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Abstract: This paper introduces a method to construct integral distinguishers for ARX ciphers. The
basic idea of this method is to utilize the symmetry between the zero-correlation linear distinguishers
and integral distinguishers. Combined with an automatic searching method on zero-correlation linear
distinguishers of ARX ciphers, a subspace for the distinguishers is constructed. This subspace can
finally be turned into an integral distinguisher based on the symmetry between these two distinguish-
ers. Three ARX block ciphers, HIGHT, LEA and SPECK, are used to validate the effectiveness of this
method. For LEA, four nine-round integral distinguishers are constructed, which is one more round
than the previous best result derived with division property. For SPECK32, two more six-round
integral distinguishers are constructed, whose number of active bits is reduced by one bit.

Keywords: cryptanalysis; block cipher; integral cryptanalysis; zero-correlation linear cryptanalysis

1. Introduction

Large numbers of cryptographic primitives using only addition, rotation and XOR
three operations have been proposed for the past several years, which are generally denoted
as ARX ciphers. As these operations can be implemented efficiently in both software and
hardware platforms, the ARX ciphers usually have good performance. To meet the great
security demand in constrained resource devices such as sensor nodes and RFID tags,
ARX cipher is a good choice for the design of lightweight primitives. ARX ciphers have
penetrated into many areas of symmetric key primitives, and there are many famous
ARX ciphers such as HIGHT (ISO standard, Korean national standard, 2006) [1], SPECK
(United States National Security Agency, 2013) [2], BLAKE (SHA-3 Finalists, 2014) [3], Skein
(SHA-3 Finalists, 2010) [4], Threefish (underlying block cipher of Skein, 2010) [4], TEA
family ciphers (TEA, 1994 [5]/XTEA, 1997 [6]/XXTEA, 1998 [7]), and Salsa20 (eSTREAM
Finalists, 2008) [8].

Integral cryptanalysis was first proposed by Daemen, Knudsen and Rijmen to attack
the SQUARE block cipher [9] and was further unified by Knudsen and Wagner as integral
cryptanalysis [10]. There are usually two phases for integral cryptanalysis, one is to con-
struct integral distinguishers, and the other one is to recover the key with the distinguisher.
Integral cryptanalysis has proven to be effective against a wide variety of block ciphers.

For the construction of integral distinguishers, there are generally three approaches.

(1) Construction method based on traditional integral property

The focus of traditional integral distinguisher is to explore the propagation prop-
erty through different cipher components for several states: C (CONSTANT), A (ALL),
B (BALANCE), U (UNKNOWN) and then construct some integral distinguishers through
deduction. There are some automatic approaches designed for integral distinguisher search-
ing. In ACNS 2012, based on U-method [11], Zhang et al. proposed a unified method
to search integral distinguishers for many block cipher structures [12]. In ICISC 2015,
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Zhang et al. proposed a security evaluation framework against integral cryptanalysis for
bit-oriented block ciphers based on match-through-the-Sbox technique [13].

(2) Construction method based on division property

For the past several years, the division property [14], which was proposed by Todo at
Eurocrypt 2015, has led in the area of automatic construction for integral distinguishers for
many block cipher structures. This property can explore the hidden properties between
the traditional ALL and BALANCE properties in integral cryptanalysis. After the proposal
of division property, many variants are proposed successively, such as bit-based division
property [15] and three-subset division property [15]. Some corresponding automatic
searching methods have been developed. At Asiacrypt 2016, with MILP (mixed integer
linear programming), Xiang et al. introduced an automatic searching method for block
ciphers with bitwise permutation based on bit-based division property [16]. In IET 2019,
Sun et al. extended this framework to non-bit permutation-based block ciphers [17]. At
Asiacrypt 2019, Wang et al. solved the problem of searching integral distinguishers based
on bit-based division property using three subsets [18]. At Eurocrypt 2020, Hao et al.
modeled three-subset division property without an unknown subset and improved cube
attacks based on MILP [19]. At Latincrypt 2021, Ghosh and Dunkelman derived a more
compact model for SAT (Boolean Satisfiability Problem)/CP (Constraint Programming)
and realized the automatic search for bit-based division property [20]. At ACISP 2021,
ElSheikh and Youssef solved the problem of bit-based division property for ciphers with
large linear layers using MILP [21].

(3) Construction method based on the symmetry between different distinguishers

For Sbox-based designs, there are some links between the integral distinguishers
and zero-correlation linear distinguishers. At Asiacrypt 2012, Bogdanov et al. revealed
fundamental links of zero-correlation distinguishers to integral distinguishers and multidi-
mensional linear distinguishers [22]. At Crypto 2015, Sun et al. illustrated the relationship
between zero-correlation linear distinguishers and integral distinguishers for Sbox-based
block ciphers [23]. For ARX-based designs, at ISP 2014, Wen et al. revealed a relation between
the zero-correlation linear distinguishers and integral distinguishers [24]. This has made the
foundation to construct integral distinguishers for ARX ciphers in the theoretical perspective.

1.1. Related Work

There are some integral distinguisher-related construction or automatic searching
methods targeted at ARX ciphers. At Asiacrypt 2017, based on SAT (Boolean Satisfiability
Problem)/SMT (Satisfiability Modulo Theory), Sun et al. introduced a method to detect
ARX ciphers’ division property at the bit level and some specific ciphers’ division property
at the word level [25]. In 2017, based on MILP, Sun et al. investigated bit-based division
property for ARX ciphers [26]. At SAC 2018, based on SAT and bit-based division property,
Eskandari et al. introduced a tool based on SAT, which focuses on the usability and
describing of the cryptographic primitives at a high level, and the target also involves ARX
ciphers [27]. At ICICS 2018, Han et al. proposed an automatic searching method for ARX
block ciphers with three-subset division property based on SAT/SMT [28].

Generally speaking, in the area of integral cryptanalysis for ARX ciphers, on the first
perspective, the majority of construction or automatic searching methods are based on
division property, and these automations are all utilized with different solvers. On the
second perspective, for some ARX ciphers, the length of longest integral distinguishers
derived with division property is not as long as zero-correlation linear distinguishers,
which means there is a gap according to the symmetry of these two cryptanalytic methods.
(A concrete example is for ARX block cipher LEA, the current longest integral distinguisher
is eight-round [25,27], which is derived with bit-based division property. But the current
longest zero-correlation linear distinguisher is nine-round [29]). This motivates us to fill
this gap.
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However, the starting point of this paper can be viewed as a modification, and it
borrows from previous automatic searching tools for zero-correlation linear distinguishers
on ARX ciphers to solve the problem of integral distinguisher construction. However, this
idea of borrowing from another cryptanalytic method is not new. At Eurocrypt 2017, Sasaki
et al. proposed a new tool to search impossible differential distinguishers, and the new tool
is slightly modified from the previous differential searching tool [30]. This transfer borrows
the tool of differential cryptanalysis to improve the impossible differential distinguishers.

Problem statement: For evaluating the security level on ARX ciphers against integral
cryptanalysis, the key problem is how to construct longer and more useful
integral distinguishers.

Idea flow: Our framework follows the third approach for the construction of inte-
gral distinguishers. The idea originates from the relationship between the integral and
zero-correlation linear distinguishers for ARX ciphers, applied with a previous automatic
searching tool designed for zero-correlation linear distinguishers on ARX ciphers.

Highlight: The highlight is using an automatic tool designed for zero-correlation
linear distinguishers to realize the automatic construction of integral distinguishers for
ARX ciphers.

1.2. Our Contributions

The main purpose of this paper is to introduce a method to construct integral dis-
tinguishers for ARX ciphers without a solver. The basic idea of this method is to use the
relationship between the integral and zero-correlation linear distinguishers, combined with
a previous automatic searching tool designed for zero-correlation linear distinguishers on
ARX ciphers. The main contributions can be concluded as follows.

â Based on establishing a subspace of zero-correlation linear distinguishers (short for
ZCLDs) and the relationship between the zero-correlation linear distinguishers and
integral distinguishers (short for INTDs) of ARX ciphers, a unified method is proposed
to construct theoretical integral distinguishers for ARX ciphers. For any ARX ciphers,
if a subspace of ZCLDs can be constituted with our method, a corresponding length
of integral distinguisher is developed. In addition, the number of active bits for the
integral distinguisher can be controlled through the scale of the subspace.

â To validate the effectiveness of this method, we take three ARX ciphers—HIGHT,
SPECK and LEA as examples. For LEA, four nine-round integral distinguishers are
constructed, which is one round longer than previous distinguishers derived with
bit-based division property. For SPECK32, two more six-round integral distinguishers
are derived, the number of active bits is one bit less than previous best distinguishers.
For HIGHT, four 17-round new integral distinguishers are discovered.

The comparison for some new or longer integral distinguishers with previous results
are illustrated in Table 1 below.

Paper Outline. This paper is organized as follows. In Section 2, some preliminaries are
presented. Section 3 proposes an automatic method to construct integral distinguishers on
ARX ciphers. In Section 4, some applications on HIGHT, LEA and SPECK are presented.
Section 5 provides a validation on the new integral distinguishers on LEA, and Section 6
concludes this paper.
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Table 1. Summary of integral distinguishers for some typical ARX ciphers.

Algorithm Longest
Round Least Dimension ♣ Number Reference Remark

HIGHT

12 8 1 [1] Traditional Integral Property
17 56 2 [31] Traditional Integral Property
17 57 4 This paper Relation between different distinguishers
18 63 2 [25–27] Bit-Based Division Property

LEA

6 32 1 [32] Traditional Integral Property
7 96 1 [26] Bit-Based Division Property
8 118 2 [25,27] Bit-Based Division Property

9 * 126 4 This paper Relation between different distinguishers

SPECK32
6 31 1 [25] Word-Based Division Property
6 31 2 [28] Three Subsets Bit-Based Division Property
6 30 2 This paper Relation between different distinguishers

♣ Dimension represents the number of active bits for the integral distinguisher; * In Ref. [33], a 9-round integral
distinguisher for LEA is also introduced. However, it is an invalid integral distinguisher, the reason is illustrated
in Section 5.

2. Preliminary
2.1. Relationship between the ZCLDs and INTDs for ARX Ciphers

In Ref. [22], Bogdanov et al. illustrated that any zero-correlation linear distinguisher
can be transformed into an integral distinguisher for Sbox-based designs. In Ref. [24], Wen
et al. introduced the transformation rules for ARX ciphers between these two kinds of
distinguishers. The transformation rule is illustrated as follows.

For an ARX cipher H, the inputs are split into three parts and the outputs into two parts.

H : Fr
2 × F2 × Fs

2 → Ft
2 × Fu

2

H(x, y, z) = (H1(x, y, z), H2(x, y, z))

The function Tλ||λ′ is defined as

Tλ||λ′ : Fs
2 → Ft

2

Tλ||λ′(z) = H1(λ, λ′, z)

Theorem 1 ([24]). If the input and output linear mask a and b are independent and the approxima-
tion for H has correlation of zero for any a = (a1||1, 0), a1 ∈ Fr

2 and any b = (b1, 0), b1 6= 0, b1 ∈ Ft
2,

the sum of XOR of the function H(x, y, z) is zero for any λ,

⊕
y||z

H1(λ, y, z) = 0

which represents an integral distinguisher.

If the output linear mask is a fixed constant, Corollary 1 can be easily derived from
Theorem 1.

Corollary 1. If the input and output linear mask a and b are independent and the approximation
for H has correlation of zero for any a = (a1||1, 0), a1 ∈ Fr

2 and a fixed b = (b1, 0), b1 6= 0, b1 ∈ Ft
2,

the sum of XOR of the function H(x, y, z) is zero for any λ,

⊕
y||z

b1 · H1(λ, y, z) = 0

which represents an integral distinguisher.
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2.2. Automatic Search of Zero-Correlation Linear Hulls for ARX Ciphers

In Ref. [29], Zhang et al. introduced an automatic search method targeted at deriving
longer zero-correlation linear distinguishers for ARX ciphers (Algorithm 1 in [29]). In this
method, a modified operation is used to model the property of non-zero-correlation linear
approximations for the internal states. Combined with a miss-in-the-middle approach,
some current longest zero-correlation linear distinguishers are derived.

In the following section, these two methods will be united to construct integral distin-
guishers on ARX ciphers.

3. Automatic Construction of Integral Distinguishers

The target of this construction method are two-fold. Regarding the first perspective,
the round for the constructed integral distinguisher is as long as current longest zero-
correlation linear distinguishers. Regarding the second perspective, the number of active
bits for the integral distinguisher should be as small as possible.

To reach the first target, a subspace of current longest zero-correlation linear distin-
guishers should be constructed. To reach the second target, this subspace should be as large
as possible; the reason is as follows.

â Through Theorem 1, it is found that with more free bits, the less the dimension of
the corresponding integral distinguisher is. A free bit represents the linear mask bit,
which can take any value on F2, the dimension represents the number of active bits
for the integral distinguisher.

Thus, the problem of constructing integral distinguishers can be changed into a
problem of constructing a subspace for the longest zero-correlation linear distinguishers,
and the subspace should be as large as possible.

3.1. Basic Idea of Our Automatic Method

This automatic method mainly consists of the following four steps.

(1) Based on the automatic ZCLD searching method, construct a long zero-correlation
linear distinguisher α→ β and derive the contradiction bit for this distinguisher.

(2) Change the zero of linear mask for the input/output into one that is bit by bit. If the
change does not affect the contradiction bit, store the position of this input/output
bit. All the stored positions can constitute a subspace for the input linear mask and a
subspace for the output linear mask.

(3) Test whether all the linear masks in the subspace can be zero-correlation linear distin-
guishers with the same contradiction bit as α→ β . If, after adding some bits, not all
linear approximations in the subspace are zero-correlation, remove the positions of
these bits.

(4) Construct integral distinguishers with the remaining subspace.

3.2. An Automatic Construction Method of Integral Distinguishers for ARX Ciphers

Following the four steps in Section 3.1, Algorithm 1 is proposed to solve the problem
of automatic construction of integral distinguishers on ARX ciphers.

The core of this method is to construct a subspace of long zero-correlation linear
distinguishers with the same contradiction bit and then use the relationship between
INTDs and ZCLDs for ARX ciphers to construct integral distinguishers.

There are some issues to be addressed as follows.

â The length of the zero-correlation linear distinguisher should be as long as possible.
As the length of the constructed INTD is the same as the length of the ZCLDs, if
we want the length of the INTD to be longer, the ZCLDs used should be as long
as possible.

â If there is only one longest zero-correlation linear distinguisher, the integral distin-
guisher derived is a trivial integral distinguisher, and it is infeasible to construct an
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integral distinguisher. Some shorter zero-correlation linear distinguishers should be
considered to construct integral distinguishers.

â This method can also be used to construct a subspace of long impossible differential
distinguishers or zero-correlation linear distinguishers.

Algorithm 1 An automatic construction method of integral distinguishers.

Step 1: Construct a long (r1 + r2-round) zero-correlation linear distinguisher α→ β , denote the
contradiction bit of the distinguisher as A1.
Step 2: Construct a set Ωin = ∅. Add the positions for the nonzero bits of α to the set Ωin
according to the following rule.
â Set zeros of α to one bit by bit, and add those bit positions that do not affect the contradiction
bit A1 to set Ωin.
Step 3: Test whether for any γi ∈F2, α ⊕

i∈Ωin

γi · ei → β is an r1 + r2 round zero-correlation linear

distinguisher. Delete those bit positions that do not pass this test from set Ωin. ei represents the
single bit linear mask, which has one at the i-th bit.
â Construct a subspace based on Ωin. In this subspace, all the linear approximations are
r1 + r2-round zero-correlation.
Step 4: Turn the subspace of zero-correlation linear distinguishers into an integral distinguisher.

3.3. A Toy Example

Suppose the size of the target block cipher is n = 16, (P1, P2, · · ·, P16) represents the
plaintext, and (C1, C2, · · ·, C16) represents the ciphertext.

As illustrated in Figure 1, after step 1 in Algorithm 1, an eight-round zero-correlation
linear distinguisher α→ β is constructed, and the contradiction bit is A1 = S3

13 (S3
13

represents the 13th bit of the third round).
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After step 2, an initial input subspace of potential zero-correlation linear distinguishers
are constructed. In this step, only the linear mask value of S3

13 is concerned.
Based on step 3, some “bad positions” are eliminated from the initial input subspace,

and a modified input subspace is derived. In this subspace, all the linear masks are
eight-round zero-correlation linear distinguishers.

After step 4, this subspace is transformed to an integral distinguisher based on Theo-
rem 1 or Corollary 1.

4. Applications

In this section, Algorithm 1 is applied to three ARX block ciphers—HIGHT, LEA and
SPECK. In Section 4.1, the round functions for these block ciphers are briefly introduced. In
Section 4.2, the constructed integral distinguishers for these ciphers are presented.
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4.1. Brief Descriptions on HIGHT, LEA and SPECK

HIGHT is a lightweight block cipher proposed in CHES 2006 [1], which has been
adopted as an ISO standard. It was designed by the Korea Information Security Agency.
HIGHT has 32 rounds, with a 64 bit block and 128 bit key. The structure is a generalized
Feistel network, and the round function of HIGHT is illustrated in Figure 2.
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LEA was proposed by Electronics and Telecommunications Research Institute of Korea
in 2013 [32]. It provides a high-speed software encryption on general-purpose processors.
LEA has a 128 bit block size and 128, 192, or 256 bit key sizes. The round function of LEA is
depicted in Figure 3.
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SPECK is a lightweight block cipher proposed by the US National Security Agency in
2013 [2]. The SPECK family is an ARX-based Feistel-type network, which processes the
input as two words. The round function of SPECK is depicted in Figure 4 below. In this
paper, we use SPECK32 as an example; thus, the rotation constants α/β are defined as 7/2,
and Li and Ri are both 16-bit words.

4.2. Constructing Integral Distinguishers

In Ref. [29], Zhang et al. proposed some long zero-correlation linear distinguishers
for HIGHT, LEA and SPECK. The main target of this subsection is to construct integral
distinguishers with Algorithm 1.



Symmetry 2022, 14, 461 8 of 13

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

>>>3

>>>5

<<<9

 

Figure 3. Round function of LEA. 

SPECK is a lightweight block cipher proposed by the US National Security Agency 

in 2013 [2]. The SPECK family is an ARX-based Feistel-type network, which processes the 

input as two words. The round function of SPECK is depicted in Figure 4 below. In this 

paper, we use SPECK32 as an example; thus, the rotation constants α/β are defined as 7/2, 

and Li and Ri are both 16-bit words. 

 

Figure 4. Round function of SPECK. 

4.2. Constructing Integral Distinguishers 

In Ref. [29], Zhang et al. proposed some long zero-correlation linear distinguishers 

for HIGHT, LEA and SPECK. The main target of this subsection is to construct integral 

distinguishers with Algorithm 1. 

4.2.1. Integral Distinguishers for HIGHT 

For HIGHT, a 17-round zero-correlation linear distinguisher is utilized, and the de-

duction for this distinguisher is illustrated in the Appendix A: 

:   (0, 0, 0, 0, 0, 0, 0, 107)  (0, 0, 0, 0, 0, e0, e2,4,5, 0)  

If the plaintext and ciphertext for HIGHT are denoted as 7 6 0( , , , )P P P    and 

7 6 0( , , , )C C C   , respectively, ( )iP j / ( )iC j  represents the j-th bit for iP / iC . After the ap-

plication of Algorithm 1, 0{ (0 ~ 6)}in P   . 

Figure 4. Round function of SPECK.

4.2.1. Integral Distinguishers for HIGHT

For HIGHT, a 17-round zero-correlation linear distinguisher is utilized, and the deduc-
tion for this distinguisher is illustrated in the Appendix A:

α→ β : (0, 0, 0, 0, 0, 0, 0, 107)→ (0, 0, 0, 0, 0, e0, e2,4,5, 0)

If the plaintext and ciphertext for HIGHT are denoted as (P7, P6, · · ·, P0) and
(C7, C6, · · ·, C0), respectively, Pi(j)/Ci(j) represents the j-th bit for Pi/Ci. After the ap-
plication of Algorithm 1, Ωin = {ΓP0(0 ∼ 6)}.

Thus (A8, A8, A8, A8, A8, A8, A8, AC7)17−round→ ⊕{C1(2)⊕ C1(4)⊕ C1(5)⊕ C2(0)} is a
17-round integral distinguisher for HIGHT, where Ai represents I consecutive active bits,
and Ci represents i consecutive constant bits for the integral distinguisher.

In addition, there are three more 17-round integral distinguishers for HIGHT.

(A8, A8, A8, A8, A8, AC7, A8, A8)
17−round→ ⊕{C3(1)⊕ C3(6)⊕ C3(7)⊕ C4(0)}

(A8, A8, A8, AC7, A8, A8, A8, A8)
17−round→ ⊕{C5(2)⊕ C5(4)⊕ C5(5)⊕ C6(0)}

(A8, AC7, A8, A8, A8, A8, A8, A8)
17−round→ ⊕{C7(1)⊕ C7(6)⊕ C7(7)⊕ C0(0)}

4.2.2. Integral Distinguishers for LEA

For LEA, a nine-round zero-correlation linear distinguisher is utilized, and the deduc-
tion for this distinguisher is illustrated in the Appendix B:

α→ β : (0, e0, 0, 0)→ (e9, 0, 0, e0)

If the plaintext and ciphertext for LEA are denoted as (P3, P2, P1, P0) and (C3, C2, C1, C0),
respectively, after the application of Algorithm 1, Ωin = {ΓP3(0, 1)}.

Thus (A30C2, A32, A32, A32)9−round→ ⊕{C3(9)⊕ C0(0)} is a nine-round integral distin-
guisher for LEA.

Using a similar approach, another three nine-round integral distinguishers for LEA
can be constructed:

(A31C1, A32, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

(A32, A31C1, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

(A32, A30C2, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

4.2.3. Integral Distinguishers for SPECK32

For SPECK32, a six-round zero-correlation linear distinguisher is utilized, and the
deduction for this distinguisher is illustrated in the Appendix C:

α→ β : (0, e7)→ (e3, e3)
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If the plaintext and ciphertext for SPECK32 are denoted as (P1, P0) and (C1, C0),
according to Algorithm 1, Ωin = {ΓP0(5, 6)}.

Thus, (A16, A9C2A5)6−round→ ⊕{C1(3)⊕ C0(3)} is a six-round integral distinguisher
for SPECK32.

Using a similar approach, another six-round integral distinguisher for SPECK32 can
be derived.

(A16, A9C2 A5)
6−round→ ⊕{C1(2)⊕ C0(2)}

5. Validation on LEA

In this section, the flaw in Ref. [33] on nine-round integral distinguisher for LEA is
presented, and the validation on our nine-round integral distinguishers are illustrated.

In Ref. [33], six nine-round zero-correlation linear distinguishers are used to construct
a nine-round integral distinguisher on LEA. These nine-round zero-correlation linear
distinguishers are as follows:

(0, e0, 0, 0) 9−round→ (e9, 0, 0, e0)

(0, e1, 0, 0) 9−round→ (e9, 0, 0, e0)

(0, e2, 0, 0) 9−round→ (e9, 0, 0, e0)

(e0, 0, 0, 0) 9−round→ (e9, 0, 0, e0)

(e1, 0, 0, 0) 9−round→ (e9, 0, 0, e0)

(e2, 0, 0, 0) 9−round→ (e9, 0, 0, e0)

It can be seen that these distinguishers are all single bit input linear masks. It is
expected that these linear masks can constitute a big subspace that can be turned into an
integral distinguisher. However, on the first perspective, the problem of subspace is not
considered, which is an essential condition for the input linear masks in Theorem 1. On the
second perspective, if we use the positions of these single bits to construct a large subspace
(it seems that the integral distinguisher in Ref. [33] are derived in this way), many linear
approximations in this large subspace are not zero-correlation, which also violates the
condition in Theorem 1. This will make the nine-round integral distinguisher proposed in
Ref. [33] invalid.

After the application of Algorithm 1 on LEA, there are only 14 possible nine-round
zero-correlation linear distinguishers, and the structures are as follows:

((0, 0, .., 0, 0, 1), 0, 0, 0) 9−round→ (e9, 0, 0, e0) (1)

((0, 0, .., 0, 1, ∗), 0, 0, 0) 9−round→ (e9, 0, 0, e0) (2)

((0, .., 0, 1, ∗, ∗), 0, 0, 0) 9−round→ (e9, 0, 0, e0) (3)

(0, (0, 0, .., 0, 0, 1), 0, 0) 9−round→ (e9, 0, 0, e0) (4)

(0, (0, 0, .., 0, 1, ∗), 0, 0) 9−round→ (e9, 0, 0, e0) (5)

(0, (0, .., 0, 1, ∗, ∗), 0, 0) 9−round→ (e9, 0, 0, e0) (6)

The subspace of zero-correlation linear distinguishers for (6) is validated in Table 2.
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Table 2. A subspace of zero-correlation linear distinguishers for 9-round LEA.

Round (Γr
3,Γr

2,Γr
1,Γr

0)

0 00000000000000000000000000000000000000000000000000000000000001**0000000000000000000000000000000000000000000000000000000000000000
1 000000000000000000001**0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001**
2 000000000000000000001**000000000001**0000000000000000000000000001**00000000000000000000000000000000000000000000000001**0000001**
3 ***********************1*************1*****************************000000000000000000001********1*******************************
4 *******************************************************************1************************************************************

4 1*******************************1*******************************000000000001********************00000000000001******************
5 000000000000000000000001********00000000000000001***************00000000000000001***************0000000000000000001*************
6 000000000000000000000000000000000000000000000000000001**********0000000000000000000001**********000000000000000000000001********
7 00000000000000000000000000000000000000000000000000000000001*****000000000000000000000000001*****00000000000000000000000000000000
8 00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000
9 00000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

For the above distinguishers, it can be seen that four subspaces can be used to construct
nontrivial integral distinguishers (i.e., subspaces 2, 3, 5 and 6), the results for these four
circumstances are illustrated as follows.

(2) (A31C1, A32, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

(3) (A30C2, A32, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

(5) (A32, A31C1, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

(6) (A32, A30C2, A32, A32)
9−round→ ⊕{C3(9)⊕ C0(0)}

However, XORing two bits of the ciphertext may be not intuitive, and another ap-
proach will be utilized to validate this distinguisher.

For LEA, the nine-round zero-correlation linear distinguisher can be decomposed as
8 + 1 round:

α
9−round→ β : (0, (0, .., 0, 1, ∗, ∗), 0, 0) 8−round→ (0, e0, 0, 0) 1−round→ (e9, 0, 0, e0)

According to Theorem 1, the output formed after eight-round encryption is

(U32, U31B1, U32, U32)

That is, ⊕X8
2 [0] is balanced. According to the round function of LEA, X8

2 [0] = X9
3 [9]⊕

∆X9
0 [0]⊕ K8

0[0] = C3(9)⊕ C0(0)⊕ K8
0[0], K8

0[0] is a key-related fixed constant, and it can be
eliminated if it is added with even times; thus, ⊕X8

2 [0] = ⊕{C3(9)⊕ C0(0)}, which means
the XOR of two ciphertext bits after nine-round is also balanced. This is consistent with our
previous theorized construction method.

6. Conclusions

This paper investigates the methodology to construct integral distinguishers for ARX
ciphers. Based on the idea of constructing a subspace of long zero-correlation linear
distinguishers and the relationship between the INTDs and ZCLDs for ARX ciphers, a
method is proposed to solve this problem. This paper takes three typical ARX ciphers,
HIGHT, LEA and SPECK, as examples to show the effectiveness of our method. Some longer
and better integral distinguishers are discovered. More applications of this method and
the possible extension on Sbox-based designs are left for future work. However, although
some longer or more integral distinguishers are derived, some of them are not friendly to
key recovery attacks. Exploring better key recovery attacks is for other future work.

Author Contributions: Conceptualization, X.L.; methodology and validation, K.Z. All authors have
read and agreed to the published version of the manuscript.
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Appendix A

Zero-correlation linear distinguisher on HIGHT

α→ β : (0, 0, 0, 0, 0, 0, 0, 107)→ (0, 0, 0, 0, 0, e0, e2,4,5, 0)

Table A1. Deduction of zero-correlation linear distinguisher for 17-round HIGHT.

Round Γr
7 Γr

6 Γr
5 Γr

4 Γr
3 Γr

2 Γr
1 Γr

0

0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 10000000
1 00000000 00000000 00000000 00000000 00000000 00000000 10000000 00000000
2 00000000 00000000 00000000 00000000 00000000 1******* ******** 00000000
3 00000000 00000000 00000000 00000000 1******* ******** ******** 00000000
4 00000000 00000000 00000000 1******* ******** ******** ******** 00000000
5 00000000 00000000 1******* ******** ******** ******** ******** 00000000
6 00000000 1******* ******** ******** ******** ******** ******** 00000000
7 1******* ******** ******** ******** ******** ******** ******** 00000000
8 ******** ******** ******** ******** ******** ******** ******** 1*******

8 ******** ******** ******** ******** ******** ******** 00000001 0*******
9 ******** ******** ******** ******** 00000000 00000001 0******* ********

10 ******** ******** 00000000 00000000 00000001 0******* ******** ********
11 00000000 00000000 00000000 00000001 1******* ******** ******** ********
12 00000000 00000000 00000001 1******* ******** ******** 00000000 00000000
13 00000000 00000001 1******* ******** 00000000 00000000 00000000 00000000
14 00000001 11000010 00000000 00000000 00000000 00000000 00000000 00000000
15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
16 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000
17 00000000 00000000 00000000 00000000 00000000 00000001 00110100 00000000

Appendix B

Zero-correlation linear distinguisher on LEA

α→ β : (0, e0, 0, 0)→ (e9, 0, 0, e0)

Table A2. Deduction of zero-correlation linear distinguisher for 9-round LEA.

Round Γr
3 Γr

2 Γr
1 Γr

0

0 00000000000000000000000000000000 00000000000000000000000000000001 00000000000000000000000000000000 00000000000000000000000000000000
1 00000000000000000000001000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000001
2 00000000000000000000001000000000 00001000000000000000000000000000 00100000000000000000000000000000 00000000000000000000001000000001
3 ***********************001****** *****001************************ ***00000000000000000000001****** 001*****************************
4 ******************************** ******************************** ***001************************** ********************************

4 1******************************* 1******************************* 000000000001******************** 00000000000001******************
5 000000000000000000000001******** 00000000000000001*************** 00000000000000001*************** 0000000000000000001*************
6 00000000000000000000000000000000 0000000000000000000001********** 0000000000000000000001********** 000000000000000000000001********
7 00000000000000000000000000000000 000000000000000000000000001***** 000000000000000000000000001***** 00000000000000000000000000000000
8 00000000000000000000000000000000 00000000000000000000000000000001 00000000000000000000000000000000 00000000000000000000000000000000
9 00000000000000000000001000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000001
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Appendix C

Zero-correlation linear distinguisher on SPECK32

α→ β : (0, e7)→ (e3, e3)

Table A3. Deduction of zero-correlation linear distinguisher for 6-round SPECK32.

Round Γr
1 Γr

0

0 0000000000000000 0000000010000000
1 0000001000000000 0000001000000000
2 000010000001**** 000010000001**00
3 1*************** 1*************00

3 *********1****** 0***************
4 00000001*0000000 100000000000001*
5 0000000000000000 0000000000000010
6 0000000000001000 0000000000001000
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