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Abstract: Current research builds labelings for geometrically uniform codes on the double torus
through tiling groups. At least one labeling group was provided for all of the 11 regular tessellations
on the double torus, derived from triangular Fuchsian groups, as well as extensions of these labeling
groups to generate new codes. An important consequence is that such techniques can be used to
label geometrically uniform codes on surfaces with greater genera. Furthermore, partitioning chains
are constructed into geometrically uniform codes using soluble groups as labeling, which in some
cases results in an Ungerboeck partitioning for the surface. As a result of these constructions, it is
demonstrated that, as in Euclidean spaces, modulation and encoding can be combined in a single
step in hyperbolic space.
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torus; Fuchsian groups; signal constellations

MSC: 94A15; 05B45

1. Introdution

In a typical communication system, the information to be transmitted is always subject
to noise action. Despite its physical characteristics, the noise is treated by a probabilistic
model by specifying the probability density function. Through this characterization, the
signal to be transmitted is processed in order to control the noise action. A key component
of the transmitter is the modulator. For efficient signal modulation, the modulator uses a
signal constellation, which is a finite set with an appropriate geometric structure.

In particular, discrete sets of points from metric spaces that can be characterized by
the existence of symmetries are of fundamental importance in the generation of signal
constellations, as well as in the practical implementation of modulators and demodulators.
This makes the study and investigation of these signal sets relevant in different metric
spaces that inherit these algebraic and geometric properties.

It is well known that the signals of a PSK constellations of cardinality M have elements
of an additive group from the ring of integers modulo as labels M, see [1]. On the other
hand, the labeling of signals from a QAM constellation of cardinality M by elements of a
finite group coming from a finite field appeared more directly in the works [2,3], and only

Symmetry 2022, 14, 449. https://doi.org/10.3390/sym14030449 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030449
https://doi.org/10.3390/sym14030449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4341-0021
https://orcid.org/0000-0003-4445-084X
https://orcid.org/0000-0001-6216-8691
https://orcid.org/0000-0003-2687-5174
https://doi.org/10.3390/sym14030449
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030449?type=check_update&version=1


Symmetry 2022, 14, 449 2 of 20

by elements of an additive group G of cardinality M that need not necessarily come from a
finite field, as we can see in [4].

However, labels such as these had already appeared indirectly in 1982 in [5], where
Ungerboeck proposed a scheme known as trellis-coded modulation (TCM) that combines
coding and modulation in a single unit, improving the noise resistance of digital trans-
mission systems with a coding gain of 3–6 dB, without sacrificing the given information
rate or requiring more bandwidth. The technique introduced by Ungerboeck is known as
“mapping by set partitioning” and serves to determine the choice of modulation signals
to generate coded signal sequences, i.e., codewords of a code C, which we now call lattice
code [6]. This choice is made by subsets of the constellation of signals obtained recursively
in such a way that the distance between symbols is increasing.

Forney [7] proposed a practical way to encode the information bits and uncoded bits
of the lattice code C from the signal constellations coming from the lattice Z2/Λ′, where Λ′

is a sublattice with a finite index in Z2, using the lattice partition technique.
Geometrically uniform (GU) codes are in deep connection with modulation. This

definition was introduced by Forney in [8] and it generalized lattice codes and Slepian’s
group codes [9]. This new approach meant that these two categories of codes, which had
few things in common and were treated separately up to that point, were understood as
part of the same code class. Moreover, GU codes have good symmetry properties, such as
all Voronoi regions being congruent, the signals having the same probability of error, the
distance profile being the same for each signal, among others.

At the same time as [8], Loeliger [10] introduced the important concept of matched
labeling. This concept creates a very suitable way to associate a set of signals with an
appropriate algebraic structure. The main motivation was to provide a certain linearity to
the code. His main result was to show that sets of signals matched to groups are equivalent
to Slepian’s signal sets. Loeliger also proved that, under certain conditions, such concepts
are equivalent.

In addition to demonstrating that many signal sets in digital communications are
geometrically uniform, Forney [8] linked GU codes to the Ungerboeck paper [5] by con-
structing geometrically uniform partitions, demonstrating that the encoder for a signal
space code is given by a geometrically uniform partition and thus generalizing coset codes.

The signal constellations QAM coming from either the Z2 lattice or the A2 lattice
are geometrically uniform [2–4]. From a geometric point of view, the signals of these
constellations in Z2 and A2 can be characterized as a finite set of points coming from a
set of barycenters of squares taken from a regular tessellation by squares and by a set of
barycenters of regular hexagons taken from from a hexagonal tessellation, respectively.

In [11], signal constellations from the regular tessellations {4, 4}, {6, 3}, and {3, 6}
were built on a compact orientable surface of genus 1 (a torus) by the identification of the
opposite sides of the fundamental region given by sublattices Λ′ of finite index in a lattice Λ
in such a way that the torus orientation was preserved for the cases where Λ = Z2 and A2.

The different ways of covering the torus via regular tessellations from the Z2 and A2
lattices made it possible to introduce the technique of partitioning lattices in the construction
of quantum topological codes [12–15].

Because of the good properties of GU codes, several studies have been conducted in
order to provide the necessary theoretical foundation and to propose generalizations so
that the properties can be extended to a larger class of signal set. In addition, working in
environments outside the Euclidean context has proven to be a very promising approach.
In fact, certain properties of the hyperbolic space can be effectively exploited in the design
of new codes.

The paper [16] was the first to propose a communication system having as its environ-
ment the hyperbolic plane. After it, several papers connecting hyperbolic geometry with
communication and coding theory have been published [17–20], among others.

It is hypothesized in [21] that by constructing error-correcting codes from two-
dimensional varieties with a genus of g ≥ 2, i.e., orientable compact surfaces obtained
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via convenient identications of the sides of a fundamental region from a regular tessel-
lation {p, q} [22], it is possible to create more efficient error-correcting codes in terms of
error probability.

In the hyperbolic plane, there are infinitely many regular tesselations {p, q}, while in
the Euclidean plane there are only three regular tessellations: {4, 4}, {6, 3}, and {3, 6}. From
a geometric point of view, the investigation and search for geometrically uniform signal
constellations obtained from finite or discrete sets given by the barycenters of polygons
associated with regular tessellations {p, q} either in the hyperbolic plane or in compact
orientable surfaces obtained via convenient identification of the sides of a fundamental
region of the tessellation.

In this sense, in [20], a theoretical construction was proposed to characterize the
existence of geometrically uniform signal constellations in the hyperbolic plane, whose
signals come from the barycenters of regular polygons associated with a regular tessellation
{p, q}. For this, the complete symmetry groups [p, q] of the tessellation were determined
{p, q} and proved that there are normal subgroups in [p, q] using the the Reidemeister–
Schreier algorithm. On the other hand, the signal constellations obtained are not identified
via this technique by elements of the label group.

The works [19,23–25] proposed arithmetic procedures that made it possible to identify
the signal constellations obtained from the barycenters of the polygons associated with
families of regular tessellations {p, q} by lattices characterized by order of quaternions that
have a multiplicative R-module structure, where R is a ring of integers of a totally real
number field.

The division algebra structure associated with these orders of quaternions from Fuch-
sian arithmetic groups provided an efficient algebraic technique in the process of combating
the diversity that appears in antenna-to-antenna transmission problems. This allowed the
construction of new families of space–time block codes that satisfy the property of full
diversity [18,26,27].

However, the lattice structure given by the quaternion orders did not prove to be an
efficient algebraic tool to characterize signal constellations that are geometrically uniform
in the hyperbolic plane, precisely because of the difficulty of obtaining the group of labels,
which would need to determine a suborder when seen as a group structure, as being normal
in the quaternary order.

Current work arose with the objective of filling this gap, that is, to present in an explicit
way the group of labels for signal constellations coming from the hyperbolic environment.
Furthermore, not only are the group of labels presented, but also a systematic way of
associating the group of labels with the sets of hyperbolic signals, a technique that is called
signal labeling in the literature.

In order to obtain such results, a new approach was used. Instead of using quaternion
algebra, the main mathematical tool was the triangular group approach. Furthermore, the
current approach follows the idea in [11], where the surface genus is fixed and we work
with different shapes of the fundamental region that represent the surface. In this sense,
previous works invariably emphasized a certain pattern of the fundamental region for
surfaces of various genres.

We follow a similar treatment for a compact surface of genus g = 2. However, due to
several differences between Euclidean geometry (the inherent geometry for the torus) and
hyperbolic geometry (a geometry suitable for the construction of the double torus) and the
geometric patterns of lattices in the hyperbolic case, [11] was more a source of inspiration
and motivation than a basis for generalization, since the techniques in that research could
not be used therein.

The hyperbolic plane, unlike the Euclidean plane, does not have a vector space struc-
ture, which makes our task of determining the group of labels for a signal constellation
more difficult when we consider these signals as representing lateral classes of a quotient
group G′ = G/H. If G denotes the symmetry group associated with signal points in the
hyperbolic plane, H must be a normal subgroup in G. One of the main contributions of
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this work is to get around this obstacle. For this, only signal constellations coming from
hyperbolic tessellations will be considered, in which, like the Euclidean tesselations, when
taking the subgroup of symmetries G of the fundamental region (symmetries given by
reflections), it is possible to obtain a normal subgroup H in G.

Through tiling groups, this paper presents labelings for geometrically uniform codes
on the double torus. This approach provides at least one labeling group for all the 11 regular
tessellations existing on the double torus, derived from Fuchsian triangular groups. We
also obtain extensions of these labeling groups using involutions to generate new codes.
As far as the authors are aware, it is the first time that labeling on compact surfaces with
genus g ≥ 2 has been presented in the literature.

Moreover, since all tiling groups for the double torus are soluble, all partitioning
chains for GU codes are performed by soluble groups of labels. The latter is an important
property because the labeling groups are abelian at each level of the chain. It is important
to note that the concept of soluble group is not common in communication theory, although
it is deeply connected with the labeling of GU codes.

Another contribution of the current paper is that, depending on the cardinality of
the group of labels and their algebraic structure, Ungerboeck partitioning for the signal
constellation was obtained. Accordingly, this result means an Ungerboeck partitioning for
both the surface and the hyperbolic space.

2. Fundamental Concepts

In this section, we introduce the necessary concepts and definitions to establish the
results of current research. We recommend [28] for details on hyperbolic geometry.

2.1. Geometrically Uniform Codes and Labeling

Let (M, d) be a metric space. We denote by ISO(M) the group of all isometries on M,
where the operation in M is the composition. A code is any non-empty set C of M. If C is a
discrete set, then it is called a signal set.

Definition 1. A symmetry of C is an isometry u of M that leaves C invariant, u(C) = C. The
symmetries of C form a group under composition, the symmetry group Γ(C) of C.

Definition 2. A signal set C is geometrically uniform (GU) if, given any two points x and y
in C, there is an isometry uxy : M → M such that uxy(x) = y and uxy(C) = C. A uniform
constellation is a finite GU signal set of C, and a uniform lattice is an infinite GU signal set of C.

Definition 3. Given a signal set C, a subset U(C) of Γ(C) is a generator set of C if C = {u(x0) :
u ∈ U(C)} for a fixed x0 and U(C) is minimal to generate C, if the map g : U(C) −→ C defined
by g(u) = u(x0) is bijective.

The map g induces the group structure of U(C) on C, and g can be viewed as a
group isomorphism.

Another important concept associated with GU codes is Loeliger’s [10] definition of
signal set matched to a group.

Definition 4. A signal set C is matched to a group (G) if there is a surjective map m from G
on C such that, for every g and h in G, one has d(m(g), m(h)) = d(m(g−1.h), m(e)), where e
denotes the neutral element of G. An application m satisfying this condition is a matched map. If,
in addition, m is injective then m−1 is called a matched labeling.

Proposition 1 ([10]). A signal set C is matched to a group G by a matched map m : G → C if and
only if G is homomorphic to a transitive subgroup of Γ(C), the group of symmetries of C.

Corollary 1 ([10]). There is a matched labeling between the signal set C and the group G if and
only if G is isomorphic to a transitive subgroup of Γ(C).



Symmetry 2022, 14, 449 5 of 20

In what follows, we define soluble (solvable) groups. This is a very important concept
in group theory. It is not a well-known concept in communication theory, but as we will
see, GU codes have a close relationship with soluble groups.

Definition 5. A group G is soluble if there exists a finite sequence of subgroups 1 = G0 < G1 <
· · · < Gn = G such that

(1) Gj−1 is normal in Gj;
(2) Gj/Gj−1 is an abelian group, for j = 1, 2, · · · , k.

It must be observed that the condition Gj−1 C Gj does not imply that Gj C G.

2.2. Hyperbolic Geometry

Let D = {z ∈ C : |z| < 1} be the Poincaré disk model for the hyperbolic plane,
where we consider the Riemannian metric ds = 2|dz|

1−|z|2 . We denote by ISO(D) the isometry

group of D, and by ISO(D)+ and ISO(D)− the isometry groups that preserve and do not
preserve orientation, respectively.

The disc model for the hyperbolic plane was adopted in this work because it allowed
a better visualization of some symmetries. However, all results may be considered for other
models, such as the half-plane model H. All geometric parameters hereinafter, such as
length, area, etc., will be considered in relation to the metric ds. It is noteworthy that the
measures of angles in D are exactly the same as those in the Euclidean case.

Definition 6. A Fuchsian group Γ is a discrete subgroup of ISO(D)+. Γ is a cocompact Fuchsian
group if D

Γ generates a compact surface.

The terminology adopted in this paper is similar to that used in [29,30]. The details of
the results and definitions in this section and in Section 2.3 can be found in [28].

By the Gauss–Bonnet theorem, it is known that the area of a hyperbolic polygon
depends only on its angles.

Theorem 1 (Gauss–Bonnet). Let P be a hyperbolic polygon with p sides, vertices v1, v2, . . . , vp,
and with inner angles α1, α2, . . . , αp, respectively. Then, the area of P is given by

µ(P) = (p− 2)π − (α1 + α2 + . . . + αp) .

It must be observed that in Euclidean geometry, the angles of any polygon do not
determine its area. This characteristic of hyperbolic geometry has a major influence on
their lattices and hence on the lattices on compact surfaces with genus greater than or
equal to 2. In the Euclidean plane, it is possible to obtain a multitude of lattices based on
equilateral triangles of different areas, but in the hyperbolic disc, there is only one way. On
the other hand, it is known that there are only three regular tessellations in the Euclidean
plane (equilateral triangles, squares, and hexagons), but in D there are endless possibilities,
and this is one of the main properties that makes hyperbolic geometry very favorable for
creating geometrically uniform codes.

Theorem 2. Γ is a Fuchsian group if, and only if, Γ acts properly discontinuously on D.

Definition 7. Let Γ be a group of isometries acting properly discontinuously on D. A closed subset
F̃ ⊂ D with non-empty interior is a fundamental region of G if

(i)
⋃

T∈Γ T(F̃) = D and
(ii) intF̃

⋂
T(intF̃) = ∅, for all T ∈ Γ \ {Id}, where intF̃ is the set of interior points of F̃.
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The familly {T(F̃) : T ∈ Γ} is called a tessellation (or a tiling) of D. The area of a
fundamental region, if finite, is a numerical invariant of the group. Let Γ be a Fuchsian
group and z1 ∈ D given such that T(z1) 6= z1 for all T ∈ Γ \ {Id}, then Γz1(G) = {z ∈ Γ :
d(z, z1) ≤ d(z, T(z1)), ∀ T ∈ Γ} is a fundamental region of Γ, called Dirichlet region.

There are other ways of determining a fundamental region of a Fuchsian group, such
as the Ford regions. However, even if we have different polygons, the area is always the
same. In this work, we used Dirichlet regions in all cases except one, in which a star polygon
was used. The reason for this choice will become clear later. In the next section, we present
a strong relationship between a group Γ and its fundamental region, with compact surfaces.

2.3. Compact Surfaces and Fundamental Regions

A hyperbolic polygon P with p sides, or a p-gon, is a closed convex set consisting of p
hyperbolic geodesic segments. A p-gon whose edges have the same length and its inner
angles are all equal is called a regular p-gon. The p-gon is denoted by {p, q} if the inner
angles are 2π

q with a q integer. A tessellation of D by a p-gon will be called a tessellation
{p, q}.

A compact superface S may be obtained from a polygon P, identifying pairs of edges,
once the side and angle conditions are satisfied.

Side and angle conditions: If a compact polygon P is a fundamental region for an
isometry group Γ that maintains orientation in S2 (spherical surface), R2 (Euclidean plane)
or D, then:

(i) for each side s of P, there is a single side s′ of P such that s = τ(s), where τ ∈ Γ;
(ii) the sum of the angles in each vertex of a side-pairing of P is equal to 2π.

Theorem 3 (Poincaré’s Theorem). A compact polygon P, satisfying the side and angle conditions,
is a fundamental region of the group Γ generated by the pairing mappings of the sides of P, and Γ is
a Fuchsian group.

A maximal set of vertices v1, v2, · · · , vk, identified in a side-pairing mapping, is a
vertex cycle. All compact surfaces with genus g ≥ 2 may be obtained geometrically from
hyperbolic polygons.

Each non-trivial element of ISO(D)+ can be classified as parabolic (having no fixed
point in D and a fixed point on the border ∂D), elliptic (having a fixed point in D but no
fixed point in ∂D), or hyperbolic (having no fixed point in D and two fixed points in ∂D).

Let Γ be a Fuchsian group acting on D and P, a Dirichlet region of Γ. Then P has a
finite number of vertices, p. These vertices are the fixed points of the elliptical elements of
Γ. Consider the orders of these elliptical elements, m1, · · · , mp. That is, given an elliptical
element γ in Γ there is an integer mγ such that γmγ = Id, and let g be the genus of the
compact and orientable surface D

Γ . The ordered set of integers (g, m1, · · · , mp) is called the
signature of Γ. If a Fuchsian group Γ has no elliptical elements, its signature is (g, 0, · · · , 0),
or simply (g,−). Giving z ∈ D, consider Λ(Γ)(z) the set of all limit points in D

⋃
∂D of

the orbit of Γ(z). Let Λ(Γ) be the set of all Λ(Γ)(z), for all z ∈ D. If Λ(Γ) = ∂D, then Γ is a
Fuchsian group of the first type. Otherwise, Γ is of the second type.

It may be proved that the fundamental region of a compact surface with genus g has
an area of 4π(g− 1). In particular, we have an area of 4π for the double torus. Besides,
if H is a subgroup of Γ (denoted by H < Γ), then the area of the fundamental region
of H divides the area of the fundamental region of Γ. Moreover, if p is the number of
sides of the fundamental region for a group of the first type, with signature (g,−), then
4g ≤ p ≤ 12g− 6 [28].

Results of [31] show that there are only four regular polygons which are fundamental
regions for the double torus. These are {8, 8}, {10, 5}, {12, 4}, and {18.3}, with 4, 6, 6, and
8 possible Fuchsian groups with signature (2,−), respectively. Some non-regular cases of
polygons as fundamental regions for the double torus may be found in [31].
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2.4. Tiling Groups

This section is a short description of tiling and OP-tiling groups. A detailed description
of the results and techniques used here may be found in [29,30].

Let S be a compact surface of genus g and G a finite group acting orientably and
effectively on S. The quotient space S/G is a differentiable surface, and the quotient
projection π : S→ S

G is a branched covering.
The paper [29] presents all groups G for compact surfaces of genus 2 and 3 using an

inductive method. A complete classification for genera g ≤ 13 is given in [30]. In fact, for
smaller genera, a lot of information and important results have already been established.
In [30], the group G is extended to a group G∗, such that |G∗G | = 2, resulting in G C G∗.
The groups G∗ and G will be referred to as tiling and OP-tiling (preserves orientation),
respectively, and play an important role in labeling signal sets on compact surfaces of the
genus g ≥ 2.

The next section provides a more detailed presentation of such groups, with special
attention to the cases where G is a triangular tiling group.

Tilings Groups and GU Codes

We give an example to elucidate the relationship between such groups and GU codes.
Consider on a surface a lattice given by non-obtuse triangles, so that each reflection around
the side of each one of these triangles extends to an isometry on the entire surface, preserv-
ing the lattice. Further, consider that the sides of these triangles extend to a closed geodesic
on the surface formed only by the sides of the triangles. The tiling group G∗ is the group
generated by these reflections.

These groups are given by isometries of S which preserve the lattice with the properties
described above. Each one of these groups has an index 2 subgroup, consisting of conformal
isometries which also preserve such lattices.

In the context of GU codes, these groups may be used as groups of labels for suitable
choices of signal constellations. In fact, given a compact surface, we consider the incenters
of each triangle in a lattice as a signal constellation, determined by the characteristics
described above. The tiling group associated with this lattice has the desired properties,
i.e., it is a subgroup of the symmetry group of the surface; it has the same cardinality as the
signal constellation and preserves the lattice. Thus, these lattices are the primary building
blocks for the creation of GU codes whose minimal generator groups are tiling groups and
also the OP-tiling groups.

Definition 8. A group of G of isometries of the hyperbolic plane is said to be of type (α, β, γ) if G
is generated by reflections on the sides of a triangle with inner angles α, β, and γ. Such groups are
called triangle groups or triangular groups. In particular, if l, m and n are integers greater than or
equal to 2, G is of type (l, m, n) if G is generated from a triangle with inner angles π

l , π
m , and π

n .

Depending on the values of the internal angles, a triangle group is neither Fuchsian
nor discrete. However, it is always possible to obtain an index 2 subgroup formed by
conformal isometries from a triangle group.

In [31], all groups with a signature (2,−), which admit a regular polygon as a fun-
damental region, are obtained. All groups are arithmetical Fuchsian groups because they
are subgroups of finite index of triangular Fuchsian arithmetic groups. A complete list of
triangular Fuchsian groups, containing a subgroup with signature (2,−), is also shown.

However, in many cases where the group of genus 2 may be seen as a subgroup of a
triangular group, its fundamental region is represented by a non-regular polygon. Some of
these cases are exemplified in [31].

Interestingly, when considering compact surfaces, most searches for geometrically
uniform codes in hyperbolic spaces take a regular polygon of the self-dual case {4g, 4g}
as their fundamental region of the surface; in other cases, regular polygons are also taken.
Because the fundamental regions for compact surfaces are frequently represented by non-
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regular polygons, this gives a limitation in obtaining GU codes. In this case, current
research is based on a more general treatment because it considers regular and non-regular
polygons as fundamental regions.

As will be noted later, among the 11 cases of tiling groups (consequently OP-tiling
groups), only 4 may be identified as a regular region for the double torus. The other cases
are represented as non-regular regions. The following result from [31] gives the groups.

Theorem 4. The Fuchsian arithmetical triangular groups which contains a subgroup of signature
(2,-) are: (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 12), (2, 3, 18), (2, 4, 5), (2, 4, 6), (2, 4, 8),
(2, 4, 12), (2, 5, 5), (2, 5, 10), (2, 6, 6), (2, 8, 8), (3, 3, 4), (3, 3, 5), (3, 3, 6), (3, 3, 9), (3, 4, 4),
(3, 6, 6), (4, 4, 4), and (5, 5, 5).

From [32] we have the following result.

Theorem 5. The triangle groups having a torsion free normal subgroup of genus 2 are: (2, 3, 8),
(2, 4, 6), (2, 4, 8), (2, 5, 10), (2, 6, 6), (2, 8, 8), (3, 3, 4), (3, 4, 4), (3, 6, 6), (4, 4, 4), (5, 5, 5). All of
them are arithmetic subgroups of SL(2, R).

The proof that these are Fuchsian arithmetical groups is given in [33]. OP-tiling groups
are explicitly obtained as a group of complex matrices, for genera 2 and 3, in [34]. For the
purposes of this study, the only cases in which normality occurs are those in which the
labelings are performed using groups derived from the quotient (l,m,n)

G .
We will detail all the groups G for genera 2 ≤ g ≤ 13. Moreover, in each case, we

consider extensions G∗ of G, thus enabling the generation of more labeling groups for a
greater number of geometrically uniform constellations. OP-tiling groups are formally
defined now. They are exactly the quotient groups of interests. We also have the definition
of tiling groups used for labeling.

Definition 9. Let S be a compact orientable superface with genus g. A tiling T of S is a complete
non-superposing covering of S by polygons. These polygons are called tiles. The edges of the tiles are
called edges of the tiling, and the vertices of the tiles are called the vertices of the tiling. We denote
by V and E the family of edges and vertices of the tiling, respectively.

Definition 10. A kaleidoscopic tiling T of a surface is one in which the local reflection in the edge
e, re, is an isometry of the surface applying tiles in tiles, for each edge e of the tiling. In particular, it
swaps the two tiles that have e as a common edge.

Definition 11. A kaleidoscopic tiling T is called geodesic, if for each edge e, the set of fixed points
of re, denoted by Sre = {x ∈ S : re(x) = x}, is given by a union of edges of T.

There are kaleidoscopic tilings that are not geodesic, such as, for instance, the dodeca-
hedral tiling of the sphere by twelve pentagons. More information about this fact can be
found in [30].

The reflections in relation to the edges of a tiling generate an isometry group of the
tiling, which is called the Tiling Group. It can be proved that all tiles on the surface are
an image, by an element of the tiling group, of one tile, which is called the “fundamental
tile”. Let us consider that ∆0 is the main tile, with vertices P, Q, and R, and let us denote
by p, q, and r the opposite sides of these vertices, respectively. We also denote by p, q, and
r the reflections on the respective sides. Thus, due to the geodesic condition, there is the
same number of equal angles around each vertex. Angles at P, Q, and R thus measure π

l ,
π
m and π

n , where l, m, and n are integers greater than or equal to 2. Thus, it is said that ∆0 is
a (l, m, n)-triangle.
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It follows that p2 = q2 = r2 = 1. Defining a = pq, b = qr and c = rp, a, b, and c
are anticlockwise rotations around the vertices of ∆0, with orders l, m, and n, respectively.
Denoting by G∗ =< p, q, r > and G =< a, b, c >=< a, b >, G is the subgroup of G∗

generated by isometries that preserve the orientation. Therefore, G is a normal subgroup of
index 2 and G∗ =< q > nG, where n represents the semi-direct product.

Definition 12. The group G∗ is called the total tiling group of S or simply tiling group of S. The
subgroup G is called the conformal tiling group or OP-tiling group (preserves orientation).

It is important to note that there may have been isometries of S preserving the tiling
which are not contained in G∗. In this case, the group of all symmetries of the tiling may be
factored as U n G∗, where U is the stabilizer of the main tile [29].

With respect to matched labeling groups, we know they are transitive subgroups of
a symmetry group. If they are groups with minimal generators, their cardinality is the
same as the signal set. It follows that determining the tiling groups is the same as finding a
minimal generator group for labelings on compact surfaces.

This is the main contribution of the current analysis. On compact surfaces, we show
a strong relationship between tiling groups and GU codes. Moreover, this study shows
the geometrical representations of the fundamental regions for each group and also an
adequate representation of the double torus in each case. The advantage of this approach is
that it can solve all cases of triangular group labeling in compact surfaces up to genus 13.

An OP-tiling group’s triple-generating elements can always be made to satisfy the re-
lationship o(a) = l, o(b) = m, o(c) = n, where o(x) is the order of x, and abc = pqqrrp = 1.
That is, elements a, b, and c may be chosen as generators of the stabilizers of a triple of
points on S. The following theorem is a particular case of the Theorem 12 from [29].

Theorem 6. Let G be an OP-tiling group on a surface S, with generators a, b, c, with orders l, m, n
respectively. If G has an involution θ (θ2 = I), satisfying

θ(a) = qaq−1 = qpqq = qp = a−1 and θ(b) = qbq−1 = qqrq = rq = b−1 ,

then the surface has a tiling T by (l, m, n)-triangles, such that the OP-tiling group constructed
above is the desired group G. Beyond that, the generators a, b, c are generated from an initial tile,
and G∗ '< θ > nG.

2.5. The Double Torus

Table 1 shows the 11 cases of OP-tiling groups G that are the quotient of a triangular
group with a normal subgroup of order 2. All of them are kaleidoscopic, which means that
they can be extended by an involution to have the tiling group G∗, doubling the number
of lattices on the double torus, which will be geometrically uniform and have the labeling
group G∗.

Further, all these tiling groups are soluble, which is quite an interesting fact because
it allows uniform partitions of the codes. Moreover, the labels for the partitions will be
by Abelian groups. It is noteworthy that, in larger genera, it is not always possible to
extend G to G∗, i.e., the tilings are not kaleidoscopic, and, in other cases, even if the tiling is
kaleidoscopic or not, it may not admit a soluble chain. The good behavior of the tilings on
the double torus will be explored in detail in the last section. A table with matrix groups
similar to Table 1 may be found in [34].
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Table 1. Labeling Groups.

Card (G) (l,m,n) G

5 (5,5,5) Z5 = {x|x5 = 1}
6 (3,6,6) Z6 = {x|x6 = 1}
8 (2,8,8) Z8 = {x|x8 = 1}
8 (4,4,4) 〈x, y|x4 = y4 = 1, x2 = y2, yx = y−1〉

10 (2,5,10) Z10 = {x|x10 = 1}
12 (2,6,6) Z6 × Z2 = {x|x6 = 1} × {y|y2 = 1}
12 (3,4,4) D43−1 = 〈x, y|x4 = y3 = 1, yx = y−1〉
16 (2,4,8) D283 = 〈x, y|x2 = y8 = 1, yx = y3〉
24 (2,4,6) 〈α, β, γ, δ|α2 = β2 = γ2 = [β, γ] = [β, δ] = [γ, δ] = [β, α] = 1, γα = γβ,

δα = δ−1〉
24 (3,3,4) SL2(3) = 〈x, y|x =

(
1 1
0 1

)
, y =

(
0 1
−1 0

)
〉

48 (2,3,8) GL2(3) = 〈x, y|x =

(
−1 0
0 1

)
, y =

(
−1 1
−1 0

)
〉

3. Signal Constellations on the Double Torus by Tiling Groups

In this section, we will look at the OP-tiling groups G and their extensions G∗ one
by one. Fundamental regions will be presented for groups G and G∗, together with the
respective matched labelings. The genus 2 group is denoted by Π2, and the fundamental
regions of Π2, G, and G∗ are denoted by P2, PG, and PG∗ , respectively. Besides, the geomet-
rically uniform signal constellations on the hyperbolic polygon representing the double
torus, denoted by C, will be given by the centers (incenters) of the fundamental regions of
PG and PG∗ .

In some cases, there are two or more possibilities to represent the fundamental regions
of the groups inside the fundamental region of the double torus. However, this does
not alter the labeling groups. What changes is just how to view them. For the labeling
of regions, a point to represent the neutral element of labeling group must be chosen.
Henceforth, the other points are determined by the algebraic and geometric properties of
these groups. In all cases, (a,b,c)

Π2
' G is a normal subgroup of G∗.

(Case 1) Π2 C (5, 5, 5)

Group (5, 5, 5) has a normal subgroup Π2 with index 5. It follows that (5,5,5)
Π2
' G = Z5

and that PG divides P2 into 5 congruent regions. A tessellation on the double torus is
determined so that, when considering the center of these 5 congruent regions as the signal
set C, we have Z5 as the labeling group for C.

In this case, the fundamental region P2 is the regular polygon {10, 5}. The fundamental
region PG is a four-sided polygon with the same length and inner angles that alternate be-
tween π

5 and 2π
5 , whereas the fundamental region PG∗ is is the triangle {3, 10}. Tessellations

on the flat torus determined by PG and PG∗ are shown in Figure 1a,b.

(Case 2) Π2 C (3, 6, 6)

Π2 is a normal subgroup of (3, 6, 6) with index 6. Table 1 shows that (3,6,6)
Π2
' G = Z6,

i.e., the fundamental region of the double torus P2 is subdivided into six congruent regions,
any of which can be used as a fundamental region for G.



Symmetry 2022, 14, 449 11 of 20

(a) G for (5, 5, 5) (b) G* for (5, 5, 5)

(c) G for (3, 6, 6) (d) G* for (3, 6, 6)

(e) G for (2, 8, 8) (f) G* for (2, 8, 8)

(g) G for (2, 5, 10) (h) G* for (2, 5, 10)

Figure 1. Fundamental regions for the cases 1 to 4.
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In this case, the fundamental region for Π2 is a semi-regular 12-gon, with equal
sides and inner angles, alternating between 2π

3 and π
3 . The fundamental region for G

is the regular polygon {4, 6} and the fundamental region for G∗ is the triangle (3, 6, 6).
Tessellations on the flat torus determined by PG and PG∗ are shown in Figure 1c,d.

(Case 3) Π2 C G = (2, 8, 8)

Π2 is a normal subgroup with index 8 of (2, 8, 8). Table 1 shows that (2,8,8)
Π2
' G = Z8,

i.e., the fundamental region of double torus group is subdivided into 8 congruent regions
that are fundamental regions for G.

The fundamental region for Π2 in this case is the regular polygon {8, 8}, which is
the only one that generates a self-dual tessellation for the double torus. The fundamental
region for G is the triangle (4, 8, 8) and the fundamental region for G∗ is the triangle (2, 8, 8).
The tessellations on the flat torus determined by PG and PG∗ are shown in Figure 1e,f.

(Case 4) Π2 C (2, 5, 10)

Π2 is a normal subgroup with index 10 of (2, 5, 10). Table 1 gives that one has
(2,5,10)

Π2
' G = Z10, i.e., the fundamental region of the double torus group is subdivided

into 10 congruent regions that are fundamental regions for G.
In this case, as in the first one, we have the regular polygon {10, 5} as a fundamental

region for Π2. Groups G and G∗ have as fundamental regions the triangle (5, 5, 10) and the
triangle (2, 5, 10), respectively. Tessellations on the flat torus determined by PG and PG∗ are
shown in Figure 1g,h.

The first four cases are all labelings in which G is Abelian, and more specifically, cyclic.

(Case 5) Π2 C (4, 4, 4)

Π2 is a normal subgroup with index 8 of (4, 4, 4). Table 1 displays (4,4,4)
Π2
' G = Q2,

the quaternion group of order 8. This is a non-Abelian group of lower order, such that all
its subgroups are normal. In this case, as in case 3, one has the regular polygon {8, 8} as a
fundamental region for Π2.

PG∗ is the triangle {3, 8}, whereas G has a quadrilateral with equal sides and inner
angles that alternate between π

4 and π
2 as its fundamental region. Tessellations on the flat

torus determined by PG and PG∗ are shown in Figure 2a,b.
The method presented in this paper to create labeling on the double torus does not

exhaust all the possibilities for labeling, not even by triangular groups, as observed in the
above remark. It presents a systematic way to find at least one labeling for each case, where
group Π2 is a normal subgroup of a triangular group.

(Case 6) Π2 C (2, 6, 6)

Π2 is a normal subgroup of (2, 6, 6) with an index of 12 in this case. Table 1 displays
(2,6,6)

Π2
' G = Z6 × Z2.

Then, P2 is a semi-regular 10-gon with equal edges that is formed by joining two
regular polygons {6, 6}. The fundamental region for G is the triangle (3, 6, 6) and the
fundamental region for G∗ is the triangle (2, 6, 6). The tessellations on the double torus
determined by PG and PG∗ are shown in Figure 2c,d.

(Case 7) Π2 C (3, 4, 4)

In this case, Pi2 is a normal subgroup of (3, 4, 4) with index 12. Table 1 shows (3,4,4)
Π2
'

G = D4,3,−1.
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(a) G for (4,4,4) (b) G* for (4,4,4)

(c) G for (2,6,6) (d) G* for (2,6,6)

(e) G for (3,4,4) (f) G* for (3,4,4)

(g) G for (2,4,8) (h) G* for (2,4,8)

Figure 2. Fundamental regions for the cases 5 to 8.
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Thus, the fundamental region for Π2 is a 12-gon, with inner angles of π
2 , and edges

with lengths in the form (l, l, 2l, l, l, 2l, l, l, 2l, l, l, 2l), where l is the length of the side of
triangle (3, 4, 4), which is between the angles π

4 and π
4 . The fundamental region for G is a

polygon with four edges with inner angles equal to π
4 , π

2 , π
4 and 2π

3 , and the fundamental
region for G∗ is the triangle (3, 4, 4). Tessellations on the flat torus determined by PG and
PG∗ are shown in Figure 2e,f.

(Case 8) Π2 C (2, 4, 8)

In this case, (2,4,8)
Π2
' G = D2,8,3, with order 16. The 8-gon {8, 8}, the triangle (4, 4, 4),

and the triangle (2, 4, 8) are the fundamental regions P2, PG, and PG∗ , respectively. Tessella-
tions on the flat torus determined by PG and PG∗ are shown in of Figure 2g,h. P2 can also
be represented by the edge-by-edge combination of two 8-gons {8, 4}, yielding a 14-gon.

(Case 9) Π2 C (2, 4, 6)

(2,4,6)
Π2

' G = 〈x, y, z, w|x2 = y2 = z2 = 1, w3 = 1, zx = zy, wx = w−1 and Abelian
relations 〉 = 〈4, 6|2, 2〉, with order 24.

This group and its geometrical construction from a hyperbolic tessellation is described
in detail by Coxeter and Moser in [35]. The authors found a fundamental region for the
double torus in the form of a star polygon and deducted a presentation for G using two gen-
erators, namely G = 〈r, s|r4 = s6 = (rs)2 = (r−1s)2 = 1〉. The same representation was
also used in [34]. We adopted the presentation given in [35], in which only two generators
are used, as in previous cases, to label the constellation of this case. Another reason is that
the generated fundamental region P2 appears as a star polygon. This is a property that has
not been reported in previous works on GU codes in hyperbolic spaces.

The fundamental region P2 is a star 12-gon with inner angles, alternating between π
3

and 2π
3 and equal sides, each measuring twice the side between the angles π

2 and π
6 of the

triangle (2, 4, 6). Regions PG and PG∗ are a triangle (2, 4, 6) and a quadrilateral with inner
angles π

2 , π
2 , π

2 and π
6 , respectively. Tessellations on the double torus determined by PG

and PG∗ are shown in Figure 3a,b.

(Case 10) Π2 C (3, 3, 4)

(3,3,4)
Π2
' G = SL2(3) in this case. The fundamental regions for PG and PG∗ are a 4-gon

with inner angles π
3 , π

4 , π
3 , and 2π

3 given by the union of two adjacent triangles (3, 3, 4) and
the triangle (3, 3, 4), respectively.

The region P2 is a 16-gon with edges measuring (2l, 2l, l, l, 2l, 2l, l, l, 2l, 2l, l, l, 2l, 2l, l, l),
where l is the length of the side between the angles π

4 and π
3 of triangle (3, 3, 4). The

inner angles measure 2π
3 in the vertices between sides 2l, 2l and 2l, l, and π

2 in the vertices
between sides l, l. Tessellations determined by PG and PG∗ are shown in Figure 3c,d.

(Case 11) Π2 C (2, 3, 8)

In this case, (2,3,8)
Π2
' G = GL2(3). The fundamental region P2 is a 10-gon with equal

sides, measuring 2m + 2n, where m is the measure of the side between the angles π
8 and π

3 ,
and n is the measure of the side between angles π

3 and π
2 , both in the triangle (2, 3, 8).

The regions PG and PG∗ are, respectively, triangles (3, 3, 4) and (2, 3, 8). Tessellations
on the flat torus determined by PG and PG∗ are shown in Figure 3e,f.
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(a) G for (2,4,6) (b) G* for (2,4,6)

(c) G for (3,3,4) (d) G* for (3,3,4)

(e) G for (2,3,8) (f) G* for (2,3,8)

Figure 3. Fundamental regions for cases 9 to 11.

4. Geometricaly Uniform Partitions and Hyperbolic Ungerboeck Labeling

Ungerboeck in [36,37] introduced the concept of application by set partitioning. In this
concept, a code for the signal space is defined by a partition of the signal set into subsets, a
labeling of these subsets, and a labeling code that specifies the sequence of subsets via a
sequence of labels.
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Forney [8] generalized these ideas and showed that this concept was the same as
determining normal subgroups for a minimal generator set, associated with certain signal
subsets from the sets of geometrically uniform signals. The natural labeling for signal
partitions in this case is given by a set of labels that is isomorphic to the quotient group
U(C)/U′.

Even when working with general definitions and theorems, Forney focused his ap-
proach on cases where the partitioning labeling group is isomorphic to Z2

n. The author
remarked that further studies on the algebraic properties of labeling groups were needed.

Because G∗ is always soluble in the double torus, it is possible to extract Abelian,
eventually cyclic, labels for each case. It is also possible, in some situations, to build
labelings that are isomorphic to Z2

n. We have the following result.

Theorem 7. The only cases that are isomorphic to the group Zn
2 are (2, 8, 8), (4, 4, 4), and (2, 4, 8).

Proof. If the group cardinality is not a power of 2, then the group cannot be isomorphic
to Zn

2 . This excludes all other groups as candidates to be isomorphic to Zn
2 . Analyzing the

cases (2, 8, 8), (4, 4, 4), and (2, 4, 8), we note that they have a cardinality that is a power of 2,
so they are candidates for the desired isomorphism. Finally, by analyzing which groups are
these (cataloged in the references [29,34]), we obtain the desired isomorphism.

Then, these are cases in which it is possible to build a binary partitioning.

Definition 13. A geometrically uniform partition C/C′ is a partition of a geometrically uniform
signal set C with a generator group U(C), induced by a normal subgroup U′ of U(C). The elements
of the partition C/C′ are subsets of C that corresponding to cosets of U′ in U(C).

Theorem 8 ([8]). Let C/C′ be a geometrically uniform partition. Then, the subsets of C in the
geometrically uniform partition are geometrically uniform, mutually congruent, and have U′ as a
generator group in common.

Theorem 8 may be extended when U(C)/U(C′)/U(C′′)/. . . is a chain of partitions
for the groups, and in this case, there is a corresponding chain C/C′/C′′. . . of geometrically
uniform partitions, where in each level the subsets are geometrically uniform, mutually
congruent, and have the same generator group in common.

Proposition 2. A partition C/C′ has an isometric labeling by a group G if the following conditions
are satisfied:

(1) C is geometrically uniform;
(2) its subsets are geometrically uniform and mutually congruent;
(3) there is a group of isometries between U(C) and U(C′) such that U(C′) is a generator group

of C, U(C′) is a common generator group of subsets of C, normal in U(C), and isomorphic to
U(C)/U(C′).

Since we are considering GU codes on compact surfaces, the labeling groups are al-
ways finite, and therefore, they are always in biunivocal correspondence with the respective
signal sets. This situation allows chains of subgroups to be treated from the perspective of
fair partitions, which were introduced in [38].

Usually, the chain is chosen to maximize the minimum squared distance between
distinct points of a set partitioning at the same level, so that the distance grows as fast as pos-
sible at each level. In the following examples, the chains always begin by G∗/G. Therefore,
we have the constellations corresponding to G∗ and G at zero and one level, respectively.

Example 1 (A non-binary partitioning). Let us consider the following chain of partitioning:
Z2 n (Z2 × Z6)/Z2 × Z6/Z6/Z2 from case (2, 6, 6). This chain may be viewed in Figure 4. It
must be observed that it is also possible to use chain Z2 n (Z2 × Z6)/Z2 × Z6/Z6/Z3.
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...

0 1

0

0 0 0 0

0

1 1

1 1 1 1

1 2

0

...

Figure 4. Hyperbolic partitioning for (2, 6, 6).

Example 2. Now we preset the binary cases. Group G∗ = Z2 n Z8 from case (2, 8, 8) allows the
binary chain partitioning G∗/G/Z4/Z2 shown in Figure 5.

Example 3. The partitioning chain G∗/G/Z4/Z2, shown in Figure 6, is enabled by the group G∗,
which corresponds to (4, 4, 4).

Figure 5. Hyperbolic Ungerboeck partitioning for (2, 8, 8).
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Figure 6. Hyperbolic Ungerboeck partitioning for (4, 4, 4).

Example 4. In the case (2, 4, 8), one has G∗ = Z2 n D283 and G = D283, which is the semi-
dihedral group of order 16. Thus, D283 has three order 8 subgroups: the cyclic Z8, the quaternion
Q2, and the dihedral D4. Consequently, at the third level of the chain, we may proceed in three
different ways. In addition, there are other ramifications for the other levels, thereby enabling various
possibilities to obtain alternative chains. For instance, chain G∗/G/Z8/Z4/Z2 results in the
labeling shown in Figure 7.

Figure 7. Hyperbolic Ungerboeck partitioning for (2, 4, 8).

Remark 1. The chain in Example 4 generates a partitioning in the form (Z2)
n with n = 5, resulting

in 32 cosets classes for the corresponding lattice. Note that this fact exposes a huge difference in the
search for binary partitions between signal sets in hyperbolic and Euclidean spaces. Forney observed
that lattices in the Euclidean plane may provide, at most, 16 coset classes in a partitioning chain.
Generally, the n-dimensional Euclidean space admits a maximum of 4n partitions for the label chain.
Example 4 makes clear that this rule does not apply to partitions in hyperbolic spaces.

Theorem 9. The greater the genus of compact surface, the more tiling and OP-tiling groups it has.
In particular, for genus 2, we have more than 16 coset classes in a partitioning chain.
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5. Conclusions and Discussion

This work presents two contributions: constellations of signals labeled by a group G
are obtained, as well as Ungerboeck partitioning in the hyperbolic plane. Essentially, even
though theoretical, it contributes to the modulation problem when proposing labelings.
With Ungerboeck’s partitions, we are presenting a code coming from the hyperbolic plane,
and much more. We show that in the hyperbolic plane, it is also possible to unify mod-
ulation and encoding in a single step. In particular, we build labelings for geometrically
uniform codes on the double torus through tiling groups for all the 11 regular tessellations
on the double torus that are derived from triangular Fuchsian groups. As an application,
partitioning chains are constructed for geometrically uniform codes using soluble groups
as labeling, which, in some cases, results in an Ungerboeck partitioning to the surface.

Author Contributions: Conceptualization, E.M.V.G. and E.B.d.S.; methodology, E.M.V.G. and C.A.R.M.;
software, E.M.V.G.; validation, E.M.V.G., E.D.d.C. and E.B.d.S.; formal analysis, E.M.V.G. and W.S.S.J.;
investigation, E.M.V.G.; resources, E.M.V.G.; data curation, W.S.S.J.; writing, E.M.V.G.; original draft
preparation, E.B.d.S.; writing—review and editing, E.M.V.G. and E.B.d.S.; visualization, C.A.R.M.;
supervision, E.B.d.S.; project administration, E.M.V.G.; funding acquisition, C.A.R.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ingemarsson, I. Group codes for the Gaussian channel. In Topics in Coding Theory; Lecture Notes in Control and Information

Sciences; Springer: Berlin/Heidelberg, Germany, 1989; Volume 128, pp. 73–108.
2. Huber, K. Codes over gaussian integers. IEEE Trans. Inf. Theory 1994, 40, 207–216. [CrossRef]
3. Nóbrega Neto, T.P.; Interlando, J.C.; Favareto, O.M.; Elia, M.; Palazzo, R., Jr. Lattice constellations and codes from quadratic

number fields. IEEE Trans. Inf. Theory 2001, 47, 1514–1527. [CrossRef]
4. Carvalho, E.D.; Palazzo, R., Jr.; Firer, M. On the construction and labelling of geometrically uniform signal sets in R2 matched to

additive quotient groups. J. Appl. Math. Comput. 2008, 27, 1–6. [CrossRef]
5. Ungerboeck, G. Channel coding with multilevel/phase signals. IEEE Trans. Inf. Theory 1982, 28, 55–67. [CrossRef]
6. Conway, J.H.; Sloane, N.J.A. Sphere Packings, Lattices and Groups; Springer: New York, NY, USA, 1988.
7. Forney, G.D. Coset Codes—Part I: Introduction and Geometrical Classification. IEEE Trans. Inf. Theory 1988, 34, 1123–1151.

[CrossRef]
8. Forney, G.D. Geometrically uniform codes. IEEE Trans. Inf. Theory 1991, 37, 1241–1260. [CrossRef]
9. Slepian, D. Group codes for the Gaussian channel. Bell Syst. Tech. J. 1968, 47, 575–602. [CrossRef]
10. Loeliger, H.A. Signal sets matched to groups. IEEE Trans. Inf. Theory 1991, 37, 1675–1682. [CrossRef]
11. Costa, S.I.R.; Muniz, M.; Agustini, E.; Palazzo, R., Jr. Graphs, tessellations, and perfect codes on flat torus. IEEE Trans. Inf. Theory

2004, 50, 2363–2377. [CrossRef]
12. Kitaev, A.Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2–30. [CrossRef]
13. Bombin, H. An introduction to topological quantum codes. arXiv 2013, arXiv:311.0277v1.
14. Albuquerque, C.D.; Palazzo, R., Jr.; Silva, E.B. On toric quantum codes. Int. J. Pure Appl. Math. 2009, 50, 221–226.
15. Carvalho, E.D.; Soares, W.S., Jr.; Silva, E.B. Topological quantum codes from lattices partition on the n-dimensional flat torus.

Entropy 2021, 23, 959. [CrossRef] [PubMed]
16. Silva, E.B.; Firer, M. Costa, S.I.R.; Palazzo, R., Jr. Signal constellations in the hyperbolic plane: A proposal for new communication

systems. J. Frankl. Inst. 2006, 343, 69–82. [CrossRef]
17. Albuquerque, C.D.; Palazzo, R., Jr.; Silva, E.B. Topological quantum codes on compact surfaces with genus g ≥ 2. J. Math. Phys.

2009, 50, 023513. [CrossRef]
18. Blanco-Chacón, I.; Remón, D.; Hollanti, C.; Alsinac, M. Nonuniform Fuchsian codes for noisy channels. J. Frankl. Inst. 2014, 351,

5076–5098. [CrossRef]
19. Carvalho, E.D.; Andrade, A.A. Hyperbolic lattices: A new propose for coding theory. Int. J. Appl. Math. 2011, 24, 65–72.
20. Lazari, H.; Palazzo, R., Jr. Geometrically uniform hyperbolic codes. Comput. Appl. Math. 2005, 24, 173–192. [CrossRef]

http://doi.org/10.1109/18.272484
http://dx.doi.org/10.1109/18.923731
http://dx.doi.org/10.1007/s12190-008-0038-3
http://dx.doi.org/10.1109/TIT.1982.1056454
http://dx.doi.org/10.1109/18.21245
http://dx.doi.org/10.1109/18.133243
http://dx.doi.org/10.1002/j.1538-7305.1968.tb02486.x
http://dx.doi.org/10.1109/18.104333
http://dx.doi.org/10.1109/TIT.2004.834754
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.3390/e23080959
http://www.ncbi.nlm.nih.gov/pubmed/34441099
http://dx.doi.org/10.1016/j.jfranklin.2005.09.001
http://dx.doi.org/10.1063/1.3081056
http://dx.doi.org/10.1016/j.jfranklin.2014.08.012
http://dx.doi.org/10.1590/S0101-82052005000200002


Symmetry 2022, 14, 449 20 of 20

21. Cavalcante, R.G.; Lazari, H.; Lima, J.D.; Palazzo, R., Jr. A new approach to the design of digital communication systems.
AMS-DIMACS Ser. 2005, 68, 145–177.

22. Cavalcante, R.G.; Palazzo, R., Jr. Performance analysis of M-PSK signal constellations in Riemannian varieties. In Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 2643, pp. 191–203.

23. Benedito, C.W.; Palazzo, R., Jr.; Interlando, J.C. An algorithm to construction of arithmetic Fuchsian groups derived from
quaternion algebra and corresponding hyperbolic lattices. J. Pure Appl. Algebra 2016, 220, 1902–1923. [CrossRef]

24. Queiroz, C.A.; Benedito, C.W.; Interlando, J.C.; Palazzo, R., Jr. Complete hyperbolic lattices derived from tessellations of type
{4g, 4g}. J. Algebra Appl. 2016, 15, 1650157. [CrossRef]

25. Queiroz, C.A.; Palazzo, R., Jr. Construction of signals sets from quotient rings of quarternion orders associated with arithmetic
Fuchsian groups. IEEE Access 2020, 18, 196050. [CrossRef]

26. Carvalho, E.D.; Andrade, A.A.; Palazzo, R., Jr.; Vieira Filho, J. Arithmetic fuchsian groups and space time block codes. Comput.
Appl. Math. 2011, 30, 485–498. [CrossRef]

27. Benedito, C.W.O.; Alves, C.; Brasil, N.G., Jr.; Costa, S.I.R. Algebraic construction lattices via maximal quaternion orders. J. Pure
Appl. Algebra 2019, 224, 106221. [CrossRef]

28. Beardon, A. The Geometry of Discrete Groups; Springer: New York, NY, USA, 1983.
29. Broughton, S.A. Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 1990, 69, 233–270. [CrossRef]
30. Broughton, S.A.; Dirks, R.M.; Sloughter, M.; Vinroot, C.R. Triangular Surface Tiling Groups for Low Genus. Technical Report,

MSTR. 2001. Available online: http://works.bepress.com/allen-broughton/11/ (accessed on 5 January 2020).
31. Näätänen, M.; Kuusalo, T. On arithmetic genus 2 subgroups of triangle groups. Contemp. Math. 1997, 201, 21–28.
32. Näätänen, M.; Kuusalo, T. Geometric uniformization in genus 2. Acad. Sci. Fenn. 1995, 20, 401–418.
33. Takeuchi, K. Arithmetic triangle groups. J. Math. Soc. Jpn. 1977, 29, 91–106. [CrossRef]
34. Kuribayashi, I. On an algebraization of the Riemann Hurwitz relation. Kodai Math. J. 1984, 7, 222–237. [CrossRef]
35. Coxeter, H.S.M.; Moser, W.O.J. Generators and Relations for Discrete Groups, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1972.
36. Ungerboeck, G. Trellis-coded modulation with redundant signal set part I: Introduction. IEEE Commun. Mag. 1987, 2, 5–11.

[CrossRef]
37. Ungerboeck, G. Trellis-coded modulation with redundant signal set part II: State of the art. IEEE Commun. Mag. 1987, 2, 12–21.

[CrossRef]
38. Biglieri, E.; Elia, M. Multidimensional modulation and coding for band-limited digital channels. IEEE Trans. Inf. Theory 1998, 34,

803–809. [CrossRef]

http://dx.doi.org/10.1016/j.jpaa.2015.10.006
http://dx.doi.org/10.1142/S0219498816501577
http://dx.doi.org/10.1109/ACCESS.2020.3034455
http://dx.doi.org/10.1590/S1807-03022011000300001
http://dx.doi.org/10.1016/j.jpaa.2019.106221
http://dx.doi.org/10.1016/0022-4049(91)90021-S
http://works.bepress.com/allen-broughton/11/
http://dx.doi.org/10.2969/jmsj/02910091
http://dx.doi.org/10.2996/kmj/1138036909
http://dx.doi.org/10.1109/MCOM.1987.1093542
http://dx.doi.org/10.1109/MCOM.1987.1093541
http://dx.doi.org/10.1109/18.9777

	Introdution
	Fundamental Concepts
	Geometrically Uniform Codes and Labeling
	Hyperbolic Geometry
	Compact Surfaces and Fundamental Regions
	Tiling Groups
	The Double Torus

	Signal Constellations on the Double Torus by Tiling Groups
	Geometricaly Uniform Partitions and Hyperbolic Ungerboeck Labeling
	Conclusions and Discussion
	References

