochs,

and then the learning rate is gradually reduced according to the linear method. The pa-

rameter initialization of the network is initialized with a Gaussian distribution with a

mean of 0 and a standard deviation of 0.002, and the batch size is set to 1. Each training

iteration will randomly disturb the order of the dataset. Then, KPN is trained, Equation

(8) is used as the loss function, and the obtained prediction kernel is applied to the noisy

RGB image, rather than against the image generated by the generation network. Using

this method makes the training of the kernel prediction network stable. The weights and

parameters of the kernel prediction network are initialized using the Xavier method [31],

and the bias term is set to 0. The ADAM optimizer is also used, and the parameter and

learning rate settings of the optimizer are the same as the province training settings of the

generator network model.

The second training process of the overall network structure uses the two networks

that have been initially trained. In this training, the number of multiple iterations is set to

4, where the result of the image reconstruction model will be denoised again and then

after these repetitions to obtain the final denoising result.

Figure 3. Example of our dataset reference images with 4096 spp.

In contrast, we divide the training process into two phases. First, the DGAN is trained,
including the generator model and the multiscale discriminator model. During training,
the standard method in [9] is used to optimize the setting of training parameters, the loss
function uses Equation (6) and uses the ADAM optimizer [29], and the parameter settings
of the remaining optimizer follow [30] to set the recommended parameters. The initial
learning rate is set to 0.0001, the learning rate is fixed before the first 200 epochs, and
then the learning rate is gradually reduced according to the linear method. The parameter
initialization of the network is initialized with a Gaussian distribution with a mean of 0
and a standard deviation of 0.002, and the batch size is set to 1. Each training iteration will
randomly disturb the order of the dataset. Then, KPN is trained, Equation (8) is used as the
loss function, and the obtained prediction kernel is applied to the noisy RGB image, rather
than against the image generated by the generation network. Using this method makes the
training of the kernel prediction network stable. The weights and parameters of the kernel
prediction network are initialized using the Xavier method [31], and the bias term is set to
0. The ADAM optimizer is also used, and the parameter and learning rate settings of the
optimizer are the same as the province training settings of the generator network model.

The second training process of the overall network structure uses the two networks
that have been initially trained. In this training, the number of multiple iterations is set to 4,
where the result of the image reconstruction model will be denoised again and then after
these repetitions to obtain the final denoising result.

4. Results

This paper proposed using a kernel prediction network and generative adversarial
network to construct an end-to-end general denoising network structure, as shown in
Figure 1. Our network structure consisted of three parts: the kernel prediction network
module, generation adversarial network module, and image reconstruction module. The
kernel prediction network module takes the auxiliary feature information image as the
input, passes through the source information encoder, the feature information encoder, and
the kernel predictor, and finally generates a prediction kernel for each pixel.

The generated adversarial network module is divided into two parts: the generator
module and the multiscale discriminator module. The generator module takes the noisy
Monte Carlo-rendered image as the input, passes through the symmetric encoder–decoder
structure and the residual block structure, and finally outputs the rendered image with
preliminary denoising. Then, the prediction kernel and the preliminarily denoised rendered
image are sent to the image reconstruction module for reconstruction, and the prediction
kernel is applied to the preliminarily denoised rendered image to obtain a preliminarily
reconstructed rendered image. To further improve the quality of the result and to be more

Symmetry 2022, 14, 395 10 of 15

robust, the initially reconstructed rendered image undergoes four iterations of filtering
for further denoising, and the final denoised image is obtained after four iterations of the
image reconstruction module as outputs. Finally, this denoised image is applied to the
loss function.

We evaluated the denoising MC renderings based on the KPN-DGAN method to solve
the MC noise image problem and the high-frequency detail loss.

The PSNR and SSIM matrices were used as the quantitative indicators of denoising
results. Thus, PSNR calculated the reconstruction error between the denoised and real
images based on the mean square sum (MSE). Note that the errors of these matrices are
sensitive to noise; as long as a certain pixel value changes and regardless of which direction
it changes, the PSNR will also change. Thus, the value range of PSNR is not fixed, and the
maximum value is related to the image resolution.

Then, we selected the most representative methods in Monte Carlo image denoising
in recent years to compare with our experimental results, which are the KPCN work in
2017 [3], AMCD, and DEMC in 2019 [16,17]. Note that the selected scene uses the 4 spp
noise image rendered by the tungsten renderer [32]. The results are as follows:

Figure 4 shows the ablation experiment of this paper, and the enlarged area of image
details the MC-rendered image with 4 spp, our result against the AMCD result, KPCN
result, DEMC result, and the reference rendered image with 4096 spp. The effect of our
approach is better in the final denoising result in terms of subjective details and objective
indicators, such as the radiator details and the geometrical objects reflecting sharper on a
lamp of the automobile scene, maintaining the barrier shape that does not overlap and the
lines in the house scene. In the livingroom2 scene, our method performance is also better
and enhances sharp edges with greater detail, unlike other methods. The effect of AMCD
algorithms is good, but most of the results are a little blurred. The DEMC and KPCN are
poor, because the results have many stains. Generally, comparing the results showed that
our approach is better at denoising the MC-rendered image, while retaining and restoring
the details and structure of the scene.

The PSNR and SSIM index values are reported under each image, and higher values
indicate a better result. The network of our approach performed well and reduced the time
consumption of denoising. Therefore, we compared our method against prior methods,
with similar processing conditions and an equal sample for all methods, and the results of
the average SSIM and PSNR scores are as follows:

In order to further observe the results of the method in this paper, more scene models
were selected for comparison; we highlighted the difference between diffuse and specular
components, and the relationship to high-frequency details. Thus, the following comparison
experiments were compared with AMCD, the DEMC work in 2019 [16,17], and the AFGSA
work in 2021 [20]; all of these techniques have public released codes and weights. The
3D model is still the tungsten renderer, and the sampling rate is 4 spp. The experimental
results are as follows:

Usually, the specular and diffuse components have different noise patterns and are
highly dependent upon the smoothness or texture of the surface properties. Figure 5 shows
the other methods that led to unsatisfactory results, with disturbing effects on material
and glass, such as blur region, glossy reflections, depth of field, area lighting, and global
illumination. Therefore, they need to take advantage of auxiliary features in different ways.
The material scene showed an erroneous texture, the reflected illumination was poor, the
teapot scene had blurred details and was smoother, and there was a glow reflection in the
glass with more noise in the coffee scene. All methods accepted our approach.

In all noise reduction tests, our method always performed better than several state-
of-the-art solutions. Tables 1 and 2 show the SSIM and PSNR values and time process for
all noise reduction results. Accordingly, our method consistently had smaller errors, with
higher SSIM values and less time consumption than state-of-the-art methods.

Symmetry 2022, 14, 395 11 of 15
Symmetry 2022, 14, x FOR PEER REVIEW 11 of 16

Time: 0.124s 1.079s 2.034s 1.478s

SSIM: 0.9326 0.8867 0.8061 0.8241

PSNR 34.26 dB 29.91 dB 27.75 dB 28.75 dB

H
o

u
se

 Ours MC 4spp Ours AMCD KPCN DEMC Reference

Time 0.329s 1.040s 3.229s 2.145s

SSIM 0.9113 0.8434 0.8150 0.8314

PSNR 31.88 dB 28.12 dB 25.95 dB 26.45 dB

Time: 0.1502s 1.004s 3.168s 1.455s

SSIM: 0.9405 0.9282 0.8931 0.8747

PSNR: 34.39 dB 32.05 dB 30.82 dB 29.25 dB

L
iv

in
g

-R
o

o
m

2
A

u
to

m
o
b
il

e

Figure 4. The comparison of the results of this paper with AMCD, KPCN, and DEMC.

The PSNR and SSIM index values are reported under each image, and higher values

indicate a better result. The network of our approach performed well and reduced the

time consumption of denoising. Therefore, we compared our method against prior meth-

ods, with similar processing conditions and an equal sample for all methods, and the re-

sults of the average SSIM and PSNR scores are as follows:

In order to further observe the results of the method in this paper, more scene models

were selected for comparison; we highlighted the difference between diffuse and specular

components, and the relationship to high-frequency details. Thus, the following compar-

ison experiments were compared with AMCD, the DEMC work in 2019 [16,17], and the

AFGSA work in 2021 [20]; all of these techniques have public released codes and weights.

The 3D model is still the tungsten renderer, and the sampling rate is 4 spp. The experi-

mental results are as follows:

Usually, the specular and diffuse components have different noise patterns and are

highly dependent upon the smoothness or texture of the surface properties. Figure 5

shows the other methods that led to unsatisfactory results, with disturbing effects on ma-

terial and glass, such as blur region, glossy reflections, depth of field, area lighting, and

global illumination. Therefore, they need to take advantage of auxiliary features in differ-

ent ways. The material scene showed an erroneous texture, the reflected illumination was

poor, the teapot scene had blurred details and was smoother, and there was a glow reflec-

tion in the glass with more noise in the coffee scene. All methods accepted our approach.

Figure 4. The comparison of the results of this paper with AMCD, KPCN, and DEMC.

Table 1. The SSIM, PSNR values, and time process results of our approach against the AMCD, KPCN,
and DEMC results.

Scene
Ours AMCD KPCN DEMC

SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s)

Automobile 0.9326 34.26 0.124 0.8867 29.91 1.079 0.8061 27.75 2.034 0.8241 28.75 1.478
House 0.9113 31.88 0.329 0.8434 28.12 1.04 0.815 25.95 3.229 0.8314 26.45 2.145

Living-room2 0.9405 34.39 0.1502 0.9282 32.05 1.004 0.8931 30.82 3.168 0.8747 29.25 1.455

Table 2. The SSIM, PSNR values, and time process results of our approach against the AMCD, DEMC,
and AFGSA results.

Scene
Ours AMCD AFGSA DEMC

SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s)

Material 0.9487 36.75 0.221 0.9123 32.04 1.024 0.9044 30.26 2.054 0.8845 29.31 3.020
Teapot 0.9286 34.60 0.134 0. 910 31.01 0.984 0.902 30.76 1.947 0.8942 29.25 2.867
Coffee 0.9568 36.04 0.124 0.9364 34.14 1.133 0.8502 28.02 1.265 0.8293 25.50 3.170

Finally, the KPN-DGAN denoised the Monte Carlo-rendered image with the auxiliary fea-
tures, which reduced the image noise with a low samples rate, and restored the scene structure
details, to improve the quality of rendered images with less time-consuming processing.

Symmetry 2022, 14, 395 12 of 15Symmetry 2022, 14, x FOR PEER REVIEW 12 of 16

 Ours MC AMCD AFGSA DEMC Ours Reference

Teapot SSIM: 0.8942 0.91 0.8802 0.9286

PSNR 31.01dB 30.25dB 29.76dB 34.60dB

Time: 0.9840s 1.947s 2.8967s 0.134s

SSIM: 0.9123 0.9044 0.8845 0.9487

PSNR: 32.04dB 30.26dB 29.31dB 36.75dB

Time: 1.024s 2.054s 3.020s 0.221s

Material

Coffee SSIM: 0.9364 0.8502 0.8293 0.9568

PSNR: 34.14 dB 28.02 dB 25.50 dB 36.04dB

Time: 1.132s 1.265s 3.170s 0.124s

Figure 5. Comparison of results of our approach against the AMCD, DEMC, and AFGSA results.

In all noise reduction tests, our method always performed better than several state-

of-the-art solutions. Tables 1 and 2 show the SSIM and PSNR values and time process for

all noise reduction results. Accordingly, our method consistently had smaller errors, with

higher SSIM values and less time consumption than state-of-the-art methods.

Table 1. The SSIM, PSNR values, and time process results of our approach against the AMCD,

KPCN, and DEMC results.

Scene
Ours AMCD KPCN DEMC

SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s)

Automobile 0.9326 34.26 0.124 0.8867 29.91 1.079 0.8061 27.75 2.034 0.8241 28.75 1.478

House 0.9113 31.88 0.329 0.8434 28.12 1.04 0.815 25.95 3.229 0.8314 26.45 2.145

Living-room2 0.9405 34.39 0.1502 0.9282 32.05 1.004 0.8931 30.82 3.168 0.8747 29.25 1.455

Figure 5. Comparison of results of our approach against the AMCD, DEMC, and AFGSA results.

5. Discussion

Our main contribution in this approach constitutes a solution for denoising MC
renderings trained with a fast deep generative adversarial network, which produces high-
quality denoising rendering results with fewer auxiliary buffers, and outperforms state-
of-the-art denoising techniques in most situations by saving storage and input/output
cost. Furthermore, our approach consistently leads to accurate handling of the diffuse
and specular components, in both low-frequency and high-frequency areas, better detail
preservation, and a sharp reconstruction to enhance sharp edges with partially saturated
pixels and greater detail with less time consumption for rendering. In contrast, the other
methods are still time-consuming for denoising in real-time applications even with GPU
implementations. The following figure shows the average performance of our work against
the baseline of denoising methods KPCN, DEMC, AMCD, and AFGSA.

Figure 6 shows the average performance of our approach against the DEMC, KPCN,
AMCD, and AFGSA methods, across test scenes on 4 spp:

In all noise reduction tests, our method is always better than several state-of-the-art
solutions. Table 3 shows the aggregate numerical performance of our approach against
DEMC, KPCN, AMCD, and AFGSA methods according to the PSNR, SSIM values, and
time process for all noise reduction results. Our method consistently has smaller errors,
with higher SSIM values and less time consumption than state-of-the-art methods.

Generally, our main contribution in this approach constitutes a solution for denoising
MC renderings trained with deep learning, which produces high-quality denoising render-
ing results with less time-consumption for rendering. In contrast, the other methods are still
time-consuming for denoising in real-time applications, even using GPU implementations.

Symmetry 2022, 14, 395 13 of 15

On the other hand, KPCN and DEMC successfully denoise most low-frequency areas.
Unfortunately, they fail in high-frequency areas, as only stacking the standard convolution
operations makes the network lack resilience when facing different auxiliary features, to
make the network restore high-frequency information as much as possible. The AFGSA
method loses some details and leads to a wrinkle-like artifact, because it is very aggressive
at recovering textures and ignores the specular components. Then, the AMCD method
adding the adversarial loss is useful to a certain extent, but they produce smooth results
at the junction of high/low-frequency areas due to a smoother global illumination effect.
Thus, they cannot essentially eliminate this problem and many other effects. However,
in Figure 5 on the floor of the material scene, there are soft shadows on the sharp lines,
which cannot be filtered while preserving the sharp edges simultaneously. In contrast, our
approach consistently leads to accurate handling of the diffuse and specular components,
in both low-frequency and high-frequency areas, and better detail preservation and a sharp
reconstruction to enhance sharp edges with partially saturated pixels and greater detail.
Moreover, our approach uses fewer auxiliary buffers and outperforms state-of-the-art
denoising techniques in most situations by saving storage and input/output cost.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 16

Table 2. The SSIM, PSNR values, and time process results of our approach against the AMCD,

DEMC, and AFGSA results.

Scene
Ours AMCD AFGSA DEMC

SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s) SSIM PSNR Time(s)

Material 0.9487 36.75 0.221 0.9123 32.04 1.024 0.9044 30.26 2.054 0.8845 29.31 3.020

Teapot 0.9286 34.60 0.134 0. 910 31.01 0.984 0.902 30.76 1.947 0.8942 29.25 2.867

Coffee 0.9568 36.04 0.124 0.9364 34.14 1.133 0.8502 28.02 1.265 0.8293 25.50 3.170

Finally, the KPN-DGAN denoised the Monte Carlo-rendered image with the auxil-

iary features, which reduced the image noise with a low samples rate, and restored the

scene structure details, to improve the quality of rendered images with less time-consum-

ing processing.

5. Discussion

Our main contribution in this approach constitutes a solution for denoising MC ren-

derings trained with a fast deep generative adversarial network, which produces high-

quality denoising rendering results with fewer auxiliary buffers, and outperforms state-

of-the-art denoising techniques in most situations by saving storage and input/output

cost. Furthermore, our approach consistently leads to accurate handling of the diffuse and

specular components, in both low-frequency and high-frequency areas, better detail

preservation, and a sharp reconstruction to enhance sharp edges with partially saturated

pixels and greater detail with less time consumption for rendering. In contrast, the other

methods are still time-consuming for denoising in real-time applications even with GPU

implementations. The following figure shows the average performance of our work

against the baseline of denoising methods KPCN, DEMC, AMCD, and AFGSA.

Figure 6 shows the average performance of our approach against the DEMC, KPCN,

AMCD, and AFGSA methods, across test scenes on 4 spp:

(a) (b) (c)

Figure 6. Average performance and time processes of our approach against DEMC, KPCN, AMCD,

and AFGSA. The values are relative to the noisy input (a), which shows the performance in the

matrix of SSIM, and (b) shows the performance in the matrix of PSNR. Accordingly, higher values

of SSIM and PSNR mean better performance. Finally, (c) shows the comparison of processing time

for optimization between our approach and other techniques, whereas the lower values of seconds

refer to better performance. Note that the highlighted values mean better performance.

In all noise reduction tests, our method is always better than several state-of-the-art

solutions. Table 3 shows the aggregate numerical performance of our approach against

0.5

0.6

0.7

0.8

0.9

1

Ours
AMCD

AFGSA
DEMC

KPCN

S
S

IM

0

5

10

15

20

25

30

35

40

Ours
AMCD

AFGSA
DEMC

KPCN

P
S

N
R

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ours
AMCD

 AFGSA
DEMC

KPCN

T
im

e(
s)

Figure 6. Average performance and time processes of our approach against DEMC, KPCN, AMCD,
and AFGSA. The values are relative to the noisy input (a), which shows the performance in the
matrix of SSIM, and (b) shows the performance in the matrix of PSNR. Accordingly, higher values of
SSIM and PSNR mean better performance. Finally, (c) shows the comparison of processing time for
optimization between our approach and other techniques, whereas the lower values of seconds refer
to better performance. Note that the highlighted values mean better performance.

Table 3. Aggregate numerical performance of all methods.

Model PSNR(dB)

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 16

DEMC, KPCN, AMCD, and AFGSA methods according to the PSNR, SSIM values, and

time process for all noise reduction results. Our method consistently has smaller errors,

with higher SSIM values and less time consumption than state-of-the-art methods.

Table 3. Aggregate numerical performance of all methods.

Model PSNR(dB) SSI
M

Time(s)

KPCN 26.96 0.818 4.612

DEMC 28.63 0.845 3.055

AFGSA 30.07 0.863 2.083

AMCD 31.62 0.895 1.773

Ours 36.76 0.9361 0.2721

Generally, our main contribution in this approach constitutes a solution for denoising

MC renderings trained with deep learning, which produces high-quality denoising ren-

dering results with less time-consumption for rendering. In contrast, the other methods

are still time-consuming for denoising in real-time applications, even using GPU imple-

mentations. On the other hand, KPCN and DEMC successfully denoise most low-fre-

quency areas. Unfortunately, they fail in high-frequency areas, as only stacking the stand-

ard convolution operations makes the network lack resilience when facing different aux-

iliary features, to make the network restore high-frequency information as much as pos-

sible. The AFGSA method loses some details and leads to a wrinkle-like artifact, because

it is very aggressive at recovering textures and ignores the specular components. Then,

the AMCD method adding the adversarial loss is useful to a certain extent, but they pro-

duce smooth results at the junction of high/low-frequency areas due to a smoother global

illumination effect. Thus, they cannot essentially eliminate this problem and many other

effects. However, in Figure 5 on the floor of the material scene, there are soft shadows on

the sharp lines, which cannot be filtered while preserving the sharp edges simultaneously.

In contrast, our approach consistently leads to accurate handling of the diffuse and spec-

ular components, in both low-frequency and high-frequency areas, and better detail

preservation and a sharp reconstruction to enhance sharp edges with partially saturated

pixels and greater detail. Moreover, our approach uses fewer auxiliary buffers and out-

performs state-of-the-art denoising techniques in most situations by saving storage and

input/output cost.

6. Conclusions

In this paper, we demonstrated the effect and performance of a kernel prediction net-

work and a deep generative adversarial network to construct an end-to-end general de-

noising network structure with loss function, and the comparative experiments reflected

that our proposed method was effective and had a good denoising effect. In addition, our

results were compared with the recent work results of Monte Carlo-rendered image de-

noising. Accordingly, the comparison results showed that both the visual effects of the

image, the measured PSNR, and SSIM showed that our approach had a great improve-

ment against the state-of-the-art. In addition, the denoising effects of the data rendered by

multiple renderers showed that the network model of this paper had a relatively good

generalization ability and a good adaptability to the rendering data from different render-

ing systems.

In contrast, to analyze the performance of the method proposed in this paper, we

inputted noise images with different sampling rates and compared the denoising effect

and running time. The results showed that the method of our approach method achieved

better results in terms of effect and running time.

Author Contributions: Conceptualization, A.M.T.A. and C.C.; methodology, A.M.T.A.; software,

A.M.T.A.; validation, A.M.T.A.; formal analysis, A.M.T.A.; investigation, A.M.T.A.; resources, C.C.;

SSIM

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 16

DEMC, KPCN, AMCD, and AFGSA methods according to the PSNR, SSIM values, and

time process for all noise reduction results. Our method consistently has smaller errors,

with higher SSIM values and less time consumption than state-of-the-art methods.

Table 3. Aggregate numerical performance of all methods.

Model PSNR(dB) SSI
M

Time(s)

KPCN 26.96 0.818 4.612

DEMC 28.63 0.845 3.055

AFGSA 30.07 0.863 2.083

AMCD 31.62 0.895 1.773

Ours 36.76 0.9361 0.2721

Generally, our main contribution in this approach constitutes a solution for denoising

MC renderings trained with deep learning, which produces high-quality denoising ren-

dering results with less time-consumption for rendering. In contrast, the other methods

are still time-consuming for denoising in real-time applications, even using GPU imple-

mentations. On the other hand, KPCN and DEMC successfully denoise most low-fre-

quency areas. Unfortunately, they fail in high-frequency areas, as only stacking the stand-

ard convolution operations makes the network lack resilience when facing different aux-

iliary features, to make the network restore high-frequency information as much as pos-

sible. The AFGSA method loses some details and leads to a wrinkle-like artifact, because

it is very aggressive at recovering textures and ignores the specular components. Then,

the AMCD method adding the adversarial loss is useful to a certain extent, but they pro-

duce smooth results at the junction of high/low-frequency areas due to a smoother global

illumination effect. Thus, they cannot essentially eliminate this problem and many other

effects. However, in Figure 5 on the floor of the material scene, there are soft shadows on

the sharp lines, which cannot be filtered while preserving the sharp edges simultaneously.

In contrast, our approach consistently leads to accurate handling of the diffuse and spec-

ular components, in both low-frequency and high-frequency areas, and better detail

preservation and a sharp reconstruction to enhance sharp edges with partially saturated

pixels and greater detail. Moreover, our approach uses fewer auxiliary buffers and out-

performs state-of-the-art denoising techniques in most situations by saving storage and

input/output cost.

6. Conclusions

In this paper, we demonstrated the effect and performance of a kernel prediction net-

work and a deep generative adversarial network to construct an end-to-end general de-

noising network structure with loss function, and the comparative experiments reflected

that our proposed method was effective and had a good denoising effect. In addition, our

results were compared with the recent work results of Monte Carlo-rendered image de-

noising. Accordingly, the comparison results showed that both the visual effects of the

image, the measured PSNR, and SSIM showed that our approach had a great improve-

ment against the state-of-the-art. In addition, the denoising effects of the data rendered by

multiple renderers showed that the network model of this paper had a relatively good

generalization ability and a good adaptability to the rendering data from different render-

ing systems.

In contrast, to analyze the performance of the method proposed in this paper, we

inputted noise images with different sampling rates and compared the denoising effect

and running time. The results showed that the method of our approach method achieved

better results in terms of effect and running time.

Author Contributions: Conceptualization, A.M.T.A. and C.C.; methodology, A.M.T.A.; software,

A.M.T.A.; validation, A.M.T.A.; formal analysis, A.M.T.A.; investigation, A.M.T.A.; resources, C.C.;

Time(s)

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 16

DEMC, KPCN, AMCD, and AFGSA methods according to the PSNR, SSIM values, and

time process for all noise reduction results. Our method consistently has smaller errors,

with higher SSIM values and less time consumption than state-of-the-art methods.

Table 3. Aggregate numerical performance of all methods.

Model PSNR(dB) SSI
M

Time(s)

KPCN 26.96 0.818 4.612

DEMC 28.63 0.845 3.055

AFGSA 30.07 0.863 2.083

AMCD 31.62 0.895 1.773

Ours 36.76 0.9361 0.2721

Generally, our main contribution in this approach constitutes a solution for denoising

MC renderings trained with deep learning, which produces high-quality denoising ren-

dering results with less time-consumption for rendering. In contrast, the other methods

are still time-consuming for denoising in real-time applications, even using GPU imple-

mentations. On the other hand, KPCN and DEMC successfully denoise most low-fre-

quency areas. Unfortunately, they fail in high-frequency areas, as only stacking the stand-

ard convolution operations makes the network lack resilience when facing different aux-

iliary features, to make the network restore high-frequency information as much as pos-

sible. The AFGSA method loses some details and leads to a wrinkle-like artifact, because

it is very aggressive at recovering textures and ignores the specular components. Then,

the AMCD method adding the adversarial loss is useful to a certain extent, but they pro-

duce smooth results at the junction of high/low-frequency areas due to a smoother global

illumination effect. Thus, they cannot essentially eliminate this problem and many other

effects. However, in Figure 5 on the floor of the material scene, there are soft shadows on

the sharp lines, which cannot be filtered while preserving the sharp edges simultaneously.

In contrast, our approach consistently leads to accurate handling of the diffuse and spec-

ular components, in both low-frequency and high-frequency areas, and better detail

preservation and a sharp reconstruction to enhance sharp edges with partially saturated

pixels and greater detail. Moreover, our approach uses fewer auxiliary buffers and out-

performs state-of-the-art denoising techniques in most situations by saving storage and

input/output cost.

6. Conclusions

In this paper, we demonstrated the effect and performance of a kernel prediction net-

work and a deep generative adversarial network to construct an end-to-end general de-

noising network structure with loss function, and the comparative experiments reflected

that our proposed method was effective and had a good denoising effect. In addition, our

results were compared with the recent work results of Monte Carlo-rendered image de-

noising. Accordingly, the comparison results showed that both the visual effects of the

image, the measured PSNR, and SSIM showed that our approach had a great improve-

ment against the state-of-the-art. In addition, the denoising effects of the data rendered by

multiple renderers showed that the network model of this paper had a relatively good

generalization ability and a good adaptability to the rendering data from different render-

ing systems.

In contrast, to analyze the performance of the method proposed in this paper, we

inputted noise images with different sampling rates and compared the denoising effect

and running time. The results showed that the method of our approach method achieved

better results in terms of effect and running time.

Author Contributions: Conceptualization, A.M.T.A. and C.C.; methodology, A.M.T.A.; software,

A.M.T.A.; validation, A.M.T.A.; formal analysis, A.M.T.A.; investigation, A.M.T.A.; resources, C.C.;

KPCN 26.96 0.818 4.612
DEMC 28.63 0.845 3.055
AFGSA 30.07 0.863 2.083
AMCD 31.62 0.895 1.773
Ours 36.76 0.9361 0.2721

6. Conclusions

In this paper, we demonstrated the effect and performance of a kernel prediction
network and a deep generative adversarial network to construct an end-to-end general
denoising network structure with loss function, and the comparative experiments reflected
that our proposed method was effective and had a good denoising effect. In addition, our
results were compared with the recent work results of Monte Carlo-rendered image denois-

Symmetry 2022, 14, 395 14 of 15

ing. Accordingly, the comparison results showed that both the visual effects of the image,
the measured PSNR, and SSIM showed that our approach had a great improvement against
the state-of-the-art. In addition, the denoising effects of the data rendered by multiple
renderers showed that the network model of this paper had a relatively good generalization
ability and a good adaptability to the rendering data from different rendering systems.

In contrast, to analyze the performance of the method proposed in this paper, we
inputted noise images with different sampling rates and compared the denoising effect and
running time. The results showed that the method of our approach method achieved better
results in terms of effect and running time.

Author Contributions: Conceptualization, A.M.T.A. and C.C.; methodology, A.M.T.A.; software,
A.M.T.A.; validation, A.M.T.A.; formal analysis, A.M.T.A.; investigation, A.M.T.A.; resources, C.C.;
data curation, A.M.T.A.; writing—original draft preparation, A.M.T.A.; writing—review and editing,
A.M.T.A. and C.C.; visualization, A.M.T.A.; supervision, C.C.; project administration, C.C.; funding
acquisition, C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported partially by the National Natural Science Foundation of China
under Grant U19A2063 and partially by the Jilin Provincial Science & Technology Development
Program of China under Grant 20190302113GX. The authors would like to thank all reviewers for
their valuable comments and suggestions.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MC Monte Carlo Method
DGAN Deep Generative Adversarial Network
AFGSA Auxiliary Feature Guided Self-Attention Module
KPCN Kernel Predicting Convolutional Network
spp Samples Per Pixel
SSIM The Structural Similarity Index
PSNR Peak Signal-To-Noise Ratio

References
1. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 2,
pp. 2536–2544. Available online: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.278 (accessed on 25 November 2021).

2. Brabandere, B.D.; Jia, X.; Tuytelaars, T.; Gool, L.V. Dynamic filter networks. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 667–675. Available online: https:
//dl.acm.org/doi/10.5555/3157096.3157171 (accessed on 25 November 2021).

3. Bako, S.; Vogels, T.; McWilliams, B.; Meyer, M.; Novák, J.; Harvill, A.; Sen, P.; Derose, T.; Rousselle, F. Kernel-predicting
convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 2017, 36, 1–14. [CrossRef]

4. Vogels, T.; Rousselle, F.; Mcwilliams, B.; Röthlin, G.; Harvill, A.; Adler, D.; Meyer, M.; Novák, J. Denoising with kernel prediction
and asymmetric loss functions. ACM Trans. Graph. 2018, 37, 1–15. [CrossRef]

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

6. Mildenhall, B.; Barron, J.T.; Chen, J.; Sharlet, D.; Ng, R.; Carroll, R. Burst Denoising with Kernel Prediction Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018; pp. 2502–2510. Available online: https://arxiv.org/abs/1712.02327 (accessed on 25 November 2021).

7. Mao, X.-J.; Shen, C.; Yang, Y.-B. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric
Skip Connections. Comput. Vis. Pattern Recognit. 2016, 2, 1–9. Available online: https://arxiv.org/abs/1603.09056 (accessed on 25
November 2021).

https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.278
https://dl.acm.org/doi/10.5555/3157096.3157171
https://dl.acm.org/doi/10.5555/3157096.3157171
http://doi.org/10.1145/3072959.3073708
http://doi.org/10.1145/3197517.3201388
http://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1712.02327
https://arxiv.org/abs/1603.09056

Symmetry 2022, 14, 395 15 of 15

8. Gharbi, M.; Li, T.-M.; Aittala, M.; Lehtinen, J.; Durand, F. Sample-based Monte Carlo denoising using a kernel-splatting network.
ACM Trans. Graph. 2019, 38, 125. [CrossRef]

9. Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2016, arXiv:1701.00160. Available online: http:
//arxiv.org/pdf/1701.00160.pdf (accessed on 25 November 2021).

10. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.
[CrossRef]

11. Chen, Q.; Koltun, V. Photographic Image Synthesis with Cascaded Refinement Networks. In Proceedings of the International
Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017; pp. 1–10. Available online: https://arxiv.org/
abs/1707.09405 (accessed on 26 November 2021).

12. Dosovitskiy, A.; Brox, T. Generating images with perceptual similarity metrics based on deep networks. In Proceedings of the
30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 658–666.
[CrossRef]

13. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423.
[CrossRef]

14. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Comput. Vis. Pattern
Recognit. 2016, 9906, 694–711. Available online: https://arxiv.org/abs/1603.08155 (accessed on 15 November 2021).

15. Bui, G.; Le, T.; Morago, B.; Duan, Y. Point-based rendering enhancement via deep learning. Vis. Comput. 2018, 34, 829–841.
[CrossRef]

16. Xu, B.; Zhang, J.; Wang, R.; Xu, K.; Yang, Y.-L.; Li, C.; Tang, R. Adversarial Monte Carlo Denoising with Conditioned Auxiliary
Feature Modulation. ACM Trans. Graph. 2019, 38, 1–12. [CrossRef]

17. Yang, X.; Wang, D.; Hu, W.; Zhao, L.-J.; Yin, B.-C.; Zhang, Q.; Wei, X.-P.; Fu, H. DEMC: A Deep Dual-Encoder Network for
Denoising Monte Carlo Rendering. J. Comput. Sci. Technol. 2019, 34, 1123–1135. [CrossRef]

18. Munkberg, J.; Hasselgren, J. Neural Denoising with Layer Embeddings. Comput. Graph. Forum 2020, 39, 1–12. [CrossRef]
19. Lu, Y.; Xie, N.; Shen, H.T. DMCR-GAN: Adversarial Denoising for Monte Carlo Renderings with Residual Attention Networks and

Hierarchical Features Modulation of Auxiliary Buffers. In Proceedings of the SIGGRAPH Asia 2020 Technical Communications,
Virtual Event, Korea, 1–9 December 2020; pp. 1–4. [CrossRef]

20. Yu, J.; Nie, Y.; Long, C.; Xu, W.; Zhang, Q.; Li, G. Monte Carlo denoising via auxiliary feature guided self-attention. ACM Trans.
Graph. 2021, 40, 1–13. [CrossRef]

21. Marinč, T.; Srinivasan, V.; Gül, S.; Hellge, C.; Samek, W. Multi-Kernel Prediction Networks for Denoising of Burst Images.
In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 2404–2408. [CrossRef]

22. Chaitanya, C.R.A.; Kaplanyan, A.S.; Schied, C.; Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila, T. Interactive reconstruction of
Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. 2017, 36, 1–12. [CrossRef]

23. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, Montreal, QC,
Canada, 8–13 December 2014; pp. 2672–2680. Available online: https://dl.acm.org/doi/10.5555/2969033.2969125 (accessed on 26
December 2021).

24. Lee, W.-H.; Ozger, M.; Challita, U.; Sung, K.W. Noise Learning Based Denoising Autoencoder. IEEE Commun. Lett. 2021, 25,
2983–2987. [CrossRef]

25. Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2019, 2, 7.
[CrossRef]

26. Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [CrossRef]

27. Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Trans. Graph. 2002, 21,
267–276. [CrossRef]

28. Bitterli, B. Rendering Resources. 2016, vol. 9. Available online: https://benedikt-bitterli.me/resources/ (accessed on 1
November 2021).

29. Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. Available
online: https://arxiv.org/abs/1906.02691 (accessed on 26 November 2021). [CrossRef]

30. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

31. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. Available online:
http://proceedings.mlr.press/v9/glorot10a.html (accessed on 27 November 2021).

32. Bitterli, B. The Tungsten Renderer. 2014. Available online: https://benedikt-bitterli.me/tungsten.html (accessed on 1
November 2021).

http://doi.org/10.1145/3306346.3322954
http://arxiv.org/pdf/1701.00160.pdf
http://arxiv.org/pdf/1701.00160.pdf
http://doi.org/10.1109/CVPR.2017.632
https://arxiv.org/abs/1707.09405
https://arxiv.org/abs/1707.09405
http://doi.org/10.5555/3157096.3157170
http://doi.org/10.1109/CVPR.2016.265
https://arxiv.org/abs/1603.08155
http://doi.org/10.1007/s00371-018-1550-6
http://doi.org/10.1145/3355089.3356547
http://doi.org/10.1007/s11390-019-1964-2
http://doi.org/10.1111/cgf.14049
http://doi.org/10.1145/3410700.3425426
http://doi.org/10.1145/3478513.3480565
http://doi.org/10.1109/ICIP.2019.8803335
http://doi.org/10.1145/3072959.3073601
https://dl.acm.org/doi/10.5555/2969033.2969125
http://doi.org/10.1109/LCOMM.2021.3091800
http://doi.org/10.1186/s42492-019-0016-7
http://doi.org/10.1109/ICPR.2010.579
http://doi.org/10.1145/566654.566575
https://benedikt-bitterli.me/resources/
https://arxiv.org/abs/1906.02691
http://doi.org/10.1561/2200000056
http://doi.org/10.1109/TIP.2003.819861
http://proceedings.mlr.press/v9/glorot10a.html
https://benedikt-bitterli.me/tungsten.html

	Introduction
	Related Work
	The Method
	Model Architecture
	Deep Generation Adversarial Network (DGAN)
	The Kernel Prediction Network (KPN)
	Image Reconstruction
	Loss Function Design

	Auxiliary Feature
	Dataset and Training

	Results
	Discussion
	Conclusions
	References

