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Abstract: Ubiquitous devices in IoT-based environments create a large amount of transactional data
on daily personal behaviors. Releasing these data across various platforms and applications for
data mining can create tremendous opportunities for knowledge-based decision making. However,
solid guarantees on the risk of re-identification are required to make these data broadly available.
Disassociation is a popular method for transactional data anonymization against re-identification
attacks in privacy-preserving data publishing. The anonymization algorithm of disassociation is
performed in parallel, suitable for the asymmetric paralleled data process in IoT where the nodes
have limited computation power and storage space. However, the anonymization algorithm of
disassociation is based on the global recoding mode to achieve transactional data km -anonymization,
which leads to a loss of combinations of items in transactional datasets, thus decreasing the data
quality of the published transactions. To address the issue, we propose a novel vertical partition
strategy in this paper. By employing local suppression and global partition, we first eliminate the
itemsets which violate km-anonymity to construct the first km-anonymous record chunk. Then, by the
processes of itemset creating and reducing, we recombine the globally partitioned items from the first
record chunk to construct remaining km-anonymous record chunks. The experiments illustrate that
our scheme can retain more association between items in the dataset, which improves the utility of
published data.

Keywords: disassociation; km-anonymity; privacy preservation; transactional data publishing

1. Introduction

In the age of IoT, large-scale data on human behavior are generated from the inter-
action between an IoT device and a human or devices that provide simple data, such as
sensing. For example, in smart homes, interaction data can be generated when we monitor
older people’s interactions with their surroundings during activities of daily living for creat-
ing assisted living experiences [1]. Like market basket data, medical treatment records, and
click-stream data, human behavior data are common and usually organized as transactional
data (set-valued data). Publishing and sharing transactional data for statistical analysis,
prediction, or critical decisions in various applications of different areas are pivotal to ad-
vances in knowledge-based services and new scientific discoveries. However, transactional
data often contain detailed information about individuals. If a transactional record in a
dataset is so specific that not many people can match it, there is a chance that, with the help
of background knowledge, an adversary could uniquely identify the victim’s record and
their sensitive information. Recent research [2–4] has demonstrated such re-identification
attacks in movie rating data, credit card data, and spatiotemporal positions. Therefore,
there is an urgent demand for privacy-preserving transactional data publishing.

Data anonymization is the process that modifies the original dataset to impose a level of
privacy on it to protect individuals’ privacy. Disassociation [5], proposed by Terrovitis et al.,
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is a popular anonymization technique developed for transactional data to protect privacy
against re-identification attacks. Terrovitis et al. apply a more flexible privacy principle
of km-anonymity [6], instead of traditional k-anonymity [7], on sparse multidimensional
transactional data due to the curse of high dimensionality [8]. km-anonymity guarantees that
an adversary, who has up to m items as partial knowledge of a record, cannot distinguish
any record from other k-1 records. Furthermore, unlike other common methods, such as
generalization [9] and perturbation [10], disassociation does not replace specific items with
more general ones or add noise to the published dataset; instead, it cuts off the associations
among infrequent items by separating them into different data chunks. Figure 1 shows an
example of disassociation on a transactional dataset. The records in the original dataset
in Figure 1a are first horizontally partitioned to two clusters, T1 and T2, with a maximum
cluster size of five. Then, each cluster is vertically partitioned into several 32-anonymous
record chunks and a term chunk in Figure 1b. The disassociation technique preserves the
frequent items (i.e., gathering together the items satisfying km-anonymity into one record
chunk) for frequent itemset discovery and aggregate analysis while hiding the infrequent
itemsets against privacy breach (i.e., separating items of the itemset violating km-anonymity
into different record chunks or the term chunk). This divide-and-conquer strategy enables
data anonymization available in the IoT-based environment. In the IoT system composed
of one central server and multiple IoT nodes, the clusters generated by horizontal partition
can be asymmetrically allocated to IoT nodes according to the computing power of nodes,
and the nodes perform the vertical partition algorithm on clusters in parallel to achieve
km-anonymous data chunks.
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Figure 1. Example of disassociation. (a) Original transactional data. (b) Disassociated data.

Although data analysts can analyze the disassociated transactional dataset by recon-
structing all possible associations between items of data chunks, it is time-consuming and
hard to realize [11]. Therefore, it is essential to preserve more instances of items in data
chunks to attain more associations between items, which has not yet been discussed by
recent researches related to disassociation. We study the anonymization process in disasso-
ciation for this purpose. The weaknesses of the anonymization process in data utility are as
follows. First, the vertical partition algorithm of disassociation, called VERPART, employs
the global recoding mode [6] to partition items into different data chunks. Specifically, it
checks each item in the original dataset and removes all instances of the item that violates
km-anonymity to construct km-anonymous data chunks, which would lose the accurate
association between the removed items with items reserved in the data chunk. Moreover,
constructing km-anonymous data chunks by checking items one by one in vertical partition
can lead to more information loss because the maximum number of items in a record chunk
cannot be guaranteed due to the random selection of an item when there are more than
one item with the same number of instances in a cluster. We give a detailed analysis on
VERPART in Section 4.

To address the above challenges, this paper aims to design an improved disassociation
scheme to preserve the data quality of anonymized datasets. Our contributions are as follows.
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• We design a novel anonymization scheme for the vertical partition of transactional
data. Our scheme is composed of problematic itemset identification and record
chunk construction.

• Our proposed scheme employs local suppression and global partition to create the
first km-anonymous record chunk for preserving more combinations of items.

• Based on a real transactional dataset, comprehensive experiments are conducted. The
results demonstrate that our scheme can preserve data utility more effectively than
previous work.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the preliminary concepts about disassociation. Section 4 formulates the
problem. We present the details of our anonymization scheme in Section 5. Section 6 shows
the results and analysis of the experiments. Finally, we conclude this paper in Section 7.

2. Related Work

Many research works have been conducted to study the privacy protection techniques
in data life cycle management [12–14]. As one of the research hot spots, the anonymization
techniques are not only widely used to protect personal privacy in data publishing, but
also to protect location privacy in location-based services [15] and personal privacy [16] in
social networks [17]. This section summarizes the anonymization models, methods, and
related algorithms for transactional data publishing.

2.1. On Transactional Data Anonymization

Compared with structured data with the characteristics of the fixed number of attributes
and distinct discrimination of quasi-identifiers and sensitive attributes, transactional data
are high-dimensional, sparse, and lack quasi-identifier attributes. Thus, the anonymization
principles for structured data are not suitable for transactional data anonymization.

In privacy models for transactional data anonymization, complete k-anonymity [9],
km-anonymity, and (h, k, p)-coherence [18] are extensions of k-anonymity. The complete
k-anonymity model requires at least k records with identical items in a dataset to prevent
identity disclosure by the adversary with the knowledge of any combination of items.
Xue et al. [19] propose Gray-TSP, a generalization-based algorithm that maps each transac-
tional record to a bitmap to reduce information loss and meet the complete k-anonymity
principle. An anonymization system named PTA [20] groups similar transactional records
and replaces each group with its centre point to achieve a complete k-anonymity of the
transactional dataset. km-anonymity is more flexible than complete k-anonymity. It re-
quires that any existing combination of up to m items appears at least k times. The Apriori
algorithm [21] uses a bottom-up strategy based on global generalization to enforce km-
anonymity. The local recoding algorithm (LRA) [22] is based on Apriori. It uses hierarchy-
based generalization to enforce km-anonymity, as the vertical partition algorithm (VPA) [22]
does. Loukides et al. [23] present constraint-based anonymization of transactions (COAT)
to specify fine-grained privacy and utility constraints for less distortion on km-anonymous
transactions. A clustering-based anonymizer (CBA) [24] aims to achieve km-anonymity of
the transactional dataset by generalization and suppression so that the predefined utility
policy can be satisfied. Disassociation [5] can be categorized as the bucketization tech-
nique without distinguishing sensitive values from non-sensitive ones. It horizontally
and vertically partitions datasets to non-overlapping groups of km-anonymity and pre-
serves the result accurately. Loukides et al. [25] proposed a disassociation-based approach
to anonymize datasets about diagnosis codes, which can obtain better data quality than
CBA. Complete k- and km-anonymity protect identity information. The (h, k, p)-coherence
model protects the privacy of individuals from sensitive attribute disclosure and identity
disclosure. It requires that any itemset with a length up to p is linked to at least k records
and that the occurrence probability of a sensitive item in the records containing an itemset
of at most p size is not higher than h. An anonymized algorithm, Greedy, is proposed
in [18] to achieve (h, k, p)-coherence of a transactional dataset.
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In contrast to the above models, the ρ-uncertainty model [26] provides privacy protec-
tion from attribute disclosure. It restricts the possibility of an individual correlating with
any sensitive item less than the threshold ρ. Related anonymization techniques include
the global generalization-based algorithm (Suppression control) and suppression-based
algorithms (TD control) in [26], a partial suppression through divide and conquer approach
proposed by Jia et al. [27], and personalized ρm- and (ε, σ)-ρm-uncertainty [28] for relaxed
privacy guarantee of transactional datasets.

The anonymity models that we introduce above are under the uniform assumption
that either the attacker has background knowledge of itemsets with a specific size, or
any item can be the sensitive item to be protected. The assumption is so restrictive that
excessive data transformation occurs. Given that, in reality, only some specific itemsets
can cause the re-identification attack and some specific items are sensitive, researchers
specify fine-grained and flexible privacy requirements. PS-rule-based anonymity [29] is
the general version respecting the above models, where two sets of items, i.e., antecedent
and consequent, contain those that lead to identity disclosure and sensitive information
disclosure, respectively. The itemsets to be anonymized and sensitive items to be protected
are specified by data publishers. The corresponding algorithm RBAT in [29] is better
than the Apriori algorithm [21] in terms of data utility. Tree- and sample-based anonymity
principles [30] are two generalization approaches which use PS-rule protection, and the
latter is more scalable than the former. Privacy-constrained anonymity [31] provides a more
flexible privacy principle. The anonymization algorithm, referred to as UGACLIP in [31], is
only employed to anonymize the itemsets known by an attacker. So, it requires a predictable
notion of the background knowledge of the attacker, which is challenging to obtain.

2.2. On Bucketization Technique

As a primary anonymization technique for privacy-preserving data publishing, buck-
etization partitions datasets into non-overlapped subsets to de-link the relation between
attributes without modifying published data [32]. Anatomy [33] is the first proposed
bucketization technique to protect sensitive information in relational datasets, where quasi-
identifiers and sensitive values are first separated into two tables, and each table is divided
into buckets. Every quasi-identifier bucket is associated with its sensitive value bucket
through one common attribute, the bucket identifier. Wang et al. [34] propose a flexible
and effective bucketization scheme with personalized privacy settings about sensitive
values and different sizes of buckets to get better data quality. Multi-sensitive bucketization
(MSB) [35] discusses the privacy-preserving problem of releasing data with multi-sensitive
attributes. Based on anatomy, Liu et al. [16] design a linear time algorithm for the l-diverse
dataset in the published social graph. A relational data anonymization scheme using
anatomization, called SLPPA [32], performs the table and group divisions to achieve the
(α, β, γ, δ)-privacy requirement. Slicing [36] is another bucketization-based approach
that first vertically partitions attributes into columns and then horizontally divides tuples
into buckets to meet l-diversity. T-closeness slicing is designed in [37] for publishing
transactional data. A hybrid anonymization approach integrating both anatomisation and
slicing is adopted to publish data with multiple sensitive attributes [38]. Disassociation
is a bucketization technique designed for high-dimensional set-valued data anonymiza-
tion. First, the horizontal partition is performed to cluster similar records into one group.
Next, the vertical partition separates each group into non-overlapped subsets satisfying
km-anonymity. Disassociation is used in [25,39] to anonymize electronic health data for
better data inquiry, statistics, and analysis results.

2.3. On Suppression Technique

In the anonymization of sparse multidimensional data, such as transactions or tra-
jectories, the instances of one attribute (one attribute represents an item in transactional
data or a spatial-temporal point in trajectory data) are entirely or partly deleted, by global
or local suppression, to achieve the predefined privacy principle and preserve truthful
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and undeformed instances of attributes. Global suppression, employed in [18,26] for trans-
actional data anonymization and in [40–44] for trajectory data anonymization, can incur
more information loss than local suppression which only deletes the necessary instances
of an attribute. In [27] and [28], improved local suppression algorithms for ρ-uncertainty
anonymity of the transactional datasets are proposed, which can achieve higher data qual-
ity than global suppression [26]. The literature on trajectory data anonymization [42–44]
demonstrates that local suppression can obtain better anonymity gains.

2.4. Summary of Related Work

There are various algorithms for transactional data anonymization. These algorithms
can be categorized according to the attack form, privacy principles, and data transforma-
tion strategy, as shown in Table 1. Techniques based on generalization or perturbation
often modify the attribute values, reducing data utility for analysis [32]. Anatomy [33]
and slicing [36] are often used to anonymize relational data with a fixed number of at-
tributes in anatomization-based techniques, while disassociation is tailored for transactional
data anonymization. In recent disassociation-based works [11,25,39,45–49], some employ
disassociation to anonymize electronic health data [25,39], some consider improving the
horizontal partition algorithm for data quality [11,48], and others focus on the attribute
disclosure risk that the disassociated dataset may suffer from [45–47], where they evaluate
the privacy breach [45] and provide solutions to attribute disclosure [46,47]. These related
works did not consider the information loss caused by the anonymization process (i.e., the
vertical partition algorithm), which is the original intention of the study on disassociation
in this paper. We employ local suppression to construct the first record chunk in the vertical
partition process to preserve more associations between items in a record chunk for higher
data quality.

Table 1. Anonymity models, algorithms, and methods respecting transactional data against identity
and attribute attacks.

Attack Anonymity Model Algorithm Method

Re-identification attack

Complete k-anonymity [9] Gray-TSP [19] Generalization
PTA [20] Generalization

km-anonymity [5]

Apriori [21] Generalization
LRA [22] Generalization
VPA [22] Generalization

Disassociation [5] Anatomization
COAT [23] Generalization and suppression
CBA [24] Generalization and suppression

Privacy constrained
anonymity [31] UGACLIP [31] Generalization and suppression

Attribute linkage
attack

ρ-uncertainty [26]
Suppression control [26] Suppression

TD control [26] Suppression and generalization
Partial suppression [27] Suppression

personalized
ρm-uncertainty [28] SUPPRESSOR [28] Suppression

(ε, σ)−ρm-uncertainty [28] SAMPLESUPPRESSOR [28] Suppression

Re-identification and
attribute linkage attack

(h, k, p)-coherence [18] Greedy [18] Suppression

PS-rule based anonymity [29]
RBAT [29] generalization

Tree-based anonymization [30] generalization
Sample-based anonymization [30] generalization

3. Preliminary Concepts

Let T be a transactional dataset with |T| records t1, t2, . . . , t|T|, D and |D| be the
domain and domain size of all possible items (e.g., purchased items, query terms, etc.) in T.
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A record, ti (1 ≤ i ≤ |T|), associated with a specific individual, is a non-empty subset of D.
For an itemset I ⊆ D, T(I) represents the records containing I in dataset T and the support
of I in T, and S(I,T) is the number of the records containing I in T.

A prior review of certain basic concepts is conducted in this section to clear the main
idea of transactional data anonymization by disassociation.

Definition 1. (Horizontal Partition and Cluster). A horizontal partition creates several subsets of
transactional dataset T, such that every record in T belongs to exactly a subset. A subset of records
is called a cluster. Let there be l clusters T1, T2, . . . , Tl , then ∪ l

i=1Ti = T, and Tl1 ∩ Tl2 = ∅,
where 1 ≤ l1 6= l2 ≤ l.

The horizontal partition is firstly performed to bring together similar records composed
of many common items and a few uncommon ones into one cluster, which achieves the
anonymity guarantee with reduced information loss in the process of vertical partition
on each cluster in the next step, the vertical partition. Moreover, the vertical partition
on each cluster can be carried out independently and even in parallel, which makes the
anonymization efficient.

Definition 2. (Vertical Partition and Chunk). A vertical partition separates a cluster T into several
record chunks C1, C2, . . . , Cn and one term chunk CT . Let D, Di, and DT be the corresponding do-
main of items respecting cluster T, each record chunk Ci(1 ≤ i ≤ n), and the term chunk CT . There
are Dp ∩ Dq ∩ DT = ∅ (1 ≤ p 6= q ≤ n) and D = D1 ∪ D2 . . . ∪ Dn ∪ DT (1 ≤ i ≤ n).
Each record chunk Ci = {t ∩ Di| f or every record t ∈ T} is the collection of records, where dupli-
cate records are allowed and 1 ≤ i ≤ n. The term chunk CT = DT is a set of items.

Note that the number of record chunks is arbitrary (i.e., n ≥ 0), and the term chunk
may be empty. The vertical partition is the core process of anonymization in disassociation,
following the principle of km-anonymity to publish a privacy preservation dataset.

Definition 3. (km-Anonymity). For any itemset I with length up to m in a transactional dataset
T, if the number of records containing I in T is not less than k, i.e., S(I,T) ≥ k, T is said to be a
km-anonymity of the transactional dataset.

Definition 4. (Disassociation for km-anonymous transactional dataset). A published transactional
dataset is a km-anonymity of the disassociated dataset if and only if each record chunk in every cluster
of the dataset, after performing horizontal and vertical partition sequentially, is km-anonymous.

4. Problem Definition

Disassociation is an anonymization technique designed for transactional data. It
employs km-anonymity, a more flexible privacy principle than k-anonymity, to anonymize
data. There have been many research works related to disassociation in recent years.
However, the information loss caused by the anonymity algorithm in disassociation has
never been mentioned in these researches yet. Therefore, it is necessary to carry out the
study on improving the anonymity algorithm for anonymized data quality. For this reason,
we first discuss the information loss caused by VERPART and then introduce our solution
to data in this section.

4.1. Analysis on Vertical Partition
4.1.1. Implementation Process of VERPART

Given a cluster T, D represents the item domain of T. The VERPART algorithm
separates the records of cluster T into chunks by the following steps.

(1) Sort the items in D, in descending order.
(2) Remove the items with less than k instances in T, from D, into the term chunk CT .
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(3) Construct the domain of items Di respecting each record chunk Ci(1 ≤ i ≤ n) by
adding the remaining items in D into Di one by one by descending order, to examine
whether the instances of the new combinations of any up to m items appear at least
k times.

Figure 1b is the result dataset after performing VERPART on each cluster generated
by the horizontal partition of the original dataset in Figure 1a. However, the disassociated
dataset, after the implementation of VERPART, still has deficiencies in data quality.

4.1.2. Data Quality Analysis

We propose two cases in which the algorithm reduces data quality.
Case 1: VERPART cannot guarantee the maximum size of the domain of items respect-

ing each record chunk, which degrades the data quality.
To explain Case 1, we give an example in Figure 2 to show the vertical partition process

on cluster T (Figure 2a) by algorithm VERPART for 22-anonymity. Item f is first moved
into the term chunk because S({ f }, T) = 1 and then items a and e are sequentially put
into the item domain of the first record chunk C1, shown as Figure 2b. Next, one of the
two items c or d can be randomly selected as the candidate due to the same number of
instances in T according to the VERPART algorithm. Suppose that item d is selected to add
into the item domain of C1, the disassociated dataset T′1 is shown as Figure 2c. However, if
item c is selected, the result T′2 is shown as Figure 2d.
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As shown in Figure 2, choosing one item randomly from several candidates with the
same number of instances in a cluster generates different result dataset. The data utilities
of these two datasets are different. The data quality of dataset T′2 in Figure 2d is superior to
T′1 in Figure 2c for fewer items are separated from record chunk C1 in T′2 compared with T′1,
which means more correlations of items are preserved.

Case 2: What is applied in Algorithm VERPART is a global recoding of disassociation
to separate itemsets violating km-anonymity for transaction data anonymization.

For example, consider the records of a cluster T in Figure 3a with k = 2 and m = 2.
Itemset {a, e} is problematic because S({a, e}, T) = 1. To eliminate the problematic itemset
{a, e}, we employ VERPART and achieve the result cluster T′1, as shown as Figure 3b. In
cluster T′1, the accurate associations between item e and the other items in cluster T are
broken, which seriously degrades the accuracy of correlation analysis. Notice that if we
only remove the instance of item a in record r1, shown in Figure 3c, the problematic itemset
{a, e} can be eliminated as well. The remaining itemsets associating item a still keep
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22-anonymity in T′2 in Figure 3c. Intuitively, combining global vertical partition with local
recoding (such as local suppression [43]) helps to improve data utility.
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4.2. Solution Statement

To address the above problems, we present a novel vertical partition scheme based on
the anonymization techniques, i.e., disassociation and local suppression (DLS), to preserve
data utility while protecting the privacy of disassociated data.

Figure 4 shows the whole anonymization framework of our DLS scheme, where each
cluster is anonymized after the horizontal partition and then follows data refining. Our
work mainly focuses on DLS. It performs the following procedures to conserve utility and
privacy of the published data.
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(i) DLS first identifies all itemsets violating km-anonymity in each cluster and employs
local suppression and global partition to eliminate them to construct the first km-
anonymous record chunk and the term chunk.

(ii) Then, DLS recombines the globally partitioned items by enumerating all the itemsets
meeting with km-anonymity requirement and iteratively choosing the itemset with
maximum size based on a greedy strategy as the domain of the new record chunk, to
generate the remaining record chunks.

Definition 5. (Transactional data anonymization by disassociation and local suppression). Given
the transactional dataset T and km-anonymous privacy requirement, the goal of anonymization of
T is to achieve a sanitized version of T by using the DLS scheme such that the published dataset
not only satisfies km-anonymity but also preserves more correlation between original items for
data utility.
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5. DLS Scheme and Algorithms

In this section, we first describe the details of our DLS scheme and then present a set
of algorithms to implement km-anonymous disassociation.

5.1. First Record Chunk Construction

Inspired by the approach proposed in the literature [43], we identify all itemsets
violating km-anonymity and eliminate them by local suppression and global partition, to
create the first record chunk.

5.1.1. Minimal Problematic Itemset Identification

If an adversary, holding the background knowledge of items with a length up to
m, can link the target individual to his record with the one-to-one relationship or high
probability, the adversary has successfully launched an identity linkage attack, and the
privacy breach occurs. Given an itemset I with S(I, T) > 0 in a cluster T, itemset I is
regarded as a problematic itemset respecting km-anonymity requirement if the number of
records containing I in T is less than k.

Definition 6. (Problematic Itemset). Let D be the domain of items respecting a cluster T of a
transactional dataset, and I be a subset of D with S(I, T) > 0. For any I in T, if the number of
records containing I in T is less than the preset threshold k, i.e., S(I, T) < k, I is called a problematic
itemset respecting T.

To achieve transactional data km-anonymization, it is sufficient for us to remove all
problematic itemsets from the dataset. However, it is not feasible to enumerate all possible
problematic itemsets and then eliminate them for the number of problematic itemsets
is huge [40,43]. To that end, we take a much more efficient way similar to work [40,43]
for km-anonymity. We only identify and eliminate those which are not super itemsets
of any problematic itemset, named minimal problematic itemsets. When considering a
problematic itemset I in cluster T, any super itemset of I, denoted by I′, is still problematic
for S(I′, T) ≤ S(I, T) < k. So, identifying and eliminating minimal problematic itemsets is
much more efficient than that of problematic ones.

Definition 7. (Minimal problematic itemset (MPI)). Itemset I is a minimal problematic itemset if
each sub-itemset of I is not a problematic itemset.

We prove that eliminating all MPI respecting a cluster T can guarantee the elimination
of all privacy breach violating km-anonymity.

Theorem 1. A transactional dataset T is said a km-anonymous dataset if there is no MPI in any
cluster T of T.

Proof of Theorem 1. Suppose transactional dataset T is a km-anonymous dataset even if
there is an MPI in a cluster T of T. According to Definition 3 and Definition 4, there exists
at least a record chunk in T such that T must contain problematic itemsets. According to
Definition 7, a problematic itemset either is an MPI or contains an MPI, which stands in
contradiction to the initial assumption. Therefore, T is a km-anonymous dataset. �

5.1.2. Minimal Problematic Itemset Elimination

To eliminate an MPI I(|I| > 1) in cluster T, local suppression is employed to delete
partial instances of items in I from T. The example for Case 2 in Section 3 has shown
the main idea of local suppression, where more original instances of items are preserved
in the cluster. However, the performance of local suppression may generate new MPI,
which leads to expensive computational cost on identifying newly generated MPI and no
guarantee on limited iterations for eliminating MPI [43]. We redefine the notion of valid
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local suppression for transactional data anonymization to avoid generating MPI when
performing local suppression.

Definition 8. (Valid local suppression). Given a cluster T to be km-anonymized, an MPI I
respecting km-anonymity in T, and T(I) the records containing I in T, the item domain of I and
T(I) are denoted as DI and DT(I), respectively, and Tr represents the records in T, except T(I), i.e.,
Tr = T− T(I). For all the non-problematic itemsets I composed of an item v ∈ DI and any other
at most m− 1 items in DT(I) − DI , if the number of any itemset I∗ ∈ I in Tr is equal to 0 or no
less than k, i.e., S(I∗, Tr) = 0 or S(I∗, Tr) ≥ k(∀I∗ ∈ I), MPI I can be eliminated by the valid
local suppression of item v from cluster T, and item v is called a valid item for local suppression
respecting I in cluster T.

We review the example given in Section 3 and Case 2, shown in Figure 3. Since itemset
{a, e} is an MPI with k = 2 and m = 2 respecting cluster T in Figure 3a, we need to
eliminate {a, e}. Items a and e are candidate items to be locally suppressed. Only record r1
contains {a, e} in cluster T, i.e., T(a, e) = {r1}. So, {a, e} can be eliminated by deleting item
a or e in r1. If item a is deleted as shown in Figure 3b, the number of itemsets {a, d} and
{a, f }, both of which initially meet with km-anonymity, will be reduced by 1 in T. To avoid
generating new MPI in T, it is necessary to check the number of the remaining instances
of {a, d} and {a, f }. Note that T({a, d}) = T({a, f }) = 2 in Figure 3b. So, MPI {a, e} can
be eliminated by the valid local suppression of item a from cluster T and item a is a valid
item for local suppression respecting MPI {a, e} in T. However, item e is not a valid item.
The reason is if we delete item e from r1 in T, the number of itemsets {d, e} and {e, f } is
reduced to 1, both of which become new MPI.

If more than one valid item can be locally suppressed when eliminating an MPI I in a
cluster T, choosing a good item v ∈ I for better result is required.

Generally, suppressing item v improves privacy protection and decreases data utility.
To find a good item v for the sub-optimal trade-off between privacy protection and data
utility, we define the function of the anonymity gain metric AG(v, I)T as:

AG(v, I)T =
PG(v, I)T
IL(v, I)T

(1)

where PG(v, I)T is the number of MPI that are eliminated when we eliminate an MPI I by
deleting the item v in I from all records containing I in cluster T (representing the privacy
protection gain), and IL(v, I)T is the number of instances of v in all records containing I
in cluster T (representing the information loss). More PG(v, I)T and less IL(v, I)T achieve
more AG(v, I)T , which leads to a better anonymization effect.

If none of the items in an MPI I is the valid item for local suppression in a cluster T,
we select the item v with the best AG(v, I)T in T and employ the method of item partition
to separate all instances of v from T to eliminate I. Item partition is a global coding method
for anonymization and no new MPI generates after performing of each item partition. Note
that PG(v, I)T here represents the number of MPI that is eliminated by partitioning v from
T and IL(v, I)T , i.e., the number of instances of v in T.

5.2. Remaining Record Chunk Construction
5.2.1. Itemset Creating

Itemset creating generates all itemsets that are item domains of the sets of all possible
km-anonymous sub-records of a cluster. We enumerate all itemsets meeting with the
conditions: (i) each itemset is a subset of globally separated items; (ii) each itemset is a
non-problematic itemset. Specifically, beginning with the itemsets with size i = 2, we
iteratively generate all the itemsets with size i by self-join between itemsets with size i− 1.
Within each iteration, a pruning strategy that deletes the itemsets containing MPI from the
newly generated candidate itemsets with size i is used, according to the apriori property



Symmetry 2022, 14, 472 11 of 22

proposed below, to obtain the item domains of all possible km-anonymous data chunks
with domain size i and take them to create candidate itemsets with size i + 1.

Theorem 2. All the subsets of an itemset do not contain MPI if the itemset is not a problem-
atic itemset in a cluster.

Proof of Theorem 2. Suppose I′, a subset of itemset I contains an MPI Ip, even if the
itemset I is not a problematic itemset in cluster T. (i) When Ip = I ′, we have 0 <
S(I, T) ≤ S(I ′, T) < k. So, I must be a problematic itemset according to Definition 6,
which contradicts the initial assumption. (ii) When Ip ⊂ I, let I∗ = I ′ − Ip, we have
0 < S(I, T) ≤ S(I ′, T) = S

(
Ip ∪ I∗, T

)
≤ min

(
S
(

Ip, T
)
, S(I∗, T)

)
< k for S

(
Ip, T

)
< k. So,

itemset I must be a problematic itemset according to Definition 6, which contradicts the
initial assumption. �

5.2.2. Itemset Reducing

Itemset reducing uses a greedy strategy to generate the item domains of the remaining
record chunks. Specifically, we take all the itemsets obtained in the previous step as the
initial objects to be processed. The specific procedure is as follows:

(1) randomly select an itemset with the maximum size as the current itemset;
(2) delete the items that also exist both in the current itemset and the remaining itemsets;
(3) repeat steps (1) and (2) until the remaining itemsets are all empty;
(4) construct the remaining record chunks by projecting all the current itemsets created

in each iteration, which compose the collection of item domains, to the correspondent
cluster to be anonymized.

5.3. Anonymization Algorithms

We developed a set of algorithms for the design scheme DLS to perform the anonymiza-
tion process. The specific implementation is as follows.

5.3.1. First Record Chunk and Term Chunk Construction

We first identify and eliminate all MPI respecting a cluster to generate the first record
chunk and the term chunk.

1. MPI Identification

MPI identification (MPII) algorithm is detailed in Algorithm 1. In Algorithm 1, Cai,
Ui, and Pi represent all candidate MPI, non-problematic itemsets and MPI with size i,
respectively. The MPII algorithm first puts all items in cluster T into Ca1 (line 1). Then, for
each itemset I in Cai(1 ≤ i ≤ m), the number of I in cluster T is computed. If I satisfies
k-anonymity respecting T, i.e., S(I, T) ≥ k, I is added to Ui for creating Cai+1, the candidate
set of MPI with size i + 1, otherwise, and I is added to Pi (lines 4–13). Next, the candidate
set of MPI with length i + 1, Cai+1 is generated in two steps. First, a self-join of Ui (denoted
as Ui ./ Ui) is conducted (line 15). Second, all the super itemsets of the identified MPI
are deleted from Cai+1 (lines 16–20). The MPII algorithm outputs all MPI P respecting
cluster T.
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Algorithm 1 MPII algorithm.

Input: Cluster T, thresholds k and m
Output: The set of MPI P
1: Ca1 ← all distinct items in T, P1 ← U1 ← ∅ ;
2: I ← 1;
3: while i ≤ m and Cai 6= ∅ do
4: for each itemset I in Cai do
5: Scan T once to compute |S(I, T)|, for any I ∈ T;
6: if |S(I, T)| > 0 then
7: if |S(I, T)| < k then
8: Add I to Pi;
9: else
10: Add I to Ui;
11: end if
12: end if
13: end for
14: i++;
15: Create candidate problematic itemsets Cai by Ui−1 ./ Ui−1;
16: for each itemset I′ ∈ Ci do
17: if I′ is a super set of any itemset in Pi−1 then
18: Remove I′ from Cai;
19: end if
20: end for
21: end while
22: return P = P1 ∪ P2 ∪ . . . ∪ Pm;

2. MPI Elimination

The MPI elimination (MPIE) algorithm is performed to remove all identified MPI P
from cluster T by local suppression and item partition. MPIE algorithm is presented in
Algorithm 2. Firstly, all MPI of length 1 are put into CT to form the term chunk about
cluster T (line 1) and remove them from P (line 2). Then, we update T and its domain
D by removing all instances of items in CT from T and items in CT from D, respectively
(lines 4–5). The updated T and D are, respectively, denoted by D′1 and C′1. Next, Algorithm
3 item_disasso

(
C′1, D′1, P

)
is performed to eliminate all MPI in P by locally suppressing or

globally partitioning items in C′1 and returns D1, the domain of items of the first created
record chunk (line 6). By projecting cluster T to D1, MPIE gets the first record chunk C1
(line 7). Finally, MPIE removes items in D1 from D′1. The remaining items Dr is the item
domain of remaining record chunks (line 8). Algorithm 2 outputs C1, CT , and Dr (line 9).

Algorithm 2 MPIE algorithm.

Input: Cluster T, the MPI set P, thresholds k and m
Output: The first record chunk C1, the term chunk CT respecting cluster T and items Dr excluded
from C1 and CT
1: CT ← ∪ I, where I ∈ P and |I| = 1 ;
2: P← P− CT ;
3: D ← all distinct items in T ;
4: D′1 ← D− DT ;
5: C′1 =

{
D′1 ∩ r

∣∣ f or every r ∈ T ;
6: D1 = item_disasso

(
C′1, D′1, P

)
;

7: Create the first record chunk C1 by projecting T to D1;
8: Dr = D′1 − D1;
9: return C1, CT and Dr;

To construct the first record chunk, Algorithm 3 first puts all MPI into set P′ to retain all
original MPIs of cluster T (line 1). Then, for every MPI IP, Algorithm 3 checks whether there are
effective locally suppressed items in IP by calling Algorithm 4 Check_local_sup

(
v, P′, IP, C′1

)
.
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For any item v ∈ IP, if v can be locally suppressed, Algorithm 3 puts v and IP into VL
(lines 3–7) and calculates the anonymity gain of each item in IP by Formula (1) (line 8).
Next, the item with the highest anonymity gain v′ is selected for eliminating I′P, the MPI
that v′ belongs to (line 11). Algorithm 3 deletes all the instances of v′ in C′1 if v′ and I′p are
not in VL. Otherwise, Algorithm 3 deletes the instances of v′ from the records containing I′P
in C′1 (lines 12–17). Finally, the item domain D′1 respecting records C′1 and the set of MPI P′

are updated (lines 18–20). Algorithm 3 performs the above process iteratively until all MPI
are eliminated. Algorithm 3 returns the item domain D1 of the first record chunk.

Algorithm 3 item_disasso
(
C′1, D′1, P

)
.

1: P′ ← P ;
2: while P′ 6= ∅ do
3: for each IP ∈ P′do
4: for each v ∈ IP do
5: if Check_local_sup

(
v, P′, IP, C′1

)
then

6: VL ← (v, IP) ;
7: end if
8: Calculate AG(v, IP)C′1

by Formula (1);
9: end for
10: end for
11: v′ ← the item with the highest AG;
12: if

(
v′, I′P

)
/∈ VL then

13: Remove all instances of v′ in C′1;
14: D′1 = D′1 r {v′};
15: else
16: Remove instances of v′ from C′1

(
I′P
)
;

17: end if
18: Update P′ by deleting all the eliminated MPI when removal of v′, from P′;
19: end while
20: D1 ← D′1 ;
21: return D1;

Algorithm 4 checks whether an item v ∈ IP can be locally suppressed or not to
eliminate MPI IP, i.e., whether at least a new MPI will be generated after deleting the
instances of item v from the records C′1(IP). According to Definition 8, the items that are
contained in record sets both C′1(IP) and C′1(v)− C′1(IP) are all possible items composing
the new generated candidate MPI. So, they are put into set W (line 1). However, the items in
set P′, which together with item v constitute MPI, are deleted from set W (line 2). Then, for
each new candidate MPI I in candidate MPI set S, the number of I is computed (lines 3–4).
If a new MPI I in S is generated, i.e., 0 < |I| < k, which means item v cannot be a valid
item for local suppression of MPI IP respecting C′1, Algorithm 4 returns false. Otherwise,
Algorithm 4 returns true (lines 5–10).

Algorithm 4 Check_local_sup
(
v, p′, Ip, C′1

)
.

1: W ← distinct item w such that w ∈ C′1(IP) ∧ w ∈
(
C′1(v)− C′1(IP)

)
;

2: Remove all items, except v, in P′(v) from W;
3: S←all possible itemsets containing v with length of at most m generated from W;
4: Scan C′1(v)− C′1(IP) once to compute |I| for each itemset I ∈ S;
5: for each I ∈ S with |I| > 0 do
6: if |I| < k then
7: return false;
8: end if
9: end for
10: return true;
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5.3.2. Remaining Record Chunk Construction

We perform the remaining record chunk construction (RRCC) algorithm to construct
other record chunks about cluster T based on the strategy of itemset creating and reducing.
Note that the domain of items of the remaining record chunks is the globally partitioned
items Dr generated in Algorithm 2.

RRCC algorithm presents the details of constructing remaining record chunks, shown
in Algorithm 5. In Algorithm 5, DC

i represents all non-problematic itemsets with size i,
i.e., all possible i-dimensional item domains respecting remaining record chunks, and the
collection of all DC

i is denoted by DC. We first put the MPI composed of items in Dr into P∗

for the following pruning operation (line 1). Then, we construct the set of 1-dimensional
item domains DC

1 , where each item domain is an itemset composed of every distinct item
in Dr (line 2), and put DC

1 into DC to initialize it (line 3). Then, we create item domains
of i (i > 1) in two steps. In the first step, a self-join of DC

i−1 1 (i > 1) is conducted to
generate candidate i-dimensional item domains DC

i (Line 7). In the second step, according
to Theorem 1, we prune the itemsets from DC

i , which are in P∗ as well (line 8), and merge
the remaining non-problematic itemsets in DC

i into DC (lines 9–11). The above process of
item domain creating is performed iteratively until there is no new created itemset. Next,
the process of item domain reducing is performed as follows. In each iteration (lines 13–22),
we first select the itemset with the maximum size in DC, denoted by Icur (line 14); delete
the items contained in Icur from all the itemsets in DC and the resulting empty sets (lines
15–20); and then save Icur to Dc

r , which represents the set of the item domains of remaining
record chunks (line 21). Finally, we project cluster T to every itemset I in Dc

r to generate the
remaining record chunks and output them (lines 23–24).

Algorithm 5 RRCC algorithm.

Input: Cluster T, all MPI P, item domain of remaining record chunks Dr
Output: Remaining record chunks C2, . . . , Cn o f T
1: P∗ = {I|I ∈ P ∧ d ∈ Dr, f or any item d in an itemset I};
2: DC

1 = DC
1 ∪ {d}, f or any item d ∈ Dr;

3: DC = DC ∪ DC
1 ;

4: i = 1;
5: while

∣∣DC
i

∣∣ > 1 do
6: i ++;
7: DC

i = DC
i−1 ./ DC

i−1;
8: Delete all itemsets in P∗ from DC

i ;
9: if DC

i 6= ∅ then
10: DC = DC ∪ DC

i ;
11: end if
12: end while
13: while DC 6= ∅ do
14: Icur ← the itemset with maximum size in DC ;
15: for each I ∈ DC do
16: I = I − Icur;
17: if I == ∅ then
18: Delete I from DC;
19: end if
20: end for
21: DC

r = DC
r ∪ Icur;

22: end while
23: Generate remaining record chunks C2, . . . , Cn by projecting T to I, for each I ∈ DC

r ;
24: return remaining record chunks C2, . . . , Cn;

6. Experiments

In this section, a series of experiments are conducted to assess our proposed scheme
DLS in terms of privacy preservation and data utility.
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6.1. Experimental Data and Setup

For our experiments, we use a real-world dataset BMS-WebView-1 (referred to as
WV2), detailed in [50], to evaluate the performance of our scheme. WV2 contains click-
stream data from an e-commerce web site over several months. The dataset is one of the
most popular public datasets and commonly used as the benchmark in the data mining
community. WV2 is comprized of 77512 transactions, whose maximum and average size
are 161 and 5.0, respectively, with a domain size of 3340. The experiments are performed on
a machine with Intel (R) Core (TM) i3-3240 CPU @ 3.40 GHz, 4 GB RAM, and the algorithms
are implemented in C++.

We first assess the privacy disclosure risk of the raw dataset under different protection
levels by calculating the proportion of the MPI with variant lengths in the total itemsets with
the same length. Next, to comprehensively study the effectiveness of our anonymization
scheme, we evaluate the effect of parameters k and m on utility loss and implement the
disassociation algorithm in [5] to compare our scheme DLS in data utility. Two utility
metrics, i.e., average itempair number ratio (ANR) and average relative error (ARE), are
employed to evaluate data utility. The query workload used to compute ARE is the queries
of retrieving frequent itemsets in WV2. The top 20% itemsets with length 2 in clusters are
retrieved for simplicity. The default values of k and m are 10 and 2, respectively, unless
specific remark.

6.2. Necessity of Privacy Preservation

We execute the MPII algorithm over clusters to get MPI set by fixing m = 5 and setting
the value of k to 2, 3, 4, 5, 6, and 11. Then, we calculate the proportion of MPI in the same
length itemsets in each cluster, respectively, and average the values. The result is shown in
Figure 5.
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Figure 5 shows that about 75% of all sets of two items appear in one record (k = 2),
which means that adversaries, holding these sets of items, can uniquely re-identify target
individuals. Moreover, over 75% of itempairs are problematic itemsets no matter how
much privacy protection requirement is needed, the proportion of which is more than twice
as those of length 3. There is a small proportion of MPI of length 4 and 5. These can be
used as the prior knowledge of anonymization for parameter settings to achieve better
anonymity gain.

6.3. Data Utility

We first introduce ANR and ARE. Then, we study the effect of k and m on km-
anonymity under the metric ARE. The experiments compare data quality between our
scheme DLS and disassociation (Disa, for short) in [5] in the end.

6.3.1. Measuring Utility

ANR calculates the average ratio of the number of accurate itempairs in each anonymized
cluster to the itemsets of length 2 in the correspondent original cluster. More retained
itempairs improve the query precision of the reconstructed dataset, which brings higher
data utility. ANR is given by

ANR =
∑T∈T

∑rc∈C |Irc |
|IT |

NumT
(2)

where C represents all record chunks generated after anonymizing a cluster T in the original
transactional dataset T; NumT is the number of clusters in T after horizontal partition; and
|Irc| and |IT | are the number of all itemsets with size 2 in a record chunk rc ∈ C and cluster
T, respectively. Note that IT here represents the itempairs composed of items excluding
minimal problematic items in cluster T.

ARE is one of the general metrics to measure data utility. ARE calculates the average
ratio of the number of accurate itempair instances in each anonymized cluster to the itemset
instances of length 2 in the corresponding original cluster. We design a count(*) query Q on
the original and anonymized clusters, where the top 20% frequent itemsets I of length 2 in
each original cluster are selected. ARE is calculated as

AREQ =
∑T∈T

∑I∈I
|T(I)|−∑rc∈C |rc(I)|

|T(I)|
|I|

NumT
(3)

where C represents all record chunks generated after anonymizing a cluster T in the original
transactional dataset T; NumT is the number of clusters in T after horizontal partition; rc is
a record chunk contained in C; and |rc(I)| and |T(I)| are the number of records containing
a top 20% frequent itemset I ∈ I in the anonymized record chunks C and the corresponding
original cluster T, respectively, in the transactional dataset T. Similar to ANR, itemset I is
composed of items excluding minimal problematic items in cluster T.

6.3.2. Results

Figure 6 shows the effects of parameters k and m on utility loss. We first vary the
parameter m from 2 to 5 while fixing k = 10, on the top frequent itemsets with length 2
to assess the effect of m under ARE, as demonstrated in Figure 6a. ARE scores gradually
increase with m. The reason is that with an increase in m, the number of MPI increases too;
thus, more items are locally suppressed or globally partitioned from clusters. As a result,
the number of instances of itemsets is smaller, which causes high ARE. Figure 6b shows the
impact of k on the utility loss while fixing m = 2. When k is small, the ARE is low for all
sets of itempairs because more items in the cluster can be preserved to create candidate
itempairs. As the value of k increases, ARE scores increase and then decrease since, if
the value of k is large, items that can be preserved in the record chunks are all frequent
items, which degrades the number of problematic itempairs. Figure 6a,b also show that
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the top 10% frequent itempairs have the lowest ARE while the top 30% frequent itempairs
have the highest ARE. This is because there are more itempairs violating km-anonymity in
the frequent itempairs when the frequent itempair domain increases, which reduces the
accuracy of the instances of itempairs in the anonymized record chunks.
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Figure 7 presents the results of ANR in terms of parameters k and m, and the frequent
item domain size. On the same conditions in subgraphs of Figure 7, our scheme has higher
proportion of itempairs than Disa, which implies better data quality of our scheme. In
Figure 7a, the average proportion of preserved itempairs in anonymized clusters increases
with the value of k, which indicates that the reduction extent of itempairs in the anonymized
dataset is lower than the original dataset when there is an increase in the value of k. Thus,
the number of items preserved in the record chunks of a cluster declines against k. Figure 7b
shows that the average proportion of itempairs in the anonymized cluster decreases against
parameter m. A larger value of m indicates that more problematic itemsets are generated,
which means that more items are partitioned into different record chunks to meet the
privacy requirement consequently. Figure 7c suggests that the ANRs are constant with
the frequent item domain size. The reason is that all the items in record chunks of the
anonymized clusters belong to the top 30% frequent items.

We test the ARE of our scheme and Disa by varying k, m, the number of frequent
itempairs, and the number of frequent items. Figure 8 shows that our scheme has lower
ARE than Disa. In other words, local suppression has smaller impact on co-appearance of
items than global partition. Increasing k in Figure 8a leads to more minimal problematic
items excluded to the item domain of frequent itemsets, which preserves more frequent
itempairs. As a result, lower ARE is generated. In Figure 8b, we observe that the ARE
improves with m. Increasing m causes more MPI so that more transactional records need
to be anonymized, thus in higher ARE. Then, in Figure 8c, ARE increases gradually with
the number of frequent itemsets to be queried. This is because, with the increase in the
frequent itempair domain, more itempairs violating km-anonymity exist in the frequent
itempairs, which decreases the accuracy of the instances of itempairs to be queried in the
anonymized record chunks. Finally, the ARE, as presented in Figure 8d, is invariant with
the frequent item domain size. All the items composing item domain of record chunks are
the top 30% frequent items, so the number of all instances of itempairs is invariable.
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6.4. Summary

We compare our improved scheme DLS with the disassociation method Disa in terms
of the data utility of published data in the experiment. From experimental results, our
scheme can retain more itempairs (measured by ANR) and itempair instances (measured
by are) than Disa. Specifically, DLS preserves 1.8 times the number of itempairs as Disa
on average in Figure 7. Figure 8 shows that the ARE scores of DLS are, on average,
31.04 percent better than Disa. This indicates that local suppression employed by DLS can
retain items initially partitioned from the first record chunk in Disa at the cost of deleting
some instances of items in the first record chunk. So, there are more itempairs and itempair
instances in the anonymized record chunks. Our scheme reduces the support for itempairs
but does not completely eliminate them.

7. Conclusions and Future Work

Disassociation overcomes the limitation of loading the whole dataset into a single task
node to perform data anonymization while providing an efficient way for data anonymiza-
tion in which multiple nodes undertake computing tasks in parallel. To preserve more
valuable information, we improve the vertical partition algorithm of disassociation in this
paper. We design and implement the related anonymization scheme DLS, which employs
both local suppression and global partition to remove rare items or items that participate
in rare combinations while preserving more combinations of original items to reduce the
information loss of published datasets. The experimental results demonstrate that our
scheme can improve the data quality of the anonymized transactional dataset.

This paper proposes an improved scheme to realize the vertical partition process for
preserving more combinations of items as well as personal privacy. Our scheme can be
applied to other scenarios for the protection of privacy information, such as personalized
privacy preservation [51] and the scenario of releasing data with attributes of multiple
types (e.g., the data contains both transactions and demographics) [52].

The proposed scheme is limited in the following aspects. First, it is hard to set the value
of parameters k and m to achieve the “best” disassociated datasets, i.e., the “best” trade-off
between privacy protection and data quality. Second, our scheme is based on disassociation,
so the data quality of our disassociated dataset is also affected by the horizontal partition
process of disassociation. The reason is that the horizontal partition clusters the records
by using a naive similarity function without considering the associations of items in the
dataset. Moreover, the disassociated dataset may be subject to privacy breaches if there is a
cover problem in the record chunks. The cover problem occurs when there are one or more
items in a record chunk where each of the records containing the items in the record chunk
is identical with the domain of the record chunk.

In future work, we intend to employ utility constraints in the process of horizontal
partition. The predefined utility constraint set contains specific itemsets satisfying intended
analysis requirements, which can limit the amount of data disassociation. Moreover, the
related algorithm needs to be considered as well. The other future research is evaluating
privacy breaches in the disassociated dataset. We need to redefine the cover problem to
evaluate the privacy breach in our anonymized datasets due to the difference between our
DLS scheme and disassociation.
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