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Abstract: The exponential growth in transmission of multimedia over the Internet and unsecured
channels of communications is putting pressure on scientists and engineers to develop effective and
efficient security schemes. In this paper, an image encryption scheme is proposed to help solve such
a problem. The proposed scheme is implemented over three stages. The first stage makes use of Rule
30 cellular automata to generate the first encryption key. The second stage utilizes a well-tested S-box,
whose design involves a transformation, modular inverses, and permutation. Finally, the third stage
employs a solution of the Lorenz system to generate the second encryption key. The aggregate effect
of this 3-stage process insures the application of Shannon’s confusion and diffusion properties of a
cryptographic system and enhances the security and robustness of the resulting encrypted images.
Specifically, the use of the PRNG bitstreams from both of the cellular automata and the Lorenz system,
as keys, combined with the S-box, results in the needed non-linearity and complexity inherent in
well-encrypted images, which is sufficient to frustrate attackers. Performance evaluation is carried
out with statistical and sensitivity analyses, to check for and demonstrate the security and robustness
of the proposed scheme. On testing the resulting encrypted Lena image, the proposed scheme results
in an MSE value of 8923.03, a PSNR value of 8.625 dB, an information entropy of 7.999, NPCR value of
99.627, and UACI value of 33.46. The proposed scheme is shown to encrypt images at an average rate
of 0.61 Mbps. A comparative study with counterpart image encryption schemes from the literature is
also presented to showcase the superior performance of the proposed scheme.

Keywords: image encryption; cellular automata; S-box; Lorenz system; NIST analysis

1. Introduction

The unprecedented developments and complexity witnessed in today’s wireless com-
munication networks and big data applications render security as an issue of paramount
importance [1–3]. Data security, through cryptography and steganography [4–9], has thus
become a vital means to ensure safe and secure operation and usage of millions of online
applications [10]. Cryptography, being the core technology in information security, has
attracted the attention of scientists and engineers, with investments in its research and
developments skyrocketing in recent decades [11,12]. Although modern cryptographic
algorithms employ block ciphers such as the data encryption standard (DES), the triple
DES (3DES), and the advanced encryption standard (AES), they are not best-suited for the
purposes of encrypting images. This is because images hold very large amounts of data [13].
Thus, global efforts in recent years were directed to design and build cryptosystems that
are lightweight and better-suited to efficiently carry out image encryption. Outcomes
of such efforts have usually involved the use of one or more pseudo random number
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generators (PRNGs) as well as true RNGs. The literature includes examples pooling from
chaos theory [14], cellular automata (CA) [15], electrical circuits [16] and electronics [17],
quantum physics [18], as well as many others. The next few paragraphs emphasize the
importance of CA and chaos theory in security applications, as well as their utilization in
state-of-the-art image encryption schemes. Next, substitution boxes (S-boxes) are discussed
as a powerful tool to introduce confusion in a cryptosystem.

Cellular automata are systems of dynamical nature that are discrete both in space
and time. A cellular automaton comprises an array of cells. Each such cell can take on
a value from a finite number of possibilities, updated synchronously in discrete steps of
time, based on an interaction rule. As many cryptographic algorithms are based on RNGs,
CA seems to be a great fit, as they can be utilized as RNGs with multiple advantages.
Those include algorithmic simplicity and the ease of hardware implementation [19]. One
of the earliest uses of CA in cryptography was proposed by Wolfram in [20]. Soon enough,
scientists and engineers adopted the idea of CA as encryption devices and started utilizing
them as well. Most notably is the work of Nandi et al. [21], where a number of block and
stream ciphers were proposed. These were based on CA built around Rule 51, Rule 90,
Rule 150, Rule 153, and Rule 195. Achieved numerical results clearly showcase that the use
of CA provides good defense against various attacks. Furthermore, the authors of [21] also
proposed logic diagrams for VLSI implementations of such CA based encryption hardware.
A more recent work entailing the use of Rule 30 is [22], where the authors contend that
because randomly generated numbers from Rule 30 are tested for significant randomness,
it can be applied in visual cryptography schemes with much success. In [23], the authors
propose an image encryption algorithm that utilizes a memrestive hyperchaotic system,
CA, and DNA sequence operations. Furthermore, they make use of SHA-256 in their key
generation. The authors of [24] adopted a non-uniform CA framework to circumvent the
problem of the limited number of CA reversal rules and the inability to generate long state
sequences by some of them. In [25], the authors present an image encryption scheme built
on a quantum logistic map, CA, and an RSA-based key generation. The authors of [26]
employ a multi-delay Chebyshev map, along with CA and DNA coding for the purposes
of image encryption. The work proposed by [27] also employs chaos theory in addition
to CA, as well as adopts SHA-2. To date, the amount of literature making use of CA in
cryptography is rather limited, especially when compared to its equivalent amount that
extends ideas from chaotic and dynamical systems for the same purposes of security.

The inherent characteristics of chaotic functions as a random phenomenon in nonlin-
ear systems prove advantageous in relation to cryptography [14], specifically, their high
sensitivity to initial conditions, control parameters, periodicity, pseudo-randomness, and er-
godicity [28]. These characteristics are made use of in designing image encryption schemes.
Such schemes are classified into two categories: (a) one-dimensional (1D) and (b) multi-
dimensional (MD). Although image encryption schemes that are based on 1D chaotic
maps are less complex and more efficient for software and hardware implementations,
they exhibit less desirable characteristics, in terms of shorter chaotic periods, non-uniform
distribution of their chaotic output, and a higher vulnerability to cryptanalysis. In contrast,
MD chaotic maps when employed in image encryption schemes provide higher security
levels at the expense of a higher complexity and, thus, more running time for software and
hardware implementations [29]. The literature on the use of 1D and MD for image encryp-
tion is extensive. For example, the authors of [30] propose a grayscale image encryption
algorithm based on pixel shuffling through the Arnold map, followed by the use of a key
that is generated through the 2D logistic sine map and a linear congruential generator. The
authors of [31] utilized a finite field in order to generalize the logistic map and attempt to
find an automorphic mapping between two logistic maps to compute parameters over the
finite field ZN . In [32], the authors employ a coupling of the 2D logistic map and a quan-
tum chaotic map through the nearest-neighboring coupled-map matrices. Their proposed
scheme makes use of the resulting higher complexity randomness to generate an encrypted
image. The authors of [33] propose a symmetric cryptosystem for color images. Their pro-
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posed algorithm employs a hybrid form of the Lorenz system to achieve diffusion and DNA
sequencing to achieve confusion. In [34], the authors make use of a Lorenz–Rossler chaotic
system to carry out pixel diffusion, whereas 2D logistic maps are employed for confusion.
The authors of [35] propose a color image encryption scheme that utilizes multiple chaotic
maps with a minimum number of rounds of encryption. Their proposed scheme makes
full use of the ideas of Shannon with regards to confusion and diffusion. A rather thorough
numerical analysis was carried out by the authors of [36], who proposed a scheme based
on an LA-semi group for confusion, whereas a chaotic continuous system was adopted
for diffusion. In [37], the authors base their proposed image encryption scheme on three
stages: A diffusion stage that utilizes a chaotic quantum logistic function, a scrambling
stage for the pixel arrangement, which employs a 2D chaotic map, and then coupling the
results of the first two stages with a nearest-neighbor coupled-map lattices. The authors
of [38] propose an efficient image encryption scheme that is based on hyper-chaos and
a vector operation. Their proposed scheme makes use of a post-processing method that
creates a key matrix. The use of this key matrix results in an acute reduction in the number
of required iterations of the utilized hyperchaotic system. In [39], a color image encryption
scheme that involves the use of chaos theory and a zigzag transform is proposed. The
authors employ the zigzag transform in conjunction with an arrangement that changes in
a bidirectional crossover manner to carry out the first stage of image encryption. This is
followed by the use of a logistic map and a hyperchaotic Chen dynamical system. This
paragraph only touches upon the topic of employing chaos theory in image encryption
applications. Recent literature on the topic is quite expansive. The next paragraph focuses
on a different but rather important building block of many image encryption schemes:
substitution boxes.

An S-box is a vital component in modern block encryption algorithms. It aids in
generating an apparent ciphertext from any given plaintext. The simple act of adding an
S-box to an encryption algorithm results in a non-linear mapping between the input and
output data, thus providing the confusion property [40]. The higher the extent of confusion,
the better the security offered by an S-box in a block cipher. In turn, for many block
encryption algorithms, their robustness against attacks is directly related to the security
provided through the utilization of one or more S-boxes. Although such algorithms
could comprise multiple components, an S-box is usually the sole non-linear component
that enhances sensitive data security [41,42]. State-of-the-art symmetric ciphers usually
employ S-boxes that introduce a high level of confusion for attackers [13,43–46]. However,
designing an S-box should be an efficient and low-complexity process in order for it to be
suitable for real-time data encryption algorithms. For example, the generation of S-boxes
through the employment of a linear fractional transformation (LFT) makes use of the Galois
field. LFT, otherwise known as the Möbius transformation, is repeatedly mentioned in the
literature for the design of S-boxes [47,48].

While recent literature on image encryption schemes proposes a multitude of algo-
rithms that make use of chaos theory, very little research utilizes CA. Furthermore, the
combined utilization of chaos theory and CA for image encryption is very limited in the
literature. Schemes that do propose such combinations either suffer from low key spaces
or lengthy encryption times, deeming them less than optimal for modern-day real-time
image encryption applications. In this paper, the authors identify this as a research gap
and attempt to fill it, by proposing a novel color image encryption scheme that combines
ideas from chaos theory and CA. Furthermore, the proposed scheme possesses a large key
space, yet exhibits a very small encryption time. The contributions of this paper are as
follows. A lightweight color image encryption scheme is proposed. The proposed scheme
is based on three stages. The first stage incorporates the use of Rule 30 CA, the second
stage utilizes a robust S-box, and the third stage employs a solution of the Lorenz system.
The proposed image encryption scheme makes use of the ideas of confusion and diffusion
proposed by Shannon [49]. Performance analysis is carried out and compared against
recent counterpart image encryption schemes from the literature. The computed numerical
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results are remarkable in terms of robustness and resistance to statistical and differential
attacks. The proposed scheme is also shown to pass the NIST suite of tests. Finally, its
suitability for real-time applications is evaluated, given its large key space and short run-
ning time. This paper is organized as follows. Section 2 introduces some preliminary ideas
that are employed in the proposed scheme. Those include Rule 30 of CA, followed by the
adopted S-box and the Lorenz system. Section 3 describes the methodology of the proposed
image encryption scheme. Section 4 presents the numerical results of the computations and
performance evaluation and provides appropriate commentary on them. Section 5 draws
the conclusions of the paper, identifies a limitation, and suggests future work that could be
further pursued.

2. Preliminary for the Proposed Image Encryption Scheme

The proposed image encryption scheme is composed of three stages. The first stage
involves the use of Rule 30 cellular automaton to generate the first encryption key. The
second stage makes use of an S-box. Finally, the third stage employs a solution of the
Lorenz system to generate a second encryption key. The next sections introduce each of
those concepts.

2.1. Rule 30 Cellular Automaton

A simple 2D cellular automaton is basically a 2D array with each cell taking 1 of 2
values, in this case, a 0 (white) or a 1 (black), plotted on an infinite sheet of graph paper,
with a set of rules defining how the next cells would take on values. The neighborhood of a
cell is defined in one of the two following ways: (1) The von Neumann neighborhood, and
(2) The Moore neighborhood [50]. Figure 1 shows each of the neighborhoods of the center
cell in each of the cellular automata. However, for the purposes of the image encryption
scheme proposed in this paper, we are only interested in the simplest nontrivial cellular
automaton with a cell’s neighborhood defined as the adjacent cells on either side of it. Thus,
for any any given cell, along with its two neighbors, it would form a neighborhood of three
cells, resulting in 23 = 8 possible patterns. Rule 30 cellular automaton exhibits a class 3
behavior. This means that simple input patterns lead to chaotic and rather random outputs.
Mathematically, Rule 30 gives the next state of any given cell as

si(t + 1) = si−1(t)⊕ (si(t) + si+1(t)), (1)

where ⊕ and + on the RHS of (1) are the “xor” and “or” Boolean operators, respectively.

Figure 1. The orange cells are the Moore neighborhood for the violet cell (left). The orange cells are
the von Neumann neighborhood for the violet cell. The range-2 cross neighborhood includes the
yellow cells also (right).

Figure 2 shows the utilization of the pattern shown in Figure 3 and expressed math-
ematically in (1) to generate the first 10 steps of the Rule 30 cellular automaton. Starting
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with the top row, there is only a single black cell, having a value of 1. This means that both
of its adjacent neighbors are white cells, having a value of 0. Referring back to Figure 3, the
sixth square depicts the current situation and shows a next cell that is also black, having
a value of 1. Repeated utilization of the pattern in Figure 3 results in the generation of
Figure 2 for 10 steps and Figure 4 for 100 steps. It was suggested in [15] that Rule 30 cellular
automaton can be considered as a PRNG, as the center column satisfies the characteristics
of a randomly generated bitstream. For example, examining the center column of Figure 2
reveals that the resulting bitstream is {1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0}. Based on the work of Wol-
fram in [20], this fact was first utilized in [51] for the introduction of a block cipher for use
in public-key cryptography. This is because given the rule, it is a straight forward process
to compute future states; however, it is rather complex to compute previous ones.

Figure 2. The first 10 steps of Rule 30 cellular automaton.

Figure 3. Current pattern and new state for center cell of a Rule 30 cellular automaton.

Figure 4. The first 100 steps of Rule 30 cellular automaton.

2.2. S-Box

With the security and robustness of block ciphers being heavily dependent on the
cryptographic abilities of the utilized S-boxes to introduce adequate confusion effects, it
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becomes clear that the choice of an S-box should be of prime importance when attempting
to design a robust and secure image encryption scheme. The authors of [43] also realize the
importance of how S-boxes introduce non-linearity and complexity into a cryptosystem and
thus propose a novel method for the construction of S-boxes. In their paper, they propose a
modular approach that comprises three operations: a transformation, modular inverses,
and a permutation. Following their approach, highly non-linear S-boxes can be efficiently
generated, each through a simple change in the initial transformation parameters. In their
paper, the authors of [43] subject one such example constructed S-box to a number of
performance evaluation benchmarks. Those include testing for high non-linearity, absence
of fixed points, possession of SAC and BIC characteristics, as well as low differential
uniformity and linear approximation probability. Table 1 provides an example of an S-box
generated using the ideas proposed in [43], which we employ in our proposed image
encryption scheme.

Table 1. Example S-box values as constructed from the proposed method in [43].

203 153 138 245 187 130 186 167 144 40 131 250 202 47 244 136

141 166 91 116 121 13 210 55 7 126 217 113 90 71 127 70

12 119 104 54 190 88 184 32 42 248 112 158 89 11 209 154

229 30 207 220 195 23 216 128 118 102 109 255 249 4 53 1

211 74 197 206 235 198 18 193 81 149 19 117 115 31 5 147

231 25 182 242 163 14 177 180 254 24 208 123 111 84 224 178

161 201 157 133 175 236 218 241 106 165 137 213 36 162 38 230

10 205 107 69 97 251 159 222 191 65 57 93 179 212 17 72

76 20 214 194 61 125 114 101 34 152 171 122 228 68 85 199

170 83 0 174 87 58 172 189 29 135 86 105 223 156 143 132

196 63 43 237 181 185 240 45 78 164 200 192 66 35 98 6

160 188 150 52 247 27 219 95 221 44 120 92 151 16 39 21

82 124 100 56 96 79 33 173 146 134 49 233 3 77 80 243

94 15 75 232 26 110 252 226 142 140 238 108 176 64 239 59

22 51 60 183 46 67 204 253 8 2 148 155 139 129 41 234

62 37 50 227 28 103 48 246 168 99 145 9 215 225 73 169

2.3. The Lorenz System

A mathematical model for atmospheric convection was developed in 1963 by Edward
Lorenz [52]. This model consists of three ordinary differential equations, now known as
the Lorenz system. These differential equations are expressed as

dx
dt

= σ(y− x), (2a)

dy
dt

= x(ρ− z)− y, (2b)

dz
dt

= xy− βz, (2c)

where σ, ρ, and β are system parameters proportional to the Prandtl number, the Rayleigh
number, and specific physical dimensions of the layer itself, respectively [53]. For the values
σ = 10, β = 8/3, and ρ = 28, the system exhibits a chaotic behavior and its solution would
be plotted as in Figure 5. This renders the Lorenz system to be a non-linear, non-periodic,
3D, and deterministic one. From a cryptographic point of view, the ability to generate a
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chaotic solution in a deterministic manner is highly appreciated [14], which is why we
adopt it as part of our proposed image encryption scheme.

Figure 5. The butterfly shape of a Lorenz system solution for the values σ = 10, β = 8/3, and ρ = 28.

3. Methodology of the Proposed RGB Image Encryption through Cellular Automata,
S-Box and the Lorenz System
3.1. The Encryption Scheme

The proposed image encryption scheme is implemented in a number of steps, as follows.

1. An image of appropriate dimensions M× N is chosen and its pixels are converted
into a 1D bitstream, d.

2. The mean intensity of the image pixels, Pµ, is calculated as

Pµ =
∑i pi

M× N
, (3)

where pi is the intensity of pixel i. The resulting value is a rather small number, which
we multiply by a magnifying factor fM. Let us denote the resulting value by µ:

µ = fM × Pµ. (4)

3. Cyclically shifting each of the ai elements of d to the right by µ places:

a0 → a1 → a2 → · · · → ak (5)
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4. XORing the resulting bitstream, now denoted dµ, with the first encryption key, KCA,
as follows:

C0 = dµ ⊕ KCA, (6)

where KCA is a bitstream of the same length as d and dµ, which is made up of a
repetition of the first NCA bits resulting from the center column of the Rule 30 CA as
in Figure 6. This concludes the first stage of encryption.

5. The output bitstream from the XORing process, C0, enters a substitution process using
the proposed S-box, which is constructed employing the ideas proposed in [43]. Let
us denote the resulting bitstream as C1:

C1 = S(C0). (7)

This concludes the second stage of encryption.
6. The Lorenz system is numerically solved, resulting in a 3D geometry, as depicted in

Figure 5. Take the x, y, and z coordinates of each of the points of the resulting solution
and flatten them into a single 1D array, L, as follows:

L = {P1, P2, . . . , PM} → {x1, y1, z1, x2, y2, z2, . . . , xM, yM, zM}. (8)

Next, we list plot those values into 2D, as shown in Figure 7. Examining the plot in
Figure 7, it is clear that there are more positive values than there are negative ones.
Therefore, we choose a threshold value λ, such that if any of the values are above this
threshold, they would be accounted as 1s, otherwise, they would be accounted as 0 s,
as follows:

v =

{
1, Li > λ,
0, Li ≤ λ.

(9)

This newly obtained bitstream, v, of length NL would make up the seed of our Lorenz
system based key, as in Figure 8.

7. Repeat those NL bits until they are of the same length as d and C1, thus forming
the second encryption key. Let us denote it KL, and XOR it with C1, obtaining C2
as follows:

C2 = C1 ⊕ KL, (10)

This concludes the third stage of encryption.
8. C2 is reshaped back into an image of the same dimensions (M× N) as those of the

plain image, obtaining the encrypted image.

Figure 6. Flow chart of PRNG of Rule 30 CA, employed in the generation of the first key, KCA.

Figure 9 provides a graphical illustration of the proposed image encryption scheme,
and Figures 6 and 8 showcase the flow charts for the Rule 30 CA and the Lorenz system
keys generation, respectively.
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Figure 7. The first 50 points from the 2D array obtained from the 3D coordinates of the Lorenz system
solution for the values σ = 10, β = 8/3, and ρ = 28.

Figure 8. Flow chart of PRNG of chaotic sequences from the Lorenz system, employed in the
generation of the second key, KL.

Figure 9. Flow chart of the encryption scheme.

3.2. The Decryption Scheme

The decryption scheme is implemented in a reverse manner as to that of the encryption
scheme, in a number of steps as follows.

1. Grouping the bits of the encrypted image of dimensions (M × N) into a 1D bit-
stream, C2.
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2. XORing C2 with the second encryption key, KL, as follows:

C1 = C2 ⊕ KL (11)

This concludes the first stage of decryption.
3. Applying an inverse substitution step on C1, utilizing our generated S-box, as follows:

C0 = S−1(C1) (12)

This concludes the second stage of decryption.
4. Obtaining dµ by XORing C0 with the first encryption key, KCA, as follows:

dµ = C0 ⊕ KCA (13)

This concludes the third stage of decryption.
5. Cyclically shifting each of the ai bits of dµ in the opposite direction to that used in the

encryption, i.e., to the left, by the value of µ, resulting in a bitstream d

ak← a1 ← a2 ← · · · ←a0 (14)

6. Folding back the resulting bitstream, d, into an image of the same dimensions (M× N)
as those of the encrypted image, obtaining the plain image.

Figure 10 provides a graphical illustration of the proposed image decryption scheme.

Figure 10. Flow chart of the decryption scheme.

4. Security Analysis and Numerical Results

The performance of an encryption algorithm is measured by its ability to resist statisti-
cal and differential attacks. Thus, this section outlines the numerical results of the proposed
image encryption scheme, as well a comparison with its counterpart schemes from the liter-
ature. The proposed scheme is implemented using the computer algebra system Wolfram
Mathematica® on a machine running macOS Catalina v10.15.7, equipped with a 2.9 GHz 6-
Core Intel® CoreTM i9 processor and 32 GB of 2400 MHz DDR4 of memory. The utilized keys
are assigned the following values: σ = 10, β = 8/3, ρ = 28, NCA = 100, NL = 50, fM = 106,
and λ = 10. Three images that are commonly used in image processing applications and
experimentation are utilized in this section. These are Lena, Peppers, and Baboon, all of
dimensions M× N = 256× 256. The proposed image encryption scheme is tested against
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various statistical and differential attacks. Those include visual and histogram analyses, a
correlation coefficient analysis, mean square error (MSE), mean absolute error (MAE), peak
signal to noise ratio (PSNR), information entropy, a differential attack analysis, comprising
the number of pixel changing rate (NPCR) and the unified average change intensity (UACI),
a key space analysis, a NIST analysis, and, finally, an execution time analysis.

4.1. Visual and Histogram Analyses

The various sub-figures of Figures 11–13 depict plain and encrypted images of Lena,
Peppers, and Baboon, respectively. It is clear that the human visual system (HVS) does not
allow for any meaningful information to be discerned from the encrypted images.

(a) (b)

(c) (d)

Figure 11. Lena image and histogram comparison before and after encryption. (a) Plain image.
(b) Encrypted image. (c) Histogram of the plain image. (d) Histogram of the encrypted image.

A histogram of an image shows the frequency distribution of its pixels. In order to
have a strong encryption scheme, the histogram of an encrypted image must be uniform.
This is because a uniform histogram distribution shows that the probability of each of
the gray levels of the image is almost the same, thus rendering the image more resistant
against statistical attacks. The histograms shown in Figures 11–13 depict histograms of
each of the color channels of the encrypted Lena image. As can be seen, histograms of the
encrypted images are uniform, unlike histograms of plain images, which have many sharp
peaks. Hence, encrypted image pixels are distributed uniformly, resulting in images that
do not reveal any statistical characteristics. This makes it extremely difficult for attackers to
recover the plain image from its encrypted version.
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(a) (b)

(c) (d)

Figure 12. Peppers image and histogram comparison before and after encryption. (a) Plain image.
(b) Encrypted image. (c) Histogram of the plain image. (d) Histogram of the encrypted image.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. Baboon image and histogram comparison before and after encryption. (a) Plain image.
(b) Encrypted image. (c) Histogram of the plain image. (d) Histogram of the encrypted image.

4.2. Chi-Square Test

The histogram is approximated by a uniform distribution. The uniformity is verified
by χ2 test as expressed in (15),

χ2 =
256

∑
k=1

(vk − ek)
2

ek
(15)

where k is the number of gray levels, which is 256, and vk is the observed occurrence
frequencies of each gray level, from 0 to 255. Note that the expected occurrence frequency
of each gray level is 256 [54]. For a significance level of 0.05, the computed χ2 value of the
encrypted Lena image of our proposed scheme is 289. Because χ2

test < χ2
255,0.05, this implies

that the null hypothesis is not rejected and the distribution of the encrypted histogram
is uniform [55]. Furthermore, our computed χ2 value is superior to that of other image
encryption schemes in the literature [56,57].

4.3. Information Entropy

Information entropy is employed to measure the randomness of the distribution of
gray pixel values of an image. It is represented as the following expression according to
Shannon’s theory:

H(m) =
M

∑
i=1

p(mi) log2
1

p(mi)
, (16)

where p(mi) refers to the probability of occurrence of symbol m, and M represents the total
number of bits for each symbol. Theoretically, the entropy value of a randomly encrypted
image is 8 because a gray scale image has 256 symbols and the data of the pixel have 28

possible combinations. The entropy values of the encrypted Lena, Peppers, and Baboon
images are shown in Table 2. As can be seen, each of the values is a little over 7.99, which
reveals that the proposed encryption scheme randomizes the distribution of the pixels of
the plain image, making it impossible for an attacker to gain any information about the
plain image from its encrypted version. Moreover, Tables 3 and 4 show entropy values of
the RGB color channels of various images and how they compare with achieved values in
the literature, respectively. It can be seen that the achieved entropy values are all a little
over 7.99, very close to the ideal entropy value of 8 and comparable to the literature.

Table 2. Information entropy values of various images.

Image Information Entropy

Lena 7.99910
Peppers 7.99877
Baboon 7.99907
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Table 3. Information entropy values of the RGB color channels of various images.

Image Channels Information Entropy

Lena
Red 7.9972

Green 7.9973
Blue 7.9966

Peppers
Red 7.9964

Green 7.9969
Blue 7.9969

Baboon
Red 7.9973

Green 7.9967
Blue 7.9967

Table 4. Comparison of information entropy values of the RGB color channels of the Lena image.

Scheme
Information Entropy Values

Red Green Blue

Proposed scheme 7.9972 7.9973 7.9966
[46] 7.9991 7.9954 7.9963
[35] 7.9973 7.9972 7.9975
[58] 7.9994 7.9994 7.9993
[59] 7.9791 7.9802 7.9827
[60] 7.9948 7.9958 7.9950
[61] 7.9993 7.9993 7.9993

4.4. Mean Squared Error

The mean squared error (MSE) is utilized to measure the reliability of the proposed
scheme. It is evaluated through comparing the plain and encrypted images’ pixels, in order
to detect any similarities or differences between them. Mathematically, it is expressed as:

MSE =
∑M−1

i=0 ∑N−1
j=0 (P(i,j) − E(i,j))

2

M× N
, (17)

where P(i,j) represents a pixel of the plain image and E(i,j) represents a pixel of the en-
crypted image. The product M× N gives the total number of pixels in any of the images.
Theoretically, the value of the MSE must be a large number in order to have a scheme that
is robust against any statistical attacks. Tables 5 and 6 show the computed MSE values for
various encrypted images, as well as compares those of other schemes from the literature,
respectively. It can be seen that the MSE values computed for encrypted images employing
the proposed scheme are comparable or superior to those obtained from other schemes in
the literature.

4.5. Peak Signal to Noise Ratio

The quality of the encryption scheme can be evaluated using the peak signal to
noise ratio (PSNR), which is a ratio of the highest pixel value of the image over the MSE.
Mathematically, it is expressed by:

PSNR = 10 log
( I2

max
MSE

)
, (18)

where Imax is the maximum pixel value, which is 255. The theoretical value of the PSNR
should be as low as possible, as it is inversely proportional to the MSE. The lower the PSNR
values, the better indication of the quality of the encryption scheme. Tables 5 and 6 show
the computed PSNR values for various encrypted images and compares those of other
schemes from the literature, respectively. It can be seen that the PSNR values computed for
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encrypted images employing the proposed scheme are comparable or superior to those
obtained from other schemes in the literature.

Table 5. MSE and PSNR values of different image channels.

Image Channels MSE PSNR [dB]

Lena
Red 10,663.2963 7.8518

Green 8982.0206 8.5970
Blue 7021.3295 9.6666

Peppers
Red 8032.5074 9.0822

Green 11,143.3106 7.66066
Blue 11,101.1624 7.67712

Baboon
Red 8337.2601 8.92057

Green 7434.5269 9.41827
Blue 9113.8334 8.53379

Table 6. Average MSE and PSNR values of different images.

Image
Proposed Scheme [35] [36]

Avg. MSE Avg. PSNR [dB] MSE PSNR [dB] MSE PSNR [dB]

Lena 8888.88 8.64233 10,869.73 7.7677 4859.03 11.3
Peppers 10,092.3 8.09089 - - 6399.05 10.10
Baboon 8295.21 8.94253 10,930.33 7.7447 7274.44 9.55

4.6. Mean Absolute Error

The mean absolute error (MAE) is a metric employed to measure the performance
of the encryption scheme against differential attacks. The value of the MAE between an
encrypted and a plain image must be large to guarantee that an encryption scheme is robust.
It is mathematically expressed as:

MAE =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

P(i,j) − E(i,j), (19)

where P(i,j) refers to a pixel in the plain image and E(i,j) refers to a pixel in the encrypted
image, in row i and column j; M and N are the dimensions of the image. Table 7 shows
that the computed MAE values of the proposed scheme are comparable or superior to its
counterparts from the literature.

Table 7. MAE analysis of the Lena, Peppers, and Baboon images.

Image Proposed Scheme [35] [62]

Lena 77.3752 87 77.35
Peppers 81.7740 - 74.71
Baboon 75.1659 92 73.91

4.7. Correlation Coefficient Analysis

A correlation coefficient measures the similarity or difference between adjacent image
pixels in three directions: vertically, horizontally, and diagonally. In order to have an
image encryption scheme that is cryptographically secure, a strong correlation between the
adjacent pixels in all directions should be eliminated. The value of the correlation coefficient
ranges from −1 to 1, such that −1 means that it has a negative correlation, +1 means that it
has a positive correlation, whereas 0 corresponds to no correlation. Therefore, the encrypted
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image must have a correlation coefficient close to 0 between the adjacent pixels in all the
directions so it would resist statistical attacks. It is mathematically expressed as:

rxy =
cov(x, y)√

D(x)
√

D(y)
, (20)

where

cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)), (21)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2, (22)

and

E(x) =
1
N

N

∑
i=1

(xi). (23)

Figure 14 shows correlation coefficient plots of the plain and encrypted Lena image.
As can be seen, the horizontal, vertical, and diagonal correlation coefficients of the adjacent
pixels are linear. Moreover, the horizontal, vertical, and diagonal correlation coefficients
plots of the encrypted image are uniform and have a scatter-like distribution. This same
pixel correlation coefficient behavior can be seen in Figures 15–17, for the red, green, and
blue channels of the Lena image, respectively. A set of 20,000 adjacent pixels were chosen
along the horizontal, vertical, and diagonal directions for this computation. The distribution
of the pixels in the plain image is linear and lies on the main diagonal. This indicates that
the pixels are linearly correlated. In contrast, the pixel distribution of the encrypted image
is more scattered, indicating the absence of correlation between the adjacent pixels.
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Figure 14. Correlation coefficient diagrams of the plain and encrypted Lena image. (a) Horizontal.
(b) Vertical. (c) Diagonal. (d) Horizontal. (e) Vertical. (f) Diagonal.
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(a) (b) (c)

(d) (e) (f)

Figure 15. Correlation coefficient diagram of the plain and encrypted red channel of Lena image.
(a) Horizontal. (b) Vertical. (c) Diagonal. (d) Horizontal. (e) Vertical. (f) Diagonal.

(a) (b) (c)

(d) (e) (f)

Figure 16. Correlation coefficient diagram of the plain and encrypted green channel of Lena image.
(a) Horizontal. (b) Vertical. (c) Diagonal. (d) Horizontal. (e) Vertical. (f) Diagonal.

This linear relationship is also shown in Table 8, where the plain image has a correlation
coefficient of ∼1 and the correlation coefficient of the encrypted image is ∼0, which means
that the pixels are not correlated to one another, making the encrypted image meaningless
to any attacker. Table 9 showcases a correlation coefficient comparison among the proposed
scheme and some of its counterparts from the literature. It is clear that the results are
comparable. A detailed correlation coefficient comparison in terms of each of the color
channels is provided in Tables 10 and 11, for the Lena and Baboon images, respectively, as
well as comparison with values from counterpart schemes from the literature.
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(a) (b) (c)

(d) (e) (f)

Figure 17. Correlation coefficient diagram of the plain and encrypted blue channel of Lena image.
(a) Horizontal. (b) Vertical. (c) Diagonal (d) Horizontal. (e) Vertical. (f) Diagonal.

Table 8. Correlation coefficients of plain and encrypted images.

Plain Image Encrypted Image

Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Lena 0.96734 0.94821 0.98276 0.002287 −0.00132 −0.00160
Peppers 0.95595 0.95371 0.97939 −0.00063 −0.00003 −0.00102
Baboon 0.92203 0.87049 0.90303 0.001362 −0.00332 −0.00138

Table 9. Correlation coefficients comparison between plain and encrypted Lena images.

Scheme Horizontal Diagonal Vertical

Proposed scheme 0.002287 −0.00132 −0.00160
[24] 0.0022 −0.0017 0.0001
[35] 0.0054 0.0054 0.0016
[63] 0.000199 0.003705 −0.000924
[64] 0.0681 0.0128 0.0049
[65] 0.001862 0.003768 0.000710
[66] −0.0082 −0.0012 −0.0128
[67] 0.000546 0.000192 0.000514
[68] −0.0029 −0.0045 −0.0001
[69] 0.0023 −0.0059 0.0029
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Table 10. Correlation coefficient comparison of plain and encrypted Lena image color channels.

Lena
Channel CC Plain Image Encrypted Image [70] [71] [72]

Red
HC 0.95722 −0.00364 0.001365 0.0021 0.9568
DC 0.93389 0.00016 0.000232 −0.0026 0.0075
VC 0.97889 0.000697 0.004776 0.0018 −0.0376

Green
HC 0.94321 0.000118 0.003294 −0.0006 0.0020
DC 0.91931 0.00177 0.004807 0 −0.0046
VC 0.97137 −0.0011 −0.000579 0.0004 −0.0013

Blue
HC 0.92845 −0.00164 0.002060 −0.005 0.0071
DC 0.90068 −0.00523 −0.004043 −0.0104 −0.0009
VC 0.95593 0.006041 0.000194 0.001 −0.0423

Table 11. Correlation coefficient comparison of plain and encrypted Baboon image color channels.

Baboon
Channel CC Plain Image Encrypted Image [70] [71]

Red
HC 0.94741 −0.00428 0.001391 0.0005
DC 0.90413 −0.00009 0.000334 0.0014
VC 0.92152 0.000706 0.004650 0.0059

Green
HC 0.87266 0.00340 −0.008134 0.0078
DC 0.79341 0.00282 0.005334 −0.001
VC 0.83905 −0.0016 0.000829 0.0042

Blue
HC 0.92153 −0.00253 −0.00889 0.0021
DC 0.87668 −0.00635 0.001710 −0.0114
VC 0.91432 −0.00003 0.000056 −0.0039

4.8. Key Space Analysis

A key space analysis is carried out to compute the number of unique keys that can
be utilized in the encryption process. In the proposed image encryption scheme, the
secret keys and variables are assumed to be shared between the transmitter and receiver
via a secure channel. In addition, the literature includes excellent key-establishment
protocols, for example, [73]. In the proposed image encryption scheme, there is a total of
eight variables. These are: Pµ and seven variables that are used to generate the keys, KL
and KCA. The largest machine precision is 10−16. Thus, the key space is approximately
108×16 = 10128 ≈ 2425. This value exceeds the threshold earlier proposed in [74] as 2100.
This means that our proposed scheme can resist brute-force attacks. Furthermore, an
examination of key space values of related image encryption schemes from the literature,
as in Table 12, clearly indicates that the proposed scheme is larger than them.

Table 12. Key space values comparison.

Scheme Key Space

Proposed scheme 10128 ≈ 2425

[31] 2256

[38] 2345

[39] 2256

[32] 2128

[63] 2187

[75] 1094

[76] 2128

[77] 2219
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4.9. Differential Attack Analysis

A differential attack analysis is employed to measure the strength of the proposed
encryption scheme against differential attacks. The number of pixels changing rate (NPCR)
and the unified average change intensity (UACI) are two methods that are employed to
carry out a differential attack analysis.

4.9.1. The Number of Pixel Changing Rate

The NPCR measures the number of pixels which are different between two images. It
is mathematically expressed as:

NPCR =
∑i,j Di,j

M× N
× 100, (24)

where Di,j is given by:

Di,j =

{
0 C1(i,j) = C2(i,j)

1 C1(i,j) 6= C2(i,j).
(25)

4.9.2. The Unified Average Change Intensity

The UACI is a measure of the difference in the average intensity between the encrypted
and plain images. It is mathematically expressed as:

UACI =
1

M× N ∑
i,j

C1(i,j) − C2(i,j)

255
, (26)

where C1(i,j) and C2(i,j) are two images of dimensions M× N.
Table 13 depicts the NPCR and UACI results of the proposed encryption scheme on

various images. As shown, the NPCR is greater than 99% and the UACI should also be
greater than 33.35%. It is not in all the cases; however, it is close to it. As a result, any slight
difference in the plain text image would result in a significant difference in the encrypted
image. Moreover, the proposed scheme is also compared with its counterparts from the
literature, in terms of the differential attacks. NPCR and UACI values are also shown in
Tables 14 and 15. As can be seen, the computed NPCR value of the proposed scheme is
>99% and is better than [35,78,79]. The UACI value should be >33%, which is not the case
for the proposed scheme, in which [78] is better.

Table 13. NPCR and UACI of different images.

Test Type Image Result

NPCR
Lena 99.62870

Pepper 99.59360
Baboon 99.58190

UACI
Lena 30.34321

Pepper 32.17523
Baboon 29.39764

4.10. Execution Time Analysis

The execution time is used to measure the complexity of this scheme and whether it
can be used for real time applications. Table 16 shows the total execution time, in terms of
encryption and decryption times, of the Lena image, provided for various dimensions. The
total execution time ranges from 2.89 s to 16.217 s, depending on the image dimensions.
Furthermore, Table 17 provides a comparison of the encryption time among the proposed
image encryption scheme and its counterparts from the literature. Note that the differences
in execution time depends on multiple factors, including the algorithm itself, the machine
specifications on which the algorithm is run (i.e., processing power and available memory),
as well as the software running the algorithm. Note that in [77,80–82], the software of
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choice is Mathworks Matlab®, whereas the proposed scheme is programmed on Wolfram
Mathematica®. The average encryption time of the proposed image encryption scheme is
0.61 Mbps.

Table 14. NPCR and UACI of different image channels comparison.

Test Type Image Channel Type Result [83]

NPCR

Lena
Red 99.6109 99.6355

Green 99.6109 99.6256
Blue 99.6375 99.6159

Pepper
Red 99.6032 99.6307

Green 99.6032 99.6250
Blue 99.3750 99.6213

Baboon
Red 99.5880 99.6102

Green 99.5880 99.6134
Blue 99.5880 99.6057

UACI

Lena
Red 33.4158 33.4657

Green 30.3902 33.4552
Blue 33.2420 33.4550

Pepper
Red 33.3459 33.4832

Green 33.4702 33.4904
Blue 33.4357 33.4619

Baboon
Red 33.4273 33.5002

Green 33.4635 33.4711
Blue 33.7951 33.4951

Table 15. Average NPCR and UACI of the Lena image comparison.

Scheme NPCR UACI

Proposed scheme 99.62870 30.34321
[35] 99.52 26.7933
[78] 99.6075 33.4342
[79] 99.52 26.7933

Table 16. Encryption time of the proposed scheme for the Lena image at various dimensions.

Image Dimensions tEnc [s] tDec [s] tTot [s]

128× 128 2.123165 0.76698 2.890163
256× 256 2.582389 3.149124 5.731513
512× 512 4.379808 11.83809 16.217898

Table 17. Execution time comparison for various schemes of the Lena image having dimensions
256× 256.

Scheme Encryption Time [s] Machine Specifications (CPU and RAM)

Proposed scheme 2.582389 2.9 GHz Intel® CoreTM i9, 32 GB
[77] 3.45 N/A
[80] 1.1168 3.4 GHz Intel® CoreTM i7, 8 GB
[81] 1.112 3.4 GHz Intel® CoreTM i3, 4 GB
[82] 4.98 2.5 GHz AMD®, 4 GB

4.11. The National Institute of Standards and Technology Analysis

A good PRNG should satisfy its randomness criteria by a number of tests that comprise
the NIST analysis suite. Specifically, the probability, or p-value, of each of the tests should
be greater than 0.01 for any bitstream to be regarded as random. The proposed encryption
scheme is subjected to the NIST suite of tests, over a large number of lengthy bit sequences,
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and successfully passes each of them. As an illustration, Table 18 shows the results of the
NIST analysis of each of the color channels of the encrypted Lena image. It is clear that the
values for all the tests are indeed larger than 0.01, indicating the success of the proposed
image encryption scheme at passing the NIST analysis.

Table 18. NIST analysis on the RGB color channels of the encrypted Lena image.

Test Name Red Green Blue Remarks

Frequency 0.612882 0.273620 0.426467 Success
Block Frequency 0.431942 0.338326 0.545500 Success
Run (m = 75,221) 0.239030 0.252482 0.103463 Success

Long runs of ones 0.907470 0.993509 0.650024 Success
Rank 0.839897 0.669290 0.934658 Success

Spectral FFT 0.504492 0.722283 0.962204 Success
Non overlapping 0.611940 0.669954 0.552968 Success

Overlapping 0.491780 0.502543 0.554045 Success
Universal 0.431557 0.016275 0.375857 Success

Serial 0.750796 0.094145 0.836764 Success
Serial 0.786736 0.214226 0.637876 Success

Approx. Entropy 0.701255 0.182486 0.781052 Success
Cumulative sum forward 0.941731 0.455203 0.368786 Success
Cumulative sum reverse 0.534965 0.347123 0.551838 Success

5. Conclusions

This paper proposed an RGB image encryption scheme that makes use of Shannon’s
ideas of confusion and diffusion. The proposed scheme is implemented in three stages. In
the first stage, Rule 30 cellular automaton is utilized to generate the first key. In the second
stage, a well-designed S-box is utilized to create the needed non-linearity and complexity.
Finally, in the third stage, a solution of the Lorenz system is used to generate the second
key. The performance of the scheme was evaluated utilizing different metrics, statistically
and differentially. Those included a histogram analysis and its associated χ2 computations,
a correlation coefficient analysis, MSE, PSNR, MAE, information entropy, an execution time
analysis, a differential attack analysis (in terms of NPCR and UACI), a key space analysis,
and a NIST analysis. The computed results suggest that the proposed scheme is resistant
against any statistical, differential, or brute-force attacks. Moreover, on carrying out com-
parisons with counterpart image encryption schemes from the literature, the proposed color
image encryption scheme exhibited either a comparable or a superior security performance.
Nevertheless, the proposed scheme does not come without limitations. The Lorenz system
utilized in the third stage is dissipative and has a comparatively poor ergodic property in
comparison with conservative chaotic dynamical systems. Such systems have improved
distribution in phase space while also exhibiting high ergodicity, sometimes at the expense
of being more computationally complex. Future work could tackle this issue, attempting to
find a dynamical system with a trade-off among high ergodicity, improved distribution in
phase space, and low computational complexity.
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