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Abstract: Source code summarization refers to the natural language description of the source code’s
function. It can help developers easily understand the semantics of the source code. We can think of
the source code and the corresponding summarization as being symmetric. However, the existing
source code summarization is mismatched with the source code, missing, or out of date. Manual
source code summarization is inefficient and requires a lot of human efforts. To overcome such
situations, many studies have been conducted on Automatic Source Code Summarization (ASCS).
Given a set of source code, the ASCS techniques can automatically generate a summary described with
natural language. In this paper, we give a review of the development of ASCS technology. Almost
all ASCS technology involves the following stages: source code modeling, code summarization
generation, and quality evaluation. We further categorize the existing ASCS techniques based on
the above stages and analyze their advantages and shortcomings. We also draw a clear map on the
development of the existing algorithms.

Keywords: source code summarization; deep learning; program analysis; neural machine translation

1. Introduction

Code summarization, also called code comment, is a text description for the function
and purpose of special identifiers in computer programs. In other words, code summariza-
tion explains the logic and functions of source code in natural language, in order to make
people understand the program more easily [1]. As we all know, program maintenance is
the most expensive and time-consuming stage in the software life cycle [2]. A high-quality
code summarization is essential to program comprehension and maintenance [3–5]. For
example, it can reduce the time needed for developers to understand the source code and
improve code search efficiency. Unfortunately, with the rapid update of software, most
code comments are mismatched, outdated, and missing, so the code comments need to be
improved and updated continuously.

Given the importance and urgency, significant achievements have been made in
ASCS [6–27]. To the best of our knowledge, there are only a few works on the survey
of code summarization generation. Nazar et al. [28] mainly summarized four software
artifacts, which include bug reports, mailing list, source code, and developer discussions.
Yang et al. [29] focused on four aspects: the code comment generation, the consistency
of code and comments, the classification of code comments, and the quality evaluation
of code comments, but they did not explain the relevant algorithms of code comments
in detail. In addition, there exist a few studies on the technical achievements in the last
five years. Chen et al. [30] summarized the types of source code embedding, including
tokens, methods, sequences, binary codes, and other granularities. Moreover, they also
provided an available code embedding list to other researchers. Song et al. [31] ran a
survey on the algorithms and techniques of the code comments generation. They provided
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the classification, design principles, and quality evaluation of automatic code comments
algorithms. However, with the rapid development of deep learning technology, there are
still high-quality works in recent years that have not been summarized.

As an emerging research, ASCS is inspired by machine translation modeling. Although
there has only been just over 10 years of research [31], it has brought software development
to a new level, especially in program comprehension and maintenance. However, ASCS
faces the following challenges.

1. The source code modeling used to extract features from source code, such as lexical
information, syntax information, and semantics information. Here are the main
difficulties:

• Different from plain text, the source code contains rich syntax and structure
information;

• Faced with different programming languages, both the analysis methods and
standards are different;

• Each developer has his own code logic and naming conventions, which makes
the source code irregular;

• Various programming languages and identifier names lead to huge vocabularies
of source code.

2. In terms of ASCS methods, the Information Retrieval (IR)-based algorithms extract
keywords from the source code, or look for summarization of similar codes. Distinctly,
the effect of these algorithms depends on the quality of datasets. With the development
of artificial intelligence technology, researchers have applied the methods of Natural
Language Processing (NLP) for ASCS, and have achieved significant results. However,
there are still some problems, such as long-term dependence, the limitations of ASCS
algorithms, and the lack of high-quality datasets.

3. The quality evaluation is another challenge. The existing ASCS algorithms are mostly
evaluated on different datasets, which makes it difficult to compare the effect of
the algorithms. Besides, the quality evaluation methods of NLP are used for code
summarization, but the source code is different from natural language text. Thus, an
efficient and low-cost ASCS evaluation method is an important issue that needs to be
solved urgently. Here are the main challenges of quality evaluation:

• Lacking unified datasets;
• Lacking recognized and reasonable benchmarks used as the baseline;
• Lacking professional evaluation indicators.

We select representative papers in the past decade that have published in IEEE ICSE,
IEEE/ACM ASE, IEEE TSE, IEEE FSE, ACM TOSEM, ICPC, IJCAI, EMSE, AAAI, or other
software engineering and artificial intelligence venues. According to the technique devel-
opment, we summarize the work from three aspects: source code modeling, automatic
code summarization algorithms, and the summarizaiton quality evaluation.

This survey makes the following contributions to the field:

• It discusses the origin of ASCS technology, its evolution over the past decade;
• It concludes the advantages and disadvantages of the above representative methods,

and the work with improved relationships between these approaches;
• It provides a synthesized summary of the challenges and future research that requires

the attention of the researchers;
• It collates a comprehensive list of available datasets and codes, which are conducive

to further research by scholars.

This paper is organized as follows. Section 2 provides the general overall flowchart of
ASCS algorithms, and analyzes the key steps in flowchart. Section 3 systematizes various
representations of source code, including their pros and cons. Section 4 summarizes the
methods of ASCS, even the limitations and interconnections of these methods. Section 5
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evaluates the different quality metrics. Section 6 draws the conclusion and the future trends
of ASCS.

2. Overview of ASCS

Since all the functions of software are included in the code, code summarization is
the most intuitive and effective way to understand the software, especially for software
maintenance. Generally, comments can be divided into three types: document comment,
block comment, and line comment [32]. Among them, document comments are used to
describe a class, a method, or an attribute; block comments are used to describe one or
more lines of code snippets, which are located on the previous line of the commented code
block; line comments refer to following the code line to provide a description for the current
code line. At present, almost all researchers are devoted to document comments and block
comments.

The overall flowchart of ASCS generally contain three parts: source code modeling,
code summarization generation, and quality evaluation, as shown in Figure 1.

Figure 1. The overall flowchart of automatic source code summarization.

The source code modeling converts the source code into semantic vectors by extracting
its features, and the semantic vectors are the input of ASCS generation. In software engi-
neering, building a high-quality source code model is the first step of many tasks, such as
code classification [33–35], code search [25,36,37], code clone detection [38–40] and code
comment [41–44]. In recent years, almost all source code modeling uses machine learning,
and paper [45] can be used as a reference. It carried out an extensive literature search and
identified 364 primary studies published between 2002 and 2021, aiming to summarize the
current knowledge in the area of applied machine learning for source code analysis. As
a key step in ASCS, source code modeling adopts different granularities and methods to
represent the source code adequately, which are detailed in Section 3.

The ASCS generation algorithms take the outputs of the source code model as an
input, then generate the functional description of the source code. Initially, the code
summarization has been generated by extracting keywords from the source code, building
bag-of-words model, and using similarity matching. With the development of technology,
models based on deep learning (DL) have been widely used, such as seq2seq model,
transformer model, and other language models. Among them, the seq2seq model usually
applies recurrent neural network (RNN) and its variants (e.g., Long Short Term Memory
(LSTM), Gate Recurrent Unit (GRU)), convolution neural network (CNN), and its variants
(e.g., Graph Convolutional Networks (GCN), Graph Neural Network (GNN)). Furthermore,
attention mechanism is often used as an powerful aid to the model. Section 4 presents the
analysis of different excellent algorithms of the ASCS generation.

The quality evaluation measures the pros and cons of ASCS algorithms through the
generated code summarization. We discuss the quality evaluation from evaluation objects
and standards. The evaluation objects of ASCS are often datasets and ASCS methods.
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The evaluation standards are often automatic metrics (such as BLEU, METEOR, CIDER,
ROUGE, Recall and Predicate) and human evaluation, which are detailed in Section 5.

3. Source Code Modeling

High quality source code modeling can better extract syntactic and semantic infor-
mation from the source code. We also think that the source code before and after source
code modeling is also symmetric. There exists a lot of excellent literature on source code
analysis [46–58], and we have shown the representative source code models from the past
five years in Table 1. From Table 1, we know that scholars have considered structural
information (e.g., AST, API) in recent years, instead of just treating the source code as pure
text. Besides, ML-based methods are widely used in source code analysis. According to
the different representations of source code, we divide the source code modeling into four
types: Token-based, Tree-based, Graph-based, and other source code modeling.

Table 1. Representative source code models from the last five years. Seq means sequence feature.
Stc means structure feature. ML means machine learning. IST means Inf Softw Technol. Src means
source code. SCS means source code summarization. CR means code retrieval. SCC means source
code classification. PF means predict function. CCD means code clone detection. SCG means source
code generation. PR means program repair. ECM means error-code misuse. CP means classifying
programs. X indicates used, × indicates unused.

Models Year Venue Seq Stc ML Src Representation Tasks

Attention [15] 2016 ICML X × X Subtokens SCS
TBCNN [34] 2016 AAAI X X X AST CP, CCD
LSTM [59] 2016 ACL X × X tokens SCS, CR
SWUM [60] 2016 TSE X × X tokens SCS
VSM [61] 2016 ICSE X X × AST SCS
LSTM [40] 2017 IJCAI X X X AST CCD
LSTM [6] 2018 ICPC X X X AST SCS
Seq2seq [17] 2018 IJCAJ X × X (API, comments) (API, code, comments) SCS
LSTM [19] 2018 ASE X X X AST, sourcecode SCS
Bi-LSTM [43] 2018 ICLR X X X AST, (token, path, token) PF, SCS
HOPE [50] 2018 MSR X X X identifier, AST, CFG, Bytecode CCD
RNN [51] 2018 ICLR X X X variable/statetrace PR
Word2vec [53] 2018 ESEC X X X abstractedsymbolictraces ECM
GGNN [55] 2018 ICLR X X X AST, PDG PF
MLP [62] 2018 ASE X × X tokens SCS
RNN [63] 2018 AAAI X X X AST SCS, SCC
GRU [22] 2019 ICSE X X X text, ASTnodetokens SCS

Bi-LSTM [46] 2019 ICSE X X X AST, ST-trees SCC,
CCD

Bi-LSTM [64] 2019 POPL X X X AST, (token, path, token) PF
Bi-LSTM [65] 2019 ASE X X X text SCS
Bi-LSTM [23] 2020 ICSE × X X AST, codesequence SCS
BERT [24] 2020 Access X X X functionalkeywords SCS
Transformer [25] 2020 arXiv X × X comments, code SCS, CR
Transformer [26] 2020 ACL × X X AST SCS
GRU [44] 2020 ESE X X X tokens, AST SCS
Regularizer [56] 2020 IST X X X AST SCG
GRU [66] 2020 JCRD X X X (code, API, comments), (function, comments) SCS
GRU [67] 2020 ACL X X X text, ASTnodetokens SCS
GNN [68] 2021 arXiv X X X AST, context SCS
Seq2Seq [69] 2021 ICPC X × X (seq, comment), (context, comment) SCS
API2Com [70] 2021 ICPC X X X AST, API, seq SCS
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3.1. Token-Based Source Code Model

The ASCS generation is inspired by the machine translation model in the natu-
ral language processing (NLP) field. Therefore, the early source code analysis meth-
ods fully borrowed the methods of NLP. The source code is regarded as pure text se-
quences [7,9–13,15,21,37,52,58–60,62,66]. This token-based model processes the source
code as shown in Figure 2.

Figure 2. An example of token-based source code representation. The left side of the blue arrow is
source code, and the right side is the token-based representation of source code.

To the best of our knowledge, the first code comment generation work came from
Haiduc et al. [8]. They analyzed source code as text to generate natural language descrip-
tion of classes or methods of source code described with objective-oriented programming
languages. Then, Moreno et al. [11] and Wang et al. [58] used part-of-speech tagging to
identify the keywords that best represented the source code features. Efstathiou et al. [52]
expressed the source code by mining the identifier information of multiple programming
languages, and utilized fastText model to learn word representation.

However, the above methods of source code representation all extract keywords or
topics from the source code. Besides, there are a variety of auxiliaries used to extract the
source code information, such as API knowledge, document description, identifier naming
rules, and so on. For example, Hu et al. [17] discovered that the function of code was related
to the API call sequences, then used API information to assist the modeling of generating
source code summarization. Different from using API calls, Chen et al. [62] constructed a
source code model by using two variational autoencoders (VAE) to complete source code
analysis. Among them, C-VAE was used to extract the token sequences of source code,
and L-VAE was used to extract the token sequences of the auxiliary documents. Especially,
Zheng et al. [21] proposed an attention mechanism, CodeAttention, extracting keywords,
symbols, and identifiers information from the source code. They also provided an available
and large dataset, C2CGit, which includes java methods and the corresponding comments.

The above methods mostly regard the source code as natural language text, then select
tokens to form the bag-of-words model. Although the traditional analysis is simple and
effective, obvious drawbacks exist. On the one hand, it requires the identifier naming to
reflect the purpose of the function; on the other hand, it ignores the potential information
of source code, such as data dependence, control flow, and semantic information.

3.2. Tree-Based Source Code Model

Abstract Syntax Tree (AST) is an important way to express the structure information
of the source code. An example is shown in Figure 3. The left side of the arrow is a function,
and the right side is the AST parsed by the tools. Scholars usually characterize source
code semantic information through different processing of AST, such as converting AST
into sequences, randomly extracting AST paths, and dividing AST into multiple sub-ASTs.
In short, as an efficient structure representation, AST with DL technology has achieved
remarkable results [6,22,23,34,40,43,56,61,63,64].
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Figure 3. An example of tree-based source code representation. The left side of the blue arrow is
source code, and the right side is the tree-based representation of source code.

The earlier typical work using AST to represent the structure of source code is
code2vec [64]. Code2vec represented the source code with AST path sets, and each path con-
sisted of two leaf nodes and their intermediate path, (token1, path, token2). Subsequently,
Alon et al. [43] proposed the code2seq method on the basis of code2vec. They improved
the work of [64] in the following aspects: (1) the latter did sub-token processing on the
token; (2) the latter randomly chose several paths from all the paths of AST tree; (3) the
latter was suitable for the code summarization in multiple programming languages. They
utilize random AST path sets to represent the source code, instead of using the AST or the
sub-ASTs directly. In addition, this method can be directly applied on code summarization
tasks. Thus, it is often used as a baseline in other works, and it may be applicable to other
code intelligence tasks as well.

In 2018, the structure-based traversal (SBT) method [6] made a major breakthrough
in structure information extraction. Using SBT, a subtree under a given node is included
into a pair of brackets. Furthermore, the brackets represent the structure of AST and can be
restored as a tree unambiguously from a sequence generated using SBT. Compared with
the previous methods, this new AST traversal method has higher accuracy. Subsequently,
Hu et al. [44] extended the above work. When building an ASCS model, they combined
the source code vocabulary information and the SBT sequences. Especially, they used
camel case naming to solve out-of-vocabulary identifiers problem. Inspired by SBT, some
innovative work has emerged. For example, LeClair et al. [22] represented the source code
in sequences and AST in two forms, and used a modified SBT method [6] to traverse the
AST.

In 2019, ASTNN [46] was proposed, which was of great significance to source code
analysis, mainly reflected in the analysis granularity and the skillful construction of state-
ment trees. ASTNN has overcome the following limitations: the paper [34] combined AST
with CNN to capture the structural information of source code. However, the AST utilized
a window sliding algorithm, which lost a certain part of the source code information. The
paper [39] utilized the combination of RNN [71] and AST to represent the source code. The
paper [40] combined AST with LSTM to mine the vocabulary and syntax information of
the source code. However, the paper [39,40] both performed bottom-up traversal on AST,
which made it prone to gradient disappearance when computing large AST structures.
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The ASTNN worked as follows: (1) it split the whole AST into small statement trees; (2)
it designed a recursive encoder on multi-way statement trees to capture the lexical and
syntactical information; (3) it used bidirectional Gated Recurrent Unit (Bi-GRU) to obtain
the vector representation of source code. This method solves the huge problem of AST
structure, and the batch processing algorithm has greatly improved the computing perfor-
mance. In addition, the dataset and model code are publicly available, which facilitates the
researchers to complete other code intelligence tasks, such as code summarization, code
search, and code copyright infringement.

Recently, Hussain et al. [56] proposed a CodeGRU method, which was an effective
source code embedding representation method proved by experiments. The CodeGRU
selected noise-free source code data and parsed them into AST, then encoded the context,
syntax, and structure information of source code. Therefore, scholars can do further
research based on this effective model. In addition, blending the AST into a pre-training
model is a valuable research direction. For example, Guo et al. [37] combined AST with
Data Flow to represent the source code and achieved great results.

3.3. Graph-Based Source Code Model

Graph structure is one of the most flexible data structures and is widely used in
many fields. The source code modeling with graph has yielded many significant achieve-
ments [50,55,67,72–75]. The common graph structures include Control Flow Graph (CFG),
Data Flow Graph (DFG), Program Dependency Graph (PDG), and Code Property Graph
(CPG). Different graph structures describe code from different feature perspectives. For ex-
ample, CFG describes the execution path and control dependency of codes, PDG describes
the control dependency and data dependency within codes. We give an example of source
code representation by CPG in Figure 4.

Figure 4. An example of Graph-based (CPG) source code representation. The upper side of the blue
arrow is the source code, and the lower side is the CPG of source code.
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In recent years, the representative achievements of source code analysis based on PDG
are as follows. Tufano et al. [50] expressed the source code from four different levels of
identifier, AST, CFG, and Bytecode. Notably, HOPE graph embedding technology [73] was
used to train the CFG, and, in the end, different source code representations expressed
excellent results in the code cloning task. Allamanis et al. [55] parsed source code into AST.
On this basis, the control flow dependence and data flow dependence of the program are
captured by additional edges. The paper [72] used GGNN to train the source code graph.
Finally, these two tasks of predicting variable name and judging whether the variable is
used correctly have achieved high accuracy.

Zhou et al. [75] built a graph neural network model, Devign, which learned rich
semantic representations of source code. It represented various subgraphs into one joint
graph, CPG, including AST, CFG, DFG, and Natural Code Sequence (NCS). The experi-
ments proved the effectiveness of Devign on vulnerability detection task. The method has
achieved a new state of the art on machine-learning-based vulnerability detection, and the
CPG can learn rich semantic information of source code. However, the model can only
process C/C++ code, if researchers make some improvement to it, which will be a good
research direction to achieve other tasks or to process other programming languages.

3.4. Other Source Code Models

Apart from the above methods, there exist other methods of source code modeling,
such as Software Word Usage Model (SWUM) [76], data-driven methods, and dynamic
methods.

SWUM captures program word relationships and links them with the program struc-
ture. Sridhara et al. [9,10] and Moreno et al. [11] extracted the keywords of source code to
describe the function of Java methods. However, this type of code summarization cannot
explain why this method exists or what role it plays in software. Later, McBurney et al. [13]
made important extensions to their work, which was analyzing the call ways of Java
methods and including context through SWUM. Subsequently, McBurney et al. [60] also
utilized SWUM to propose a method of automatic source code summarization, in which
the source code representation is call functions and keywords. However, the SWUM model
relies heavily on the naming of function and identifier; if the naming is not precise, the
summarization will be inaccurate.

As we all know, the dynamic methods are more accurate than the static methods. For
example, Wang et al. [51] learned source code representation through the execution path of
the program, and experiments proved that this dynamic code semantic embedding is more
effective in error type classification than code syntax embedding. However, the dynamic
method is neither comprehensive analysis nor suitable for the large dataset analysis.

4. Code Summarization Generation

The ASCS generation is a hot field that has emerged in the past decade. We divide its
methods into three categories: manually-crafted templates, IR-based, and Deep Learning
(DL)-based. In recent years, the representative methods and the relation between them
have been shown in Figure 5. We can see that human evaluation is mostly used before 2016.
The evaluation metrics gradually changed, which further illustrates the evolution of ASCS
technology.
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Figure 5. The representative methods [6–17,19,21–26,34,39,40,43,44,46,55,58–66,74,77–89] and their
relationship of automatic code summarization. Each node in the same column represents achieve-
ments that appeared in the same year. A solid arrow from X to Y indicates that Y cites, references, or
otherwise uses techniques from X. Each rectangle represents the works of the same author.

From Figure 5, we can also clearly see which work has been improved and innovated
based on the previous work. For example, the work in paper [23] is an improvement over
the papers [85,86]. Furthermore, papers [23,43] were done by the same authors.

4.1. Manually-Crafted Templates-Based ASCS Generation

The manually-crafted template is an early method used in ASCS generation. It is
mainly based on some custom rules to generate code summarization [9–11,13]. For example,
Moreno et al. [11] automatically generated summarization for Java classes through existing
text generation tools, in which they utilized the information of the building class with
the proposed heuristic rules. Wang et al. [16] utilized high-quality source code projects to
train templates for learning the behavior of related objects, and automatically generated a
summarization for the related objects with the source code method.

However, the manual template methods usually extract keywords from source code
to generate summarization, which ignores a lot of potential information of the source
code. In addition, the summarization quality depends on whether the identifier-naming
of the source code is standardized. If the naming cannot reflect the function purpose, the
summarization is inaccurate. In the current source code information extraction, this method
is mostly used as an auxiliary or is simply discarded.
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4.2. IR-Based ASCS Generation

After manual template technology, IR-base modeling is widely used in ASCS gener-
ation. The IR can be abstracted as a statistical language model. It needs to calculate the
correlation between target code and code in the dataset, then returns the corresponding
summarization of the code that best matches the target code. The common approaches
of IR-based modeling are Latent Semantic Indexing (LSI), Vector Space Model (VSM),
theme-based, and so on [7,8,11,58,77–79].

Initially, Haiduc et al. [7,8] analyzed source text using VSM and LSI methods, produc-
ing natural language description of source classes or methods. Subsequently, Eddy et al. [78]
improved the above work by topic model. Li et al. [80] used Latent Dirichlet Allocation
(LDA) technology to conduct topic mining on resources such as code, documentation,
question and answer information, and automatically generated code topic summarization.
Liu et al. [81] utilized latent semantic analysis and clustering algorithms to extract the
semantic information of source code. Finally, the package summarization of the Java project
was generated. Movshovitz-Attias et al. [77] adopted the combination of topic models and
n-grams to predict Java method summarization.

Wang et al. [58] used part-of-speech tagging to identify keywords that best represented
the features of the source code. Through noise reduction, a number of keywords with the
highest weights were selected to form the code summarization. However, the method has
some disadvantages. The quality of code summarization heavily depends on the source
code and cannot be guaranteed, especially for the obfuscated source code.

The code cloning-based method is a common IR method to generate source code
summarization. The principle is to search for the most similar code segment with the
given source code, then extract its comments as the summarization of the given source
code [11,41,79]. Obviously, the quality and quantity of summarization depend on the
quality and quantity of the code snippets and the corresponding comments contained in
the dataset.

Wong et al. [41] collected a large-scale Q&A dataset from the source code in Stack
Overflow. They calculated the similarity between the input code and the codes in Stack
Overflow. The description of code in Stack Overflow is used as the summarization of the
input code. Later, Wong et al. [79] proposed another method of automatic code summariza-
tion by mining the existing software code bases. It used code clone detection technology to
find code snippets with similar syntax from the code bases, and applied the summarization
of these code snippets to other codes with similar syntax.

The above methods generate code summarization usually by searching for keywords
of source code or comments of similar code. The drawbacks of IR-based methods include:
First, it overly relies on the standardization of naming. If the naming of identifiers and
function are irrelevant to the code function, the extracted keywords will not represent the
source code accurately; second, it depends on similar codes in the dataset. If the dataset has
no code similar to the given code, no summarization is generated correctly. In summary,
relying only on lexical information to represent the source code ignores the rich structure
and data dependence of the source code.

4.3. DL-Based ASCS Generation

In recent years, the research of ASCS generation with DL technology has made break-
throughs [6,17,19,21,22,43,44,59,62–64,67,85]. The common DL techniques include RNN
and its variant models, CNN and its variant models, transformer model, and large-scale
language training model (e.g., BERT and GPT), etc. The Attention mechanism is usually
used as a key auxiliary to the above methods.

In 2016, CODE-NN was declared the most advanced model of ASCS generation [59],
which used LSTM and Attention mechanism to generate a description of C# codes and
SQL sequences. Later, a lot of code summarization papers have taken CODE-NN as the
benchmark, such as these papers [6,17,44,63,64]. In 2018, Woo et al. [82] improved the
method of paper [15], and proposedCBAM, a new method to improve the representation
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ability of CNN networks. CBAM was applied to code generation by adding convolution
operations on input symbols, extracting the local translation invariant features of the input
sequences. The paper also provides opensource code (https://github.com/Jongchan/
attention-module, accessed on 18 August 2019), which is a good resource for the research of
code intelligence tasks. Deep-Com [6] is a seq2seq model proposed to generate Java method
summarization based on Attention mechanism. The semantic information learning of the
source code was detailed in Section 3.2. Deep-Com has higher accuracy than previous
methods, which has been proven by many experiments. In 2020, the Hybrid-DeepCom [44]
is a new ASCS method extending the work of [6]. The improvements have been described in
Section 3.2. At the same year, Boao Li et al. [89] implemented a tool plug-in for this method,
which helped researchers to understand and apply the method intuitively. Furthermore, it
also proved the feasibility and practicability of Hybrid-DeepCom. In 2020, LeClair et al. [67]
improved the method of processing source code AST information [83,84] on the basis of
ast-attendgru [22], and the accuracy of source code summarization was increased. In 2021,
LeClair et al. [90] explored the orthogonal nature of different neural code summarization
approaches and proposed ensemble models to exploit this orthogonality for better overall
performance. The combination of search and generative methods in ASCS is a promising
idea. To the best of our knowledge, there is only one work similar to this, which is the
paper by Rencos [23]. It found that the IR-based method could better obtain source code
low-frequency words [86], and the NMT-based method was more flexible and semantically
correct [85].

The Transformer model can be computed in parallel, and can better capture the long-
term dependencies of the sequence, even with strong comprehensive feature extraction
capabilities. It can compensate for the shortcomings of RNN parallelization and the dif-
ficulty of CNN. Therefore, Transformer has been widely used in NMT field and other
various tasks, including code summarization generation [24,26,91]. For example, Uddin
Ahmad et al. [26] and Wang et al. [24] utilized Transformer to complete the code sum-
marization task. Compared with existing methods, they improved the effectiveness and
accuracy of code summarization. Among them, Uddin Ahmad et al. optimized the model
of Shaw et al. [87], in which an attention layer was added to the decoder for copying rare to-
kens in the source code. The experiments proved that the relative paths performs better than
absolute paths. Wang et al. combined the Transformer with BERT and proposed Fret, a new
method for generating code summarization. However, Transformer processes a long text by
cutting it into multiple fixed-length fields, which may cause information to go missing. In
2019, Dai et al. [91] proposed the Transformer-XL method after optimizing the Transformer
model. Transformer-XL could model dependencies exceeding a fixed length, and Dai et al.
opened the source model code (https://github.com/kimiyoung/transformer-xl, accessed
on 11 April 2020).

In 2020, based on paper [43,64], Alon et al. [54] proposed a structure-based language
model, SLM, which could solve the code generation problem of various programming
languages, and it performed better than seq2seq and other methods of generating Java codes
and C# codes. Alon et al. highlighted the importance of structural language modeling and
its wide application of code intelligence tasks. They also made the datasets and codes public
(https://github.com/tech-srl/slm-code-generation, accessed on 28 September 2021).

To solve the long-term dependency problem, reinforcement learning is a popular
method. Wan et al. [19] incorporated an AST structure as well as sequential code snippets
into a deep reinforcement learning framework (i.e. actor-critic network), which improved
the performance of ASCS generation. Based on the above work, Wang and Wan et al. [88]
combined hierarchical Attention-based learning with actor-critic reinforcement learning,
and adopted type-enhanced AST sequences and CFG instead of the pure AST to capture the
correlation between comments and programs. In addition, the use of hierarchical attention
network (HAN) fully took into account the hierarchical structure of the source code, and
the experimental effect was better than the papers [6,43,59,92].

https://github.com/Jongchan/attention-module
https://github.com/Jongchan/attention-module
https://github.com/kimiyoung/transformer-xl
https://github.com/tech-srl/slm-code-generation
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CodeCMR [93] is a cross-modal retrieval method for binary source code matching on
NeurlPS2020. They adopted DPCNN [49] to extract source code features and Graph Neural
Network (GNN) for binary code feature extraction. It captured code literals, including
strings and integers. The results showed that compared with paper [46], using the source
code directly as a input not only retained the integrity but also saved time when dividing
AST into statement trees. To the best of our knowledge, this is the first binary source
code matching method on function-level, and its dataset is an available resource (https:
//github.com/binarya, accessed on 15 July 2020).

5. Quality Evaluation

The quality evaluation of source code summarization is divided into evaluation objects
and evaluation methods. The evaluation objects are mainly datasets and summarization
generation algorithms introduced in Section 4. In this section, we introduce the datasets
and two types of evaluation methods: automatic evaluation and human evaluation.

5.1. Datasets

Most of the datasets come from Stack Overflow [41,57,59], GitHub [6,15,17,21,44,52,55,60],
and code contests [34,40,46,63]. There are also some datasets constructed by researchers [94–98].
The common available datasets have been shown in Table 2.

Stack Overflow (SO) is a Q&A website in the field of programming, which consists of
code snippets and the corresponding purpose description. The scholars often take these
Q&A pairs as their dataset. The advantage is that the datasets are easy to extract, and the
disadvantage is that the quality of Q&A pairs are uneven, because the platform does not
guarantee the quality of questions and answers.

GitHub (GH) is a software source code hosting service platform, which is also the
largest code site and opensource community [99]. As a popular source of datasets, the code
quality in GitHub can be reflected by the number of five-pointed stars left in the reviews.
More stars means better quality. However, GH only provides the source code. If you choose
the ASCS dataset, you need to manually find the corresponding code summarization.

Google Code contests Jam and Online Judge (OJ), as the dataset format is similar to the
SO. The quality of OJ is relatively higher, however, the scale of the dataset in OJ is limited,
which may result in poor general adaptation of the training model.

CodeXGLUE [100], a benchmark dataset and open challenge for code intelligence,
contains 14 datasets for 10 diversified code intelligence tasks covering the following sce-
narios: Code-Code, Text-Code, Code-Text, and Text-Text. The ASCS belongs to Code-Text,
and the public dataset is CodeSearchNet [101], which includes six programming language
sub-datasets of Python, Java, PHP, JavaScript, Ruby, and Go. Furthermore, each sub-dataset
provides source code token tags and corresponding comments. The CodeSearchNet is a
milestone for the technology. Besides, paper [102] researched how the different characteris-
tics of the dataset affect the summarization performance. It evaluated the performance of
five typical methods on three widely used datasets, which were different in three attributes:
corpus size, data splitting methods, and duplication ratio. The paper [102] helps researchers
choose and process datasets correctly.

https://github.com/binarya
https://github.com/binarya
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Table 2. The public datasets of typical ASCS (* represents closed source; SO represents Stack Overflow; GH represents GitHub; OJ represents Online Judge.

Methods Venue Datesets Opened-Source

AutoComment [41] ASE Java(SO) *

TASSAL [61] ICSE Java(GH) https://github.com/mast-group/tassal (accessed on 25 November 2019)

conv_attention [15] ICML Java(GH) http://groups.inf.ed.ac.uk/cup/codeattention (accessed on 25 February 2020)

Allamanis et al. [55] ICLR C#(GH) https://aka.ms/iclr18-prog-graphs-dataset (accessed on 2 March 2020)

Mcburney et al. [60] TSE Java(GH) *

CODENN [59] ACL C#, SQL(SO) https://stackoverflow.com/ (accessed on 2 March 2020)

DeepCom [6] ICPC Java(GH) https://github.com/xing-hu/DeepCom (accessed on 3 March 2021)

TL-CodeSum [17] IJCAJ Java(GH) https://github.com/xing-hu/TL-CodeSum (accessed on 3 March 2021)

Hybrid-DeepCom [44] ESE Java [6] https://github.com/xing-hu/DeepCom (accessed on 5 March 2021)

BVAE [62] ASE C#, SQL [59] https://stackoverflow.com/ (accessed on 28 November 2019)

HybridDRL [19] ASE Python [94] https://github.com/wanyao1992/code_summarization_public (accessed on 7 February 2021)

CodeRNN [63] AAAI Java(GH) https://adapt.seiee.sjtu.edu.cn/CodeComment/ (accessed on 29 November 2020)

Attn+PG+RL [65] ASE Java(GH) https://tinyurl.com/y3yk6oey (accessed on 28 November 2019)

Code2vec [64] POPL Java(GH) https://github.com/tech-srl/code2vec (accessed on 15 December 2019)

Code2seq [43] ICLR Java(GH),C# [59] https://github.com/tech-srl/code2seq (accessed on 15 December 2019)

Ast-attendgru [22] ICSE Java [95] http://www.ics.uci.edu/-lopes/datasets/ (accessed on 18 December 2020)

LeClair et al. [67] ACL Java [96] http://leclair.tech/data/funcom/ (accessed on 15 February 2020)

ASTNN [46] ICSE C(OJ), Java [93] https://github.com/zhangj1994/astnn (accessed on 15 January 2021)

Rencos [23] ICSE Java [17], Python [94] https://github.com/xing-hu/TL-CodeSum (accessed on 23 February 2021)

CodeBERT [25] arXiv Go, Java, JS, PHP, Python, Ruby https://github.com/microsoft/CodeBERT (accessed on 23 February 2021)

TBCNN [34] AAAI C(OJ) http://programming.grids.cn (accessed on 28 February 2021)

CDLH [40] IJCAI Java [93], C(OJ) http://programming.grids.cn (accessed on 5 May 2021)

https://github.com/mast-group/tassal
http://groups.inf.ed.ac.uk/cup/codeattention
https://aka.ms/iclr18-prog-graphs-dataset
https://stackoverflow.com/
https://github.com/xing-hu/DeepCom
https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://stackoverflow.com/
https://github.com/wanyao1992/code_summarization_public
https://adapt.seiee.sjtu.edu.cn/CodeComment/
https://tinyurl.com/y3yk6oey
https://github.com/tech-srl/code2vec
https://github.com/tech-srl/code2seq
http://www.ics.uci.edu/-lopes/datasets/
http://leclair.tech/data/funcom/
https://github.com/zhangj1994/astnn
https://github.com/xing-hu/TL-CodeSum
https://github.com/microsoft/CodeBERT
http://programming.grids.cn
http://programming.grids.cn
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Table 2. Cont.

Methods Venue Datesets Opened-Source

DL-based [50] MSR Java(GH) https://archive.apache.org/dist/commons (accessed on 23 May 2021)

Code-GRU [56] IST Java(GH) https://github.com/yaxirhuxxain/Source-Code-Suggestion (accessed on 23 May 2021)

CodeAttention [21] FCS Java(GH) https://github.com/wenhaozheng-nju/CodeAttention (accessed on 25 May 2021)

Tansformer-based [26] ACL Java [17], Python [94] https://github.com/wasiahmad/NeuralCodeSum (accessed on 23 February 2021)

Fret [24] Access Java(GH), Python [94] https://github.com/xing-hu/EMSE-DeepCom (accessed on 23 March 2020)

fc-pc [68] ICPC Java(GH), Python https://github.com/aakashba/projcon (accessed on 5 November 2021)

KBCoS [66] JCRD Java [6], Python [94] https://github.com/xing-hu/TL-CodeSum (accessed on 26 February 2021)
https://github.com/EdinburghNLP/code-docstring-corpus (accessed on 26 February 2021)

https://archive.apache.org/dist/commons
https://github.com/yaxirhuxxain/Source-Code-Suggestion
https://github.com/wenhaozheng-nju/CodeAttention
https://github.com/wasiahmad/NeuralCodeSum
https://github.com/xing-hu/EMSE-DeepCom
https://github.com/aakashba/projcon
https://github.com/xing-hu/TL-CodeSum
https://github.com/EdinburghNLP/code-docstring-corpus
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5.2. Automatic Evaluation Mechanism

Evaluation criteria are used to measure the quality of the ASCS. As an emerging re-
search hotspot, the quality evaluation of summarization usually uses automatic evaluation
indicators and tools of NMT. The use of evaluation methods from the recent years are
shown in Figure 5, and we will provide a brief introduction to them.

BLEU [103], Bilingual Evaluation Understudy, was proposed by Papineni et al. in 2002.
It is used to count the proportion of n-grams in candidate texts that appear in reference
translations, where n can be 1, 2, 3, or 4. Obviously, the higher the BLEU value, the higher the
quality of code summarization. BLEU is the earliest automatic evaluation method of machine
translation and has been used in many code summarization works [6,15,17,19,21–24,43,59,67].
Moreover, the granularity considered by BLEU method is n-grams instead of word, which
can match longer information at a time. However, the drawbacks of BLEU are that it
only focuses on accuracy and ignores recall (that is, how many phrases in the reference
translations appear in the candidate texts).

ROUGE [104], Recall-Oriented Understudy for Gisting Evaluation, was proposed
by Lin. It is similar to the calculation of the BLEU method, but n-gram includes several
different metrics, among which ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S are
commonly used. This metric has been used in many ASCS tasks [19,24,63,67]. However,
ROUGE only considers the recall but ignores fluency.

METEOR [105] is a Metric for Evaluation of Translation with Explicit Ordering. It
was proposed by Lavie et al. after discovering the significance of recall in evaluation. The
method of adding recall to METEOR calculation and expanding the synset by WordNet
has solved the defects in BLEU. It achieves similar results with human evaluation. It is
more reasonable than BLEU and ROUGE, so the METEOR method is often used in ASCS
algorithms [17,21,22,26,59,62,66]. However, there are also some weaknesses: for example,
it can be only used in Java language and the parameters need to be debugged according to
different datasets.

CIDER [106], Consensus-based Image Description Evaluation, is proposed by Vedan-
tam et al. CIDER is used to measure the similarity between a test sentence and the majority
of reference sentences. Among them, TF-IDF [107] calculates the weights of each n-gram.
The TF-IDF avoids matching all words equally and makes the important words more
prominent. Some researchers use this method to measure the quality of code summariza-
tion [19,23,44].

Besides, there are other evaluation methods of ASCS, such as Accuracy [25,34,50,53],
Precision [17], Recall [43,46,64], and F1 score [15]. Among them, Accuracy is widely used,
but it is not the best evaluation method. Recall expresses the ability to find relevant instances
in a dataset, and Precision expresses the ability to find the actual relative proportion of the
data points. F1 score takes the harmonic average of Recall and Precision to achieve the best
precision-recall balance model, which can better evaluate the classification model and solve
the imbalance problem. Although many quality assessment tools can provide automatic
evaluation for ASCS, the assessment results of these tools are often unstable, which is an
important problem that needs to be solved in ASCS.

Some researchers have also summarized the related evaluation methods of ASCS [1,108–112].
Khamis et al. [108] used heuristic algorithms to propose an automatic evaluation method for
ASCS. The principle is based on the consistency between the source code and its correspond-
ing comments. The more similar the comments are, the higher is its quality. Obviously,
this method relies on the quality of the dataset. Steidl et al. [1] analyzed the quality of
source code summarization from four aspects of consistency, validity, completeness, and
relevance. Sun et al. [110] proposed a method for automatically evaluating the quality of
code summarization. It not only gives advice to improve the quality of code summarization,
but also enhances the accuracy of summarization. However, this method can analyze fewer
types of comments, and it is dependent on the vocabularies and comments of source code,
ignoring the semantics.
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Rencenly, CodeBLUE [113], a code summarization evaluation mechanism, provided three
benchmark models including CodeBERT, CodeGPT, and encoder-decoder. Among them, the
CodeBERT model was used for code understanding [25], and was the first known large scale
Natural Language-Programming Language (NL-PL) pre-training model. In the task of Code-
Text, CodeBERT had pre-trained the six programming languages of CodeSearchNet [101], and
plenty of experiments proved that the CodeBERT model is highly effective in both code search
and ASCS tasks.

5.3. Human Evaluation

Human evaluation generally selects experienced developers or people to join the
project. It mainly measures the accuracy, fluency, and effectiveness of the code summariza-
tion. Among them, the accuracy measures the expression degree of code summarization for
source code feature information. The fluency measures whether the code summarization is
grammatical and understandable. The effectiveness measures the usefulness and necessity
of code summarization. Usually, the researchers rate comments on a scale between 1 and 5,
and the higher the score, the higher the accuracy of the comments.

Obviously, human evaluation has high accuracy, and it avoids the complicated design
of the evaluation algorithm. However, drawbacks exist. On one hand, it is not suitable for
enormous quantities of code summarization evaluation work, because human evaluation is
completed by many experienced developers, which is costly and ineffective. On the other
hand, it is easy to have deviations occur, caused by personal factorssuch as high pressure,
fatigue, and inexperience.

6. Discussion and Conclusions

ASCS is a hot research topic at present. In this paper, we conducted an in-depth analysis
of ASCS: (1) We outlined the core of the paper, which consists of the current challenges, and
systematized the ASCS based on three dimensions: source code analysis, code summarization
generation algorithms, and the evaluation methodologies used to evaluate them. (2) We
discussed the advantages and limitations of different algorithms, their implementation,
and their evaluation. (3) We summarized the effective evaluation mechanism of ASCS
(automatic evaluation mechanism and human evaluation), and analyzed the recent evaluation
methods. Thus, it can help scholars to choose reasonable assessment criteria for source code
summarization, creating universal validation datasets that are open for future research on
summarization performance.

Furthermore, although scholars have achieved a series of high-quality research results on
ASCS, there are still many possible future research directions that deserve further attention:

• The current research is almost generative or search-based, but combining the two to
generate code summaries is a promising research direction;

• Large-scale language training model will be an inevitable requirement with the in-
creasing daily data. In view of the complex structure and semantic information of
source code, it will be a meaningful research direction to combine the graph neural
network to represent source code in large-scale language training model;

• The CPG [114] is a good multi-feature integrated extraction tool. However, the existing
works can only be applied in C/C++. In the future works, we can use it for many
other programming languages;

• The challenges concluded in the paper are urgent issues to be solved in ASCS. If they
were to be solved, it would greatly enhance the recognition and research significance.
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