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Abstract: We employ the extended Nambu-Jona-Lasinio (NJL), linear-σ models, and the density-
dependent model with chiral limits to work out the mean fields and relevant properties of nuclear
matter. To have the constraint from the data, we re-examine the Dirac optical potentials and symmetry
potential based on the relativistic impulse approximation (RIA). Unlike the extended NJL and the
density-dependent models with the chiral limit in terms of the vanishing scalar density, the extended
linear-σ model with a sluggish changing scalar field loses the chiral limit at the high-density end.
The various scalar fields can characterize the different Schrödinger-equivalent potentials and kinetic
symmetry energy in the whole density region and the symmetry potential in the intermediate density
region. The drop in the scalar field due to the chiral restoration results in a clear rise of the kinetic
symmetry energy. The chiral limit in the models gives rise to the softening of the symmetry potential
and thereof the symmetry energy at high densities.

Keywords: nuclear potentials; symmetry energy; chiral symmetry; relativistic mean-field theory

1. Introduction

Besides the development of the various many-body theories based on the boson
exchanges in the quantum field theory, e.g., see Ref. [1], the gauge invariance is regarded
to be important to construct the model for strong interacting systems. However, the zero-
mass gauge bosons are required by the gauge invariance, which becomes a puzzle of
the Yang–Mills fields when applying to the realistic interacting systems. The success
of the Bardeen–Cooper–Schrieffer theory for superconducting electrons [2] brings the
enlightenment that the ground state or vacuum of the interacting systems is not necessary
to respect the gauge symmetry. The symmetry invariant models can possess charges, the
temporal component of the currents, that break the vacuum (the vacuum is not annihilated
by the charge). By early 1960s, it comes to a surge of such model constructions. The typical
models are the linear-σ [3,4] and Nambu–Jona–Lasinio (NJL) [5] models where the order
parameters for the chiral symmetry are the scalar condensate <ψ̄ψ> or the scalar field σ.
In these models, the potentials are characteristic of the field term of the fourth power that
ensures a double-well potential, and the chiral parter is the so-called Nambu–Goldstone
boson, the pion that is the fundamental and unique boson in the effective field theory [6].
These models provide some clue to the solution of zero-mass puzzle of the Yang–Mills
fields. It is interesting to note that Schwinger has the view that the gauge boson does not
necessarily have zero mass for the special vacuum [7], and soon later Anderson adds that
the gauge boson and Nambu–Golstone boson can cancel each other to leave the finite mass
boson only [8]. These are, in fact, the looming prelude for the Higgs mechanism. This is
seemly digressive but, instead, restates the importance of the vacuum. Since the original
linear-σ and NJL models fail to fit nuclear matter saturation, a dozen of extended models
have been developed to fit nuclear matter saturation and properties of finite nuclei [9–20].
In addition, the chiral symmetry can also be manifest by virtue of the vector channel in the
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hidden local symmetry [21]. The example of such a vector manifestation of chiral symmetry
is the model based on the Brown–Rho (BR) scaling [22–24]. In this work, we single out three
models from these categories that feature the partial restoration of the chiral symmetry
in nuclear matter to expose the role of the chiral symmetry in the nuclear and symmetry
potentials relevant to the symmetry energy in the relativistic impulse approximation (RIA).
Though the chiral symmetry plays a fundamental role in the strong interaction systems,
it has various realizations and forms in various chiral models where the scalar field (or
equivalently, the chiral condensate) is taken as the order parameter of the chiral symmetry.
In this work, we thus aim to check the specific or common in-medium characteristics of the
scalar field in a variety of the chiral models and their effects on nuclear potentials. Here,
we should mention that the scalar field, related to the scalar density, plays an imperative
role in obtaining the optical potentials in the RIA. Note that the chiral effective field theory
(EFT) is another kind of the chiral model based on the nonlinear realization of the chiral
symmetry and has achieved the quantitative successes in the low-energy non-perturbative
hadron physics in past decades. Since no dynamics of the scalar field is given by the chiral
EFT [25], we do not include the chiral EFT in our work that also involves the energy region
beyond the validity of the chiral EFT.

Recently, the uncertainty of the symmetry energy has been again a hot issue, since
the accurate measurement of 208Pb neutron skin thickness (0.283 ± 0.071 fm) through
the weak-interaction electron scattering gives a large span of the symmetry energy slope
L = 106± 37 MeV [26,27]. At the same time, a large span of the 42 < L < 117 MeV is
deduced from the spectra of charged pions [28]. These results seem to shake off the previous
constraints on the symmetry energy. In the past, the globally average of 28 independent
analyses of various data has led to the value of L = 59± 16 MeV [29]. With inclusion of
the lower ranges either extracted from data [30,31] or obtained from the ab initio results of
neutron matter [32], an average of the L values gives a larger range of 58.7± 28.1 MeV [33].
In addition, the measurement of electron dipole polarizability in finite nuclei even gives a
lower limit of 20 < L < 66 MeV [34]. The rising uncertainty of the symmetry energy and
the inconsistency in different extractions pose the challenge and meantime the opportunity
to study the symmetry energy from multiple angles. We aim to seek a possible hint and/or
constraint on the symmetry energy by revisiting the ingredients of the symmetry energy
in terms of nuclear potentials in the relativistic chiral models that in general exhibit the
broken vacuum, associated tightly with the symmetry energy through the scalar potential.

We will be interested in the RIA that combines the Dirac decomposition of scattering
amplitudes with the nuclear scalar and vector densities. The direct combination with the
scattering data ensures the simplification in the analysis of tangled factors in the strong
interaction. It is known that the optical potentials obtained from the RIA can reproduce
the analyzing power and spin-rotation parameter in proton-nucleus (pA) scatterings suc-
cessfully [35–37], in stark contrast with the standard nonrelativistic optical models [38,39].
In the past, the RIA has also been used to study the symmetry potentials [40–43] and in-
medium nucleon-nucleon (NN) cross sections [44,45]. In this work, we study the effects of
the chiral symmetry on the symmetry potential in the RIA. The chiral models will be solved
in the mean-field approximation, and also present the result with the usual relativistic
mean-field (RMF) model for comparison.

The remaining of the paper is organized as follows. In Section 2, we briefly introduce
a few typical chiral models and the RIA. Results and discussions are presented in Section 3.
A brief summary is given in Section 4.

2. Brief Formalism
2.1. Models with Chiral Symmetry

The chiral symmetry plays very important roles in the strong interaction systems.
In the quantum chromodynamics (QCD), the chiral symmetry is cooperated by the gauge
symmetry to resolve the axial anomaly and then point to the more fundamental structure of
quarks and leptons [46,47]. The chiral symmetry also seems to be a probe to the composite
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structure of hadrons, which is manifest in the NJL model. In particular, the chiral phase
transition would generally coincide with the color deconfinement [48].

As for nuclear physics with the broken chiral symmetry, our attention is on the
order parameter (the non-vanishing vacuum of the scalar field or condensate) in chiral
models that brings the effects on nuclear potentials, as mentioned in the Introduction.
In the following, we interpret simply the extended NJL, linear-σ models and the density-
dependent model with chiral limits that are used in this work. The extended NJL model
includes the additional interaction terms with the scalar-vector, scalar-isovector couplings
(GSV , GρS) to fit the saturation and density dependence of the symmetry energy. Here,
the additional terms are given by [20,45,49]

Lint =
GSV

2
[(ψ̄ψ)2 − (ψ̄γ5τψ)2][(ψ̄γµψ)2 +

(ψ̄γµγ5ψ)2] +
GρS

2
[(ψ̄γµτψ)2 + (ψ̄γµγ5τψ)2]× (1)

[(ψ̄ψ)2 − (ψ̄γ5τψ)2].

In the mean-field approximation, the gap equation reads

M∗ = m0 − (GS + GSVρ2
B + GρSρ2

3) < ψ̄ψ >, (2)

where GS is the scalar coupling, and m0 is the bare nucleon mass which is determined by
the Gell-Mann-Oakes-Reinner relation on the hadron level [20].

The linear-σ model with additional scalar-vector coupling can have the saturation that
leads to a stiff equation of state (EOS) with a very large incompressibility [9]. Among a large
collection of extended models, we choose the one with the following potential obtained
from the QCD lattice calculation in the strong coupling limit (SCL) [16]

VSCL(σ) =
1
2

Bσσ2 − Aσ log σ2 − Cσσ, (3)

where the coefficients Aσ = f 2
π(m2

σ −m2
π)/4, Bσ = (m2

σ + m2
π)/2, and Cσ = fπm2

π . The po-
tential is symmetric about the axis σ = 0 with the minimum of the potential at σ = fπ .
The potential in Equation (3), instead of the original potential in the fourth power of the σ,
avoids the bifurcation that leads to chiral collapse at the lower chiral condensate. Note that
the similar log σ2 term also appears in a scheme that includes the coupling to the field of
the glueball [10].

The density-dependent models with the chiral limit are similar to the simple Walecka
model and the density-dependent parameters are based on the BR scaling [22–24]. The mean-
field potential energy is given by [50]

V =
1
2

m∗2ω ω2
0 +

1
2

m∗2ρ b2
0 +

1
2

m∗2σ σ2, (4)

where the asterisk on the meson mass denotes the density dependence according to the
BR scaling [23,24]. The parametrization SLCd used in this work, detailed in Ref. [24],
is characterized by the density dependent hadron masses and meson-nucleon coupling
constants and respects the chiral limit in terms of the vanishing scalar density and nucleon
effective mass at high densities. For usual RMF models, we choose the parametrization
FSUGold that contains the nonlinear self-interactions of the σ and ω mesons [51].

2.2. Relativistic Impulse Approximation

In the pA scattering, the scattering process can be approximately treated as the incident
proton scattered by each of the nucleons of the target nucleus, regardless of the impact of
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the incident particle on the mean fields. The Dirac optical potential in the RIA is given in a
familiar form [35,36]:

Uopt = −
4πiplab

M
[FSρS + γ0FVρB], (5)

where the forward NN elastic scattering amplitudes FS and FV are determined directly from
the experimental NN phase shifts [52]. The RIA optical potential was used to reproduce the
pA elastic scattering data at the incident energies above 400 MeV successfully [37]. ρS and
ρB are the spatial scalar and vector densities of infinite nuclear matter,

ρS,i =
∫ kFi

0

d3k
(2π)3

M∗√
M∗2 + k2

,

ρB,i =
k3

Fi
3π2 , i = n, p. (6)

The scalar density with various models given in the above can give the distinct
difference at high densities, as shown in Figure 1. This will give rise to subsequent effects on
the optical potentials and relevant quantities. The Dirac optical potential can be expressed
in terms of scalar and vector optical potentials

Uopt = Utot
S + γ0Utot

0 ,

Utot
S = US + iWS, Utot

0 = U0 + iW0, (7)

where US, WS, U0 and W0 are real scalar, imaginary scalar, real vector and imaginary vector
optical potentials, respectively. Note that these potentials are obtained from the nucleon-
nucleon scattering amplitudes, since the Dirac potentials in the RMF models do not have
the imaginary part.
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Figure 1. The proton and neutr on scalar densities as a function of density in the NJL350, SCL, SLCd,
and FSUGold models in symmetric matter.

One can recombine the terms in the relativistic dispersion relation (Ek −Utot
0 )2 = k2 +

(M +Utot
S )2 into a non-relativistic form k2

∞/2M = k2/2M +Utot
sep, where Ek = Ekin + M =√

k2
∞ + M2 with Ekin being the kinetic energy, and the Schrödinger-equivalent potential

(SEP) Utot
sep is given by [44]

Utot
sep = Utot

S + Utot
0 +

Utot
S

2 −Utot
0

2

2M
+

Utot
0 Ekin

M
, (8)
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where Utot
sep = Usep + iWsep. With the SEP, the symmetry potential is written as

Usym =
Un

sep −Up
sep

2δ
, (9)

with δ = (ρn − ρp)/ρB being the isospin asymmetry parameter. The Usym is also known as
the Lane potential [53].

3. Results and Discussions

The models to be used are the extended NJL model (NJL350) with a momentum
cutoff 350 MeV [20,45,49], SLCd that is a density-dependent relativistic model with chiral
limit [24,54], the extended linear-σ model in the strong coupling limit (denoted by SCL) [16],
and the RMF model FSUGold [51]. The RMF model FSUGold can reproduce the properties
of finite nuclei well [51], while it produces the maximum mass of neutron stars below the
2M� constraint. The SLCd can simultaneously reproduce the properties of finite nuclei [24]
and neutron star properties with and without hyperonization [55]. In addition, the neutron
star deformability obtained with the SLCd fits the data fairly well [50]. The progress to
describe the properties of finite nuclei and neutron stars is also made with the SCL [16,56].
The NJL model, developed to have the saturation property, is used to constrain the symme-
try energy and describe the properties of neutron stars including the glitches of the Vela
pulsar [20,49]. In Table 1, we tabulate some properties of saturation, symmetry energy and
neutron stars with these four models.

Table 1. Properties given by the various models. Tabulated from left to right are, in turn, the incom-
pressibility, saturation density, symmetry energy and its slope parameter at saturation density, and
the maximum mass and corresponding radius of neutron stars.

Models κ (MeV) ρ0 (fm−3) Esym (MeV) L (MeV) Mmax (M�) R (km)

FSUGold 230 0.145 32.59 60.5 1.72 10.86

NJL350 262 0.160 37.70 88.3 2.85 13.05

SCL 279 0.145 34.76 97.5 1.92 11.53

SLCd 230 0.160 31.60 61.5 2.02 9.19

Figure 2 shows the scalar and vector fields for these models in the mean-field approx-
imation. As shown in Figure 2, the scalar field with various models can group into two
categories: one of which (NJL350 and SLCd) has a fast dropping in the medium, while the
other (SCL and FSUGold) has a sluggish decrease. For the chiral models or models with
the chiral limit, the scalar field plays a role of the order parameter that reflects the breaking
vacuum and probes the chiral restoration in the medium. For the NJL model, the scalar
field is, in fact, equivalent to the scalar condensate <ψ̄ψ>. A clear decrease of the scalar field
with the NJL350 and SLCd indicates that these two models have the chiral limit in terms
of the vanishing of the scalar field or scalar density (see Figure 1). The in-medium scalar
field with the SCL behaves like that of the RMF model FSUGold, which means that the
SCL that respects the chiral symmetry at the vacuum degenerates into a usual RMF model
in the medium. As a result, the SCL is not able to restore the chiral symmetry in dense
matter even at the sufficiently high density. This is also true for other extended linear-σ
models, as it is not able to bring the scalar field down to vanishing in the medium [16].
The slowly varying scalar field also provides considerable attraction that softens the EOS at
high density. Together with rather soft vector potential, the SCL and FSUGold are not able
to meet the 2M� constraint of neutron stars. The situation with the NJL350 and SLCd is
quite different by owning the stiff EOS’s at high densities and fitting the 2M� constraint of
neutron stars [20,50,55].
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Figure 2. The scalar and vector fields in symmetric matter. The scalar field is redefined for models
SLCd and FSUGold as fπ − σ.

The scalar field that dictates the nucleon effective mass changes the kinetic symmetry
energy (the kinetic part of the symmetry energy) which in the relativistic formulation is
Tsym = k2

F/6EF with EF being the Fermi energy. The decreasing nucleon effective mass in
dense matter increases the Tsym clearly. As shown in Figure 3, the difference in the kinetic
symmetry energy develops beyond saturation density, and it is the most appreciable for
the NJL350. With the increase in density, the kinetic symmetry energy with the SLCd
comes closer to that with the NJL350 because of the chiral limit of the SLCd. This is a
direct evidence that the (partial) restoration of the chiral symmetry has a characteristic
contribution to the symmetry energy, which stiffens the kinetic symmetry energy.

0.0 0.2 0.4 0.6 0.8 1.0
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90

T s
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 NJL350
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 SLCd
 FSUGold
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Figure 3. The kinetic symmetry energy as a function of density with various models.

Within the framework of the RIA, the nucleon SEP is derived as in Equation (8).
Figure 4 shows the nucleon SEP of symmetric matter with increasing the density at the
two given kinetic energies Ekin = 500 and 800 MeV, which are two typical energies within
the RIA valid region to fit the data of the pA scattering [37]. The attribution of the difference
in various curves is similar to that in Figure 3 due to the different scalar density. As shown
in Figure 4, the concrete content of the chiral restoration, such as that reflected by the
departure in the NJL350 and SLCd, decides the density dependent behavior of the SEP.
With the increase in density, the SEP with the SLCd approaches that with NJL350 due to
the increasing eclipse of the nucleon mass. For the models SCL and FSUGold that have a
sluggish descent of the nucleon mass, the SEP stays away from those with the models that
own the chiral limit. Note that the RIA may not work as well at high densities, and the SEP
at the high density end would just be referential.
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Figure 4. The SEP as a function of density at the kinetic energy 500 and 800 MeV.

With Equation (9), we can carry out the symmetry potential as functions of the density
or kinetic energy. The symmetry potential is tightly related to the potential part of the
symmetry energy [43,57]. Figure 5 shows the symmetry potential based on various models
at Ekin = 500 and 800 MeV. Let us first focus on the result at Ekin = 500 MeV. We see
again that the effect of the chiral restoration at the intermediate densities (by the NJL350)
gives a very clear rise in the symmetry potential. As shown in the upper panel of Figure 5,
the symmetry potential bends downwards at high densities, which occurs coincidentally in
the models NJL350 and SLCd which share the chiral limit. As inferred from Figures 3 and 5,
the symmetry energy appears to be stiffer around saturation density with a larger slope
parameter L for the chiral model which owns the chiral limit. It should be pointed out
that the symmetry potential at high densities does not follow in a homeomorphic way
the difference in the scalar density as those in Figures 3 and 4. At high densities, there
are trespassing between the symmetry potential curves that are subject to the different
scalar densities or nucleon effective masses. The reason for this lies in the fact that the
variation of the nucleon effective mass against the isospin asymmetry δ can be alternating
in various regions of the nucleon effective mass, yielding the disorder in the SEP and
symmetry potential for the nonzero isospin asymmetry. Such a disorder also appears in
the higher density region (ρB > 0.6 fm−3) for the case of Ekin = 800 MeV. The difference
between the lower and upper panels of Figure 5 in the depicted density region is attributed
to the energy dependence of the NN scattering amplitudes. In particular, the RIA results
with Ekin = 800 MeV actually include some contributions of the inelastic nucleon-nucleon
scattering [45].
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Figure 5. The symmetry potential as a function of density at kinetic energy Ekin = 500 and 800 MeV.

Note that the symmetry potential obtained with the models SCL and FSUGold is
similar and also close at high densities, as shown in Figure 5. This is due to the fact that
two models have similar nucleon scalar density (or, the nucleon effective mass). In the
early time when the non-linear terms of the σ-meson self-interactions are introduced, it is
known that the sign of the coefficient of the quartic term in non-linear RMF models is
opposite to that of the models with the Mexican-hat potential. The situation has changed
in the RMF models by including the non-linear ω self-interaction, which is the case of
the FSUGold. The resembling model facet makes, at least partially, of the similarity in
the symmetry potentials of the models SCL and FSUGold. It is also shown in Figure 5
that the symmetry potential obtained from various models overlaps around and below
saturation density. The similar situation also occurs in the SEP (Usep), shown in Figure 4.
In the local density approximation, these optical potentials can, in principle, be translated
into those for describing the high-energy proton-nucleus scattering, as the success of the
RIA at high energies over that of the non-relativistic one is characterized by the spin
dynamics specific in the RMF models [35–37]. The reasonable incompressibility in the
current models, compared to the stiff one in the Walecka model, is important to produce the
correct spin–orbit splitting of finite nuclei, which would lead to a better data fit in the RIA.

At last, it is necessary to explain the relation between the symmetry potential in
the RIA and the symmetry energy. According to the thermodynamic consistency in non-
relativistic models, the symmetry energy is given as Esym = k2

F/6m∗N + Usym/2 [57], where
m∗N = m∗k m∗E/M with m∗k and m∗E being the k-mass and E-mass, respectively. Since there
is no momentum dependence of the potentials in the RIA (m∗k = M), the E-mass alone
is not able to give the quantitative symmetry energy based on the SEP. If one uses the
relativistic kinetic symmetry energy Tsym instead of the non-relativistic one, the Usep has to
be supplemented with additional terms [58]. Since the additional terms are not given by
the RMF model itself, it is not straightforward to calculate the symmetry energy based on
the symmetry potential in the RIA. Nevertheless, the chiral models with faster dropping
of the nucleon effective mass bring the symmetry potential up in a certain large density
span as shown in Figure 5, leading to the stiffening of the symmetry energy. This trend is
roughly consistent with that in Table 1 by connecting the relative difference in the slope of
the symmetry energy to the dropping of the nucleon effective mass in various models.
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4. Summary

The chiral symmetry and its breaking define the vacuum and the Goldstone particles,
the pion mesons, for the non-perturbative strong interaction system and can add restrictions
on the nuclear potentials in the medium. We have revisited the extended NJL and linear-σ
models which have a nonzero order parameter, the scalar field or the chiral condensate
that plays an important role in the properties of bulk matter. Together with the usual RMF
model and the density-dependent model with the chiral limit, we have made a comparative
study on the nuclear potentials that are relevant to the symmetry energy. It is found that the
chiral limit in whatever models, chiral or not, ensures a significant reduction of the scalar
field and consequently the stiffening of the EOS. Such a stiffening due to the chiral limit is
also observed in the Schrödinger-equivalent potentials and the kinetic symmetry energy.
In addition, we find that the models with the chiral limit bring the coincident softening of
the symmetry potential at high densities, which suggests the softening of the symmetry
energy at high densities. On the contrary, the sluggish descent of the scalar field makes the
extended linear-σ model to be absent from the chiral limit in the finite density region and
accordingly degenerate into the usual RMF model at high densities.
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