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Abstract: The chemistry community has long sought the exact relationship between the conventional
and the unitary coupled cluster ansatz for a single-reference system, especially given the interest
in performing quantum chemistry on quantum computers. In this work, we show how one can
use the operator manipulations given by the exponential disentangling identity and the Hadamard
lemma to relate the factorized form of the unitary coupled-cluster approximation to a factorized form
of the conventional coupled cluster approximation (the factorized form is required, because some
amplitudes are operator-valued and do not commute with other terms). By employing the Trotter
product formula, one can then relate the factorized form to the standard form of the unitary coupled
cluster ansatz. The operator dependence of the factorized form of the coupled cluster approximation
can also be removed at the expense of requiring even more higher-rank operators, finally yielding the
conventional coupled cluster. The algebraic manipulations of this approach are daunting to carry out
by hand, but can be automated on a computer for small enough systems.

Keywords: coupled cluster; unitary coupled cluster; quantum chemistry; exponential disentangling

1. Introduction

The coupled cluster (CC) approach [1] is regarded as the gold standard for quantum
chemistry, especially as it is applied to weakly correlated molecular systems. In this work,
we will focus entirely on a single-reference CC ansatz, where a series of operators are
applied to a reference state, which is a product state of Ne occupied spin-orbitals, such
as given by a Hartree–Fock calculation. There are a number of innovative keys to the
CC approximation in quantum chemistry. First, it provides a low-rank representation
of a many-body quantum state that is size-consistent for closed-shell fragments (unlike
many configuration interaction approximations), meaning it reduces to the closed shell
atomic systems when the molecule is pulled apart by stretching. Second, it is size extensive,
implying it has a linked-cluster-like expansion in terms of diagrams, so it scales the energy
properly in the thermodynamic limit. Third, it is extremely efficient in its computational
algorithm, because it never works with the explicit wavefunction. It instead uses a similar-
ity transformation of the Hamiltonian, calculated via the Hadamard lemma (also called
the Baker–Campbell–Hausdorff formula), which truncates at the fourth order term in the
expansion (because the Hamiltonian has at most four fermionic operators in each term).
This allows the algorithm to work solely with the CC amplitudes, rather than with the wave-
function. As a result, the implementation of this approach, while complicated, is extremely
efficient. One drawback of the CC approach is that it is not a variational calculation and it
often fails when correlations become too strong. The unitary variant of the coupled cluster
approximation (called unitary coupled cluster, abbreviated to UCC) is also a low-rank
representation of the wavefunction that is size consistent and size extensive, but because
one must perform a variational calculation using the full wavefunction, calculations with
UCC are significantly (exponentially) less efficient than their CC counterparts on conven-
tional computers. Yet, because quantum computers work most efficiently with unitary
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operations, the UCC ansatz is the only approach that can be practically implemented on a
quantum computer.

Ever since the UCC was introduced [2,3], people have wondered what the exact
relationship between it and the conventional CC approximation is. While no precise
relationship has been found, Paldus and collaborators performed an interesting analysis
based on group theory representations [4] and work on model Hamiltonians explicitly
showed that the two ansatzes are definitely different [5]. In the mean time, quantum
computing algorithms were found to implement the UCC in a factorized form [6–9],
sometimes called a product form of the UCC, or the single-step of a Trotter product
formula for the ansatz (more details will be given below). In this factorized form, which
is similar to the form used to solve the anti-Hermitan Schrödinger equation [6], one can
show that the excitation and de-excitation operator, of arbitrary rank, have a “hidden”
SU(2) symmetry [9–11], which has been employed to find an exact operator analogue of
the Euler formula for complex exponentials. This hidden SU(2) symmetry also allows
one to use the so-called exponential disentangling identities [12], which we will re-derive
below in the context of the factorized form of UCC. This disentangling identity separates
the excitation part of the UCC term from the de-excitation part. Once this has been
accomplished for each UCC factor, we simply need to re-order the exponential terms, by
using the Hadamard lemma, to move all excitation operators to the left; the corresponding
de-excitation operators will annihilate against the reference state. In the process, we
will also generate mixed terms, which no longer separate into pure excitations and de-
excitations, but create terms that mix the two. Many of the mixed terms also annihilate
against the reference state. This then produces the equivalent CC approximation—but
with a specific difference—as some of the amplitudes are operator-valued, implying that
they have different coefficients for different determinants, and are therefore not in the
traditional CC form. Another key observation is that a low-rank UCC ansatz in factorized
form will not typically map to a low-rank CC approximation—this shows that while there
is an equivalence between the factorized form of the two ansatzes, restricting to low-rank
approximations for one will produce different ansatzes for the other. In addition, some
of the amplitudes in the mapping to the CC form have factors in them that are functions
of number operators as exponents. These terms show that the two expressions are not
completely equivalent, unless only one exponent of that operator expression is present
in the CC ansatz. However, we have a counterexample, showing that generically, CC
amplitudes will be operator-valued in the equivalent formula. To relate this ansatz to the
traditional UCC requires simply applying the Trotter product formula and taking the limit
as the number of steps goes to infinity; but because of the operator-valued CC amplitudes,
we require further steps to relate the results to the traditional CC ansatz. We choose the
appropriate exponent for the operator-valued term when it acts on the reference, and we
use higher-rank CC terms to correct the remaining terms that are represented improperly.
At that point, we have related the traditional UCC to the traditional CC.

There is significant work needed to carry out this approach in order to determine the
operator equivalence and it rapidly becomes impossible to work results out analytically. Be-
cause of the complexity of the methodology discussed here, carrying out these approaches
requires significant algebraic manipulations, which will be best handled by using computer-
based algebraic manipulations. Implementing such a scheme is beyond this work. We
will also describe a concrete algorithm, similar to the so-called elimination algorithm [9],
which will allow one to directly relate the two ansatzes as well. However, it does so by
constructing the calculated UCC wavefunction using the conventional CC approach.

2. Formalism and Analysis of the Hidden Symmetry

In this section, we will provide technical descriptions of the CC, UCC, and factorized
form of the UCC approximations. We will then explore the hidden symmetry and derive
the operator identities that emerge from this symmetry. We will then use these identities
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to create a fully disentangled operator identity, which then will be re-ordered using the
Hadamard lemma.

We employ a second-quantized formalism to work with these systems. We typically
use the spin orbitals of a Hartree–Fock (HF) approximation (although this is not a require-
ment) as the basis for the second-quantized operators. The creation (and annihilation)
operators are denoted â†

i (âi ) for the Ne filled (or real) spin-orbitals and â†
a (âa) for the

unoccupied (or virtual) spin-orbitals. The indices i, j, k · · · , chosen from the middle of
the alphabet, denote the orbitals occupied in the reference state |Ψ0〉 = ∏Ne

i=1 â†
i |0〉, where

|0〉 is the vacuum state, annihilated by all annihilation operators. The indices a, b, c · · · ,
chosen from the beginning of the alphabet, denote the unoccupied orbitals to be used in
the calculation. For both the occupied and unoccupied spin-orbitals we choose a specific
ordering scheme for the indices that refer to each orbital. We will not discuss how the
spin-orbitals are chosen in this work. In chemical calculations the single reference is often
an unrestricted or restricted Hartree–Fock state. The difference between these two plays no
role in the formal developments of this work, so we do not discuss this issue further. All
we require is the product-state form of the reference state.

A rank-n CC excitation operator is of the form

â†
a â†

b · · ·︸ ︷︷ ︸
n terms (virtual)

· · · âj âi︸ ︷︷ ︸
n terms (real)

, (1)

where we have the ordering a < b < c < · · · for the unoccupied orbitals and i < j < k <
· · · for the occupied orbitals; we list all occupied orbitals before all virtual orbitals. You
can see that when this excitation operator acts on the reference state |Ψ0〉, it will remove
n electrons from the occupied orbitals and place them in n of the previously unoccupied
virtual orbitals. Because these particles are fermions, the specific ordering convention we
use to label the different spin-orbitals sets the overall sign of this contribution. In CC theory,
we group together all possible terms according to a given rank and sum them together to
create the excitation of a specific rank (here, a rank-n example)

T̂n =
real

∑
i<j<k···

virtual

∑
a<b<c···

θabc···
ijk··· â†

a â†
b · · ·︸ ︷︷ ︸

n terms

· · · âj âi︸ ︷︷ ︸
n terms

, (2)

where the real numbers θabc···
ijk··· are called the rank-n amplitudes. The conventional coupled

cluster approximation uses all excitation operators of small rank (singles, corresponding to
n = 1 and denoted S and doubles, corresponding to n = 2 and denoted D), and sometimes
supplements them with selected orbitals of higher rank (usually no more than triples
(T) and quads (Q) and often they are treated perturbatively). Hence, a CCSD excitation
operator is T̂(SD) = T̂1 + T̂2. The low-rank representation of the CC wavefunction is
then |ΨCC〉 = eT̂(SD)|ψ0〉; any exponential of a sum of only excitation operators is called a
CC ansatz—the approach becomes useful when accurate quantum chemistry calculations
require only low-rank amplitudes in the representation of the wavefunction.

The exponential of the excitation operator eT̂ is not a unitary operator, because T̂† 6=
−T̂. However, we can form a unitary exponential of an excitation minus a de-excitation
operator via eT̂−T̂†

, so that the unitary wavefunction ansatz is |ΨUCC〉 = eT̂−T̂† |Ψ0〉. As with
the CC approximation, one usually chooses the amplitudes via some low-rank procedure
such as choosing S and D, or even restricting to only important S and D terms (which then
needs a criterion to determine whether a term is important).

In general, there is no simple way to work directly with the UCC ansatz as written.
One can expand the exponential in a power series and continue, including terms of higher
powers in the summation, until the results no longer change [13]. Then, if the amplitudes
are not too large so that one needs to worry about loss of precision, one can evaluate the
UCC wavefunction in this fashion. One can also approximately evaluate the similarity
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transformation of the Hamiltonian, but truncated to some number of terms. An alternative,
most useful for quantum computing, is to adopt a Trotter product formula evaluation. The
Trotter product formula is the identity

eT̂−T̂†
= lim

M→∞

∏
n

real

∏
i<j<k···

virtual

∏
a<b<c···

e

1
M θabc···

ijk···

(
â†

a â†
b · · ·︸ ︷︷ ︸

n terms

· · · âj âi︸ ︷︷ ︸
n terms

− â†
i â†

j · · ·︸ ︷︷ ︸
n terms

· · · âb âa︸ ︷︷ ︸
n terms

)
M

. (3)

It is an exact operator identity, so the ordering of the factors inside the big parenthesis
does not matter, but the limit M → ∞ is often not feasible to take, and requires careful
mathematical treatment to be handled properly. Then one selects a specific value of M
for an approximation. Unfortunately, in this case, the ordering matters, as can be clearly
seen in the extreme limit of M = 1, where we obtain a different result if we switch the
order of two exponential factors that do not commute. This M = 1 approximation is also
called the factorized form of the UCC. One may think the M = 1 case must be a poor
approximation, but in many cases the variational principle can absorb many of the Trotter
errors by changing the values of the amplitudes, making the factorized form an accurate
and valid approximation in its own right for a wavefunction ansatz [14]. Indeed, this
type of approximation has already been used in the anti-Hermitian Schrödinger equation
approach [6].

There is a huge benefit in using the Trotter product formula—every factor in the
product has a hidden SU(2) symmetry associated with it, which we will discuss in more
detail now. Note that this “effective” spin symmetry has nothing to do with the spin of
the electrons, it is an operator symmetry derived from the commutation relations of the
excitation and de-excitation operators of each UCC factor, when written in factorized form.
We define the following “pseudospin” operators for any rank-n UCC factor via

Ŝ+ = i â†
a â†

b · · ·︸ ︷︷ ︸
n terms

· · · âj âi︸ ︷︷ ︸
n terms

and Ŝ− = Ŝ†
+ = −i â†

i â†
j · · ·︸ ︷︷ ︸

n terms

· · · âb âa︸ ︷︷ ︸
n terms

. (4)

We then define Ŝz via [Ŝ+, Ŝ−] = 2Ŝz, so that

Ŝz =
1
2
(Ŝ+Ŝ− − Ŝ−Ŝ+)

=
1
2

(
n̂an̂b · · ·︸ ︷︷ ︸

n terms

· · · (1− n̂j)(1− n̂i)︸ ︷︷ ︸
n terms

− n̂in̂j · · ·︸ ︷︷ ︸
n terms

· · · (1− n̂b )(1− n̂a)︸ ︷︷ ︸
n terms

)
. (5)

Here the number operator is n̂ = â† â, where we suppressed the index in the definition
for simplicity. One can then immediately show that [Ŝz, Ŝ±] = ±Ŝ±. This establishes the
SU(2) symmetry for the operators that appear in the exponent of the UCC factors.

In fact, because the Pauli exclusion principle requires â2 = (â†)2 = 0, we see the
following identities as well:

(Ŝ±)2 = 0, Ŝ+Ŝ−Ŝ+ = Ŝ+, and Ŝ−Ŝ+Ŝ− = Ŝ−. (6)

Any UCC factor, can then be written as

e−iθabc···
ijk··· (Ŝ++Ŝ−) =

∞

∑
n=0

(
−iθabc···

ijk···

)n

n!
(Ŝ+ + Ŝ−)n, (7)

by simply expanding the exponential in an infinite power series (the series always converges
for real θ, because the operators have a finite dimensional representation, and hence
have a bounded norm). The identities in Equation (6) then tell us that (Ŝ+ + Ŝ−)2 =
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(Ŝ+)2 + Ŝ+Ŝ− + Ŝ−Ŝ+ + (Ŝ−)2, which is equal to Ŝ+Ŝ− + Ŝ−Ŝ+. Hence, (Ŝ+ + Ŝ−)3 =
(Ŝ+Ŝ− + Ŝ−Ŝ+)(Ŝ+ + Ŝ+), which is Ŝ+ + Ŝ−. So, we immediately learn that

(Ŝ+ + Ŝ−)n =


I, if n = 0
Ŝ+ + Ŝ−, if n = odd
Ŝ+Ŝ− + Ŝ−Ŝ+, if n = even and positive.

(8)

This allows the sum to be performed, and we find that

e−iθ(Ŝ++Ŝ−) = Î− i sin θ(Ŝ+ + Ŝ−) + (cos θ − 1)(Ŝ+Ŝ− + Ŝ−Ŝ+). (9)

This is a well-known SU(2) identity [9–11] that generalizes the Euler identity e−iθ =
cos θ − i sin θ to operators. It is different from the conventional Pauli matrix identity,
because it involves the direct sum of spin-0 and spin- 1

2 representations—this is because
spin-0 corresponds to the case where both S+ and S− annihilate the state, while spin- 1

2 can
be raised or lowered only once. Note further, the term Ŝ+Ŝ− + Ŝ−Ŝ+ acts as the identity
operator on the spin- 1

2 states—it is not the Ŝz operator.
It turns out that there is a second identity, called the exponential disentangling identity,

that disentangles the exponential factors in a different way. Because SU(2) is a Lie algebra,
we can prove the identity by proving it for the Pauli spin matrices—then group theory
tells us that it holds for all representations, because the Pauli spin matrices are a faithful
representation of SU(2). Recall that the Pauli matrices are

σ+ =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
, and σz =

(
1 0
0 −1

)
, (10)

and ~̂S↔ 1
2~σ is the faithful representation of spin- 1

2 . Using the Pauli matrix identity

ei~v·~σ = cos |~v|I2 + i sin |~v| ~v|~v| ·~σ, (11)

with ~v a real-valued three-vector, we can compute

e−iθσx =

(
cos θ −i sin θ

−i sin θ cos θ

)
. (12)

Our goal is to rewrite this matrix exponential as the product of three matrix exponen-
tials given by eaσ+ ebσz ecσ− . Substituting in the matrix exponentials of these Paulis gives

eaσ+ ebσz ecσ− =

(
1 2a
0 1

)(
eb 0
0 e−b

)(
1 0
2c 1

)
=

(
eb + 4ace−b 2ae−b

2ce−b e−b

)
. (13)

Equating the right hand sides of Equations (12) and (13), gives us

a = − i
2

tan θ, b = − ln(cos θ), and c = − i
2

tan θ. (14)

Rewriting in terms of the spin operators yields the exponential disentangling identity

e−iθ(Ŝ++Ŝ−) = e−i tan θŜ+ e−2 ln(cos θ)Ŝz e−i tan θŜ−

= e−i tan θŜ+ e− ln(cos θ)(Ŝ+ Ŝ−−Ŝ− Ŝ+)e−i tan θŜ− . (15)

This separates out the excitation operators to the left, the difference of the two pro-
jection operators in the center and the de-excitation operators to the right, for each UCC
factor. Now, one might be concerned that the final matrices in the factorization are no
longer unitary, so we have derived an identity starting from SU(2) but ending in a different
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group. This is indeed correct. The actual group we are working in for the disentangling
identity is SL(2,C), the special linear group of 2× 2 matrices with complex coefficients. This
is also a Lie group and SU(2) is a subgroup of it, so this is the reason why the disentangling
identity can be extended to the operators. However, if one were to doubt this, we next
verify it directly in terms of the operators.

Start from the fact that e−i tan θŜ± = 1− i tan θŜ±. Then, expand

e−2 ln(cos θ)Ŝz =
∞

∑
n=0

(
− 2 ln(cos θ)

)n

n!

(
Ŝz

)n
(16)

and note that (
2Ŝz

)2
= (Ŝ+Ŝ− − Ŝ−Ŝ+)

2 = Ŝ+Ŝ− + Ŝ+Ŝ−, (17)

so we have

e−2 ln(cos θ)Ŝz = Î+
(

cosh
(

ln(cos θ)
)
− 1
)
(Ŝ+Ŝ− + Ŝ−Ŝ+)

− sinh
(

ln(cos θ)
)
(Ŝ+Ŝ− − Ŝ−Ŝ+). (18)

Now, we substitute into the disentangling identity in Equation (15) to find

e−iθ(Ŝ++Ŝ−) = (1− i tan θŜ+)e−2 ln(cos θ)Ŝz (1− i tan θŜ−)

= e−2 ln(cos θ)Ŝz − i tan θŜ+e−2 ln(cos θ)Ŝz − ie−2 ln(cos θ)Ŝz tan θŜ−

− tan2 θŜ+e−2 ln(cos θ)Ŝz Ŝ−

= e−2 ln(cos θ)Ŝz − i sin θŜ+ − i sin θŜ− + tan θ sin θŜ+Ŝ−

= Î− i sin θŜ+ − i sin θŜ− + (cos θ − 1)Ŝ−Ŝ+ +

(
1− sin2 θ

cos θ
− 1

)
Ŝ+Ŝ−

= Î− i sin θ(Ŝ+ + Ŝ−) + (cos θ − 1)(Ŝ+Ŝ− + Ŝ−Ŝ+), (19)

which establishes the identity directly in terms of the operators. Here, we used the facts that
Ŝ+e−2 ln(cos θ)Ŝz = eln(cos θ)Ŝ+ = cos θŜ+, e−2 ln(cos θ)Ŝz Ŝ− = eln(cos θ)Ŝz = cos θŜ−, and the
form in Equation (18). Note that because the operators in the factorization are not unitary,
this factorization is not useful for creating quantum circuits on a quantum computer—it
really is only useful for relating UCC to CC. In addition, note that the transformation is
well-defined for −π

2 < θ < π
2 , which is where we restrict all of the UCC amplitudes to lie.

The case θ = ±π
2 would present a problem for the disentangling identity due to

divergences. However, in general, we do not expect there to ever be a UCC factor with
θ = π

2 , because in such a case, the reference state is removed from the wavefunction,
when this term is applied (cos θ = 0 implies no reference state remains, as shown by the
Euler formula). Since the reference is supposed to be a large amplitude term in the final
wavefunction, we would never use such a large angle. In this work, we assume that none
of the UCC amplitudes ever have a magnitude as large as π

2 ; usually, the magnitudes are
not larger than π

4 .
We want to make one additional comment about the disentangling identity. Note, how

the amplitudes for the UCC are restricted to lie between −π/2 ≤ θ ≤ π/2, whereas CC
amplitudes can have any real value. This is exhibited clearly in the disentangling identity,
as an angle (which becomes a cosine or a sine using the SU(2) identity), is replaced by a
tan θ in the disentangling identity, showing it can take any real value. We wanted to stress
this observation, because it makes sense as to why the identity has the form it has. Finally,
because we anticipate that most angles have their magnitude bound by π/4 instead of
π/2, this indicates that in a CC approximation, most amplitudes should be less than 1 in
magnitude.
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The way the disentangling identity is used in the factorized form of the UCC is that
we replace each UCC factor of the form e−iθ(Ŝ++Ŝ−), with the second line of Equation (15).
This separates the excitation operators from the de-excitation operators, but it is not in the
normal-ordered form (with all Ŝ+ to the left and all Ŝ− to the right; we move the projection
operator to the right, to the extent that we can, as well). In this normal ordered form,
we have only the CC operators left. Note that all other operators will annihilate against
|ψ0〉. Recall as well that the effective spin operators depend on each specific excitation
and de-excitation operator in the UCC factors (we suppressed this notation with indices
corresponding to the virtual and real spin orbitals involved in our work above), so one
must convert from the effective spin notation back to the fermionic creation and destruction
operators (including all relevant indices) before putting the product of operators into
normal-ordered form.

So, our next step is to determine how to re-order different exponential factors. This is
done with the Hadamard lemma, which reads

eÂ B̂e−Â = B̂ +
1
1!
[Â, B̂] +

1
2!
[Â, [Â, B̂]] +

1
3!
[Â, [Â, [Â, B̂]]] + · · · , (20)

with the nth term being an n-fold nested commutator of Â operators with one B̂ operator
on the right. The Hadamard lemma is often called the Baker–Campbell–Hausdorff formula

in Chemistry literature. Because eÂ B̂ne−Â =
(

eÂ B̂e−Â
)n

, the Hadamard identity “reaches
inside” the argument of functions. This means we have the exponential re-ordering identity

eÂeB̂ = eeÂ B̂e−Â
eÂ, (21)

after using the Hadamard lemma and multiplying the left and right sides by eÂ.
In principle, it is straightforward now to evaluate all of the re-orderings, but it is

quite cumbersome to do so. The notation needed to describe these commutations is also
cumbersome, so we need to develop a new notation in order to carry out the re-orderings.
Every term that we work with has the form of some number of raising operator factors
and some number of lowering operator factors, always organized so the raising operators
are to the left of the lowering operators, except in the projection operators, where half
of the terms are in the opposite order. However, unlike the original operators where the
raising and lowering operators are always grouped into virtual or real spin-orbitals, after
we have re-ordered the exponentials, we will generate operators where the indices are
mixed between the two groups. This is why we need a more general notation to describe
the re-orderings.

We use the notation

Â(a1, · · · , an; b1, · · · , bn|c1, · · · , cm; d1, · · · , dm′) = â†
a1
· · · â†

an︸ ︷︷ ︸
n terms

âbn
· · · âb1︸ ︷︷ ︸

n terms

n̂c1 · · · n̂cm︸ ︷︷ ︸
m terms

× (1− n̂d1) · · · (1− n̂dm′
)︸ ︷︷ ︸

m′ terms

, (22)

to describe the states that we need to work with. The general operator is broken into two
halves. The left half includes the isolated creation and annihilation operators, while the
right half includes the projection operators—the number of creation operators is always
the same as the number of destruction operators—hence the total number of creation
plus destruction operators in each product string is even; the ordering of the destruction
operators is reversed, just as is done in the excitation and de-excitation operators. Note
that it is best to represent n̂ as â† â and 1− n̂ as ââ†, so that each operator Â is a product of
creation and destruction operators, but it is often not normal ordered (for example, when
n 6= 0 and m or m′ are nonzero).
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This operator can describe a pure excitation when m = m′ = 0 and {a1, · · · , an} are all
virtual spin orbitals and {b1, · · · , bn} are all real spin orbitals. It is a pure de-excitation when
m = m′ = 0 and {a1, · · · , an} are all real spin orbitals and {b1, · · · , bn} are all virtual spin
orbitals. Similarly, when n = 0 and m 6= 0 and/or m′ 6= 0, the operator is a pure projection
operator. If the operator is not a pure operator, it is a mixed operator. Such a mixed operator
mixes excitation and de-excitation between different spin orbitals in the same operator. In
cases when m 6= 0 and/or m′ 6= 0, the operator is said to be with projection. If m = m′ = 0 it
is without projection.

It is useful to describe some rules about these operators. If any ai = aj, any bi = bj,
any ai = cj, any bi = dj, or any ci = dj, then the operator vanishes because it has the square
of a creation or destruction operator or a product n̂(1− n̂) = 0. If any c or d index repeats,
the repeating index can be removed. If any ai = dj, the dj index can be removed (because
â†

i (1− n̂i) = â†
i ) and if any bi = cj, the cj index can be removed (because âi n̂i = âi ). Finally,

if any ai = bj, we move it into the c indices. We say the operator is in canonical form if
all of these “contractions” have been applied to the operator. In this case, all indices that
are in the operator are different. In addition, when in canonical form, all of the indices
in each grouping a, b, c, and d has the index values in each subgroup ordered, so that
a1 < a2 < a3 · · · and similarly for the other three sets of indices.

Before we start re-ordering the exponential factors to place the product in an “excitation-
only” form, every operator in the exponential is a pure excitation without projection, a
pure de-excitation without projection, or a pure projection, because this is the form of the
exponential disentangling identity for each term. As we re-order operators, this changes,
and many operators become mixed and with projection. However, there are some simple
rules for how the re-ordering changes terms, which we go through next. These rules are
rather tedious to carry out “by hand”, but are straightforward to implement on a computer.

The re-ordering of exponential terms always involves interchanging the order of an Â
operator and an Â′ operator, in the form

eαÂeα′ Â′ = eeαÂα′ Â′e−αÂ
eαÂ, (23)

where the operators Â and Â′ can both be assumed to be in canonical form. In most
cases, the Hadamard lemma truncates after a finite number of nested commutators, for
the following reasons. First, the commutator vanishes if {ai | i = 1, · · · , n} ∩ {a′i | i =
1, · · · , n′} 6= 0 or {bi | i = 1, · · · , n} ∩ {b′i | i = 1, · · · , n′} 6= 0 and no ai index is in {b′i}
and no bi is in {a′i}, because if there is a common index in both operators, the canonical
form guarantees there is no c or d index that is the same, so both Â and Â′ have the same
creation operator in them, or the same destruction operator in them, but not both. This
means their product vanishes in either order (because the square of a fermionic operator
is zero). So, we assume that these two sets have no intersection. Then the commutator
[Â, Â′] 6= 0 if and only if there is at least one of the following:

∃ ai = b′j or ai = c′j or ai = d′j (24)

∃ bi = a′j or bi = c′j or bi = d′j. (25)

∃ ci = a′j or ci = b′j (26)

∃ di = a′j or di = b′j (27)

Because the operators are in canonical form, only one of the possibilities (for any
specific i) in any line can occur, but there can be more than one i that satisfies this condition
for any line and we can have the condition satisfied on more than one line.

Let us carefully look at the cases. If Equation (24) holds, then if the match is with c′j or

d′j, every term in the commutator has an a†
ai

factor in the product of operators (after putting

the commutator into a canonical form), which annihilates with Â when multiplied on either
side. This means only the first commutator is nonzero and all higher-order ones vanish.



Symmetry 2022, 14, 494 9 of 19

The same is true for Equation (25) if the match is with c′j or d′j. If Equation (26) holds, we
have two different possible behaviors. First, if {ai | i = 1, · · · , n} ⊂ {a′i | i = 1, · · · , n′}
and {bi | i = 1, · · · , n} ⊂ {b′i | i = 1, · · · , n′}, then in each term in the commutator, all of
the unpaired creation and annihilation operators in Â are paired into n̂ or 1− n̂ factors. In
this case, the nested commutators go on for an infinite number of terms, but they can all be
summed into an exponential factor that multiplies the result. However, if both sets for the
indices of the creation and destruction operators of Â are not also in the labels for Â′, then
we always have at least one creation or annihilation operator left over in every term in the
commutator. In this situation, Â annihilates the operator when multiplied to the left or the
right, and the expansion truncates after the first commutator. We have a similar result for
Equation (27). The remaining case occurs when the match is only between the creation and
annihilation operators in Equations (24) and (25).

In this case, the number operators commute with everything, so we need not worry
about them anymore. Then we have at most two nested commutators. Consider the first
index i, such that ai = b′j. After the first commutator, one term in the commutator has no a†

ai

and âai
terms in it, while the rest have either a n̂ai term or a 1− n̂ai term. After the second

nested commutator, all terms will have a âai term in it, which then vanishes when multiplied
by Â on either side for the third nested commutator. We have a similar argument if the only
indices that are the same are bi = a′j. The second commutator only enters in situations where
both {ai | i = 1, · · · , n} ⊂ {b′i | i = 1, · · · , n′} and {bi | i = 1, · · · , n} ⊂ {a′i | i = 1, · · · , n′},
as before, since, otherwise, we have a lone fermionic operator remaining in all terms of the
commutator, which then vanishes when multiplied by Â on the right or on the left. So, the
reordering is always of the form

eαÂeα′ Â′ = eα′ Â′+αα′ [Â,Â′ ]eαÂ, (28)

when the a and b indices of the operator Â do not entirely lie within the b′ and a′ indices of
Â′. We use the following terminology: when the a and b indices of Â are a subset of the b′

and a′ indices of Â′, we say Â matches Â′; if they are not both subsets, we say Â does not
match Â′.

If Â′ does not match Â, then the commutator [Â, Â′] has lone creation or annihilation
operators from Â′ in it, meaning Â′ annihilates it when multiplied to the right or to the left
(after putting the commutator into canonical form). Hence, Â′ and [Â, Â′] commute and
we can separate the factors into

eαÂeα′ Â′ = eα′ Â′ eαα′ [Â,Â′ ]eαÂ. (29)

The re-ordering has now been put into a form of exponentials of individual A-form
operators. If Â′ matches Â, then the commutator [Â′, [Â, Â′]] has lone creation or annihila-
tion operators in it (following similar arguments as given above), so it commutes with Â′,
but it does not necessarily commute with [Â, Â′] (which has no lone fermionic operators
from Â′). In this case, there is no simple way to separate the terms, as nested commutators
of arbitrary order will be nonzero. However, of course, it can be put into an infinite product
of exponentials of individual A-form operators, by use of the Zassenhaus formula (and
many of the nested commutators in that formula will vanish). Because the commutator of
a projection operator with a fermionic operator is proportional to the fermionic operator,
the nested commutators will repeat in form, and in the end, these infinite factors can all be
combined with a new numerical factor multiplying the corresponding operator. To illus-
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trate how this might work, we use the exact formula for the Baker–Campbell–Hausdorff
formula [15,16]

eÂeB̂ = eη(Â,B̂), (30)

η(Â, B̂) =
∞

∑
m=1

(−1)m−1

m

× ∑
pi≥0, qi≥0

pi+qi≥1

[

p1︷ ︸︸ ︷
Â · · · Â

q1︷ ︸︸ ︷
B̂ · · · B̂ · · ·

pm︷ ︸︸ ︷
Â · · · Â

qm︷ ︸︸ ︷
B̂ · · · B̂](

∑j(pj + qj)
)

p1!q1! · · · pm!qm!
(31)

[ĈD̂Ê · · · Ĵ] = [· · · [[Ĉ, D̂], Ê], · · · , Ĵ]. (32)

For example, the first few terms correspond to m = 1, ∑i(pi + qi) = 1 (p1 = 1, q1 = 0
and p1 = 0, q1 = 1), m = 1, ∑i(pi + qi) = 2 (p1 = 2, q1 = 0, and p1 = 1, q1 = 1, and p1 = 0,
q1 = 2), and m = 2, ∑i(pi + qi) = 2 (p1 = 1, q1 = 0, p2 = 1, q2 = 0, and p1 = 1, q1 = 0,
p2 = 0, q2 = 1, and p1 = 0, q1 = 1, p2 = 1, q2 = 0, and p1 = 0, q1 = 1, p2 = 0, q2 = 1),
and so on. We must take into account all possibilities for the formula, but many of the
commutators vanish (for example, p1 = 2, q1 = 0 vanishes and all m = 2, ∑(p + q) = 2
terms vanish as well). The net contribution becomes

η(Â, B̂) = Â + B̂︸ ︷︷ ︸
m=1, ∑(p+q)=1

+
1
2
[Â, B̂]︸ ︷︷ ︸

m=1, ∑(p+q)=2

+
1

12
[[Â, B̂], B̂] +

1
12

[[B̂, Â], Â]︸ ︷︷ ︸
m=2, ∑(p+q)=3

+ · · · . (33)

Now, back to the problem at hand, involving separating the two terms in Equation (29)
when Â′ matches Â. If we let Â′ → Â and [Â, Â′]→ B̂ in the Baker–Campbell–Hausdorff
formula, then, because [Â, [Â, B̂]] = 0, all terms with pi ≥ 2 vanish in the expansion.
This will simplify the expression, but it is not enough for us to determine the required
Zassenhaus factorization of the expression, without significant additional computation.

Now, if Â does match Â′, then the exponential re-ordering identity takes the form

eαÂeα′ Â′ = eα′ Â′+αα′ [Â,Â′ ]+ 1
2 α2α′ [Â,[Â,Â′ ]]eαÂ. (34)

If Â′ does not match Â, then we have lone fermionic operators from Â′ in each of the
commutators, which means the three separate operator terms in the exponent, all mutually
commute, and we can re-write the exponential re-ordering identity as

eαÂeα′ Â′ = eα′ Â′ eαα′ [Â,Â′ ]e
1
2 α2α′ [Â,[Â,Â′ ]]eαÂ. (35)

The case where Â′ also matches Â is again complicated and we have to use the infinite-
order Zassenhaus formula again, perhaps recursively, because there are three terms in the
exponent. In this case, the operators may not reduce to a simple form.

Finally, we still have to work out the cases from Equations (26) and (27) when Â
matches Â′. To do this, we first need to determine the general similarity transformation

Ô(α) = exp

(
α

m+n

∏
i=1

n̂i

m+n+m′+n′

∏
i=m+n+1

(1− n̂i)

)(
m

∏
i=1

â†
i

m+n

∏
i=m+1

âi

m+n+m′

∏
i=m+n+1

â†
i

m+n+m′+n′

∏
i=m+n+m′+1

âi

)

× exp

(
−α

m+n

∏
i=1

n̂i

m+n+m′+n′

∏
i=m+n+1

(1− n̂i)

)
, (36)

which is most easily calculated by computing the derivative with respect to α. This creates
a commutator inside the similarity transformation, which is best evaluated by directly
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multiplying the projection operators from the left and from the right. Immediately, we see
that the commutator vanishes unless m = n′ = 0 or n = m′ = 0. Hence, we find

d
dα
Ô(α) =


Ô(α) if n = m′ = 0
−Ô(α) if m = n′ = 0

0 otherwise.

(37)

This means Ô(α) is either unchanged, or multiplied by a factor of e±α after the re-
ordering of the operators, depending on the cases listed in Equation (37). As we will see in
the examples below, this correction typically changes an amplitude by a factor of a secant
of another amplitude; in many cases the secant is raised to an operator exponent.

We need to have a brief summary about this complex algebra. What we have found is
that in cases where neither Â matches Â′ nor Â′ matches Â, the exponential re-ordering is
simple because it involves evaluating one commutator and requires no additional operator
manipulations. If Â matches Â′, but Â′ does not match Â, then we have two commutators
to evaluate. However, if both operators match in both directions, the formula is complicated,
and might not even be able to be written down analytically. This raises the question: can
such a situation occur? In general, it seems like it is a rare occurrence, if it happens at
all, but without looking at some examples we will not be able to tell. In cases where
this does not occur, we have established the rules needed to perform these algebraic
manipulations, but they are clearly complicated to try to carry out “by hand.” However,
they are straightforward to implement using computer algebra—but this will not be done
in this work. Regardless, we argue why the final formulas should be able to be worked out
analytically later in the paper.

3. Examples of the Connection between the Factorized Form of UCC and CC

We begin by examining the special case where all excitations and de-excitations
are singles operators, of the form θa

i (â†
a âi − â†

i âa). The reason why this is a simple case
is that singles excitation and de-excitation operators form a closed Lie algebra among
themselves [17], so, in principle, the exponential re-ordering does not explode into many
high-rank operators. Let us see how this happens.

The exponential disentangling identity for the singles operator is

eθ(â†
a âi −â†

i âa) = etan θ â†
a âi e− ln

(
cos θ

)
[n̂a(1−n̂i)−n̂i(1−n̂a)]e− tan θ â†

i âa . (38)

While the identities we discuss hold at the operator level, since we are interested in
the connection between CC and UCC, it is more convenient to act the operator onto the
initial reference state, because this allows us to remove many factors from the final operator.
We start with two factors and show how we disentangle them and relate them back to the
CC operator. So we have, using our general notation,

eθb
j (â†

b âj−â†
j âb)eθa

i (â†
a âi −â†

i âa)|Ψ0〉 = etan θb
j Â(b;j|)e− ln

(
cos θb

j

)(
Â(|b;j)−Â(|j;b)

)
e− tan θb

j Â(j;b|)

× etan θa
i Â(a;i|)e− ln

(
cos θa

i

)(
Â(|a;i)−Â(|i;a)

)
���

���e− tan θa
i Â(i;a|)|Ψ0〉, (39)

where we leave empty the indices in Â that have no corresponding operators in Â. We
have also canceled the last term, since the exponent annihilates the reference state. The
middle term on the lower line evaluates to cos θa

i against the reference. We need to re-
order the leftmost operator on the last line through the two operators to its left. We start
with re-ordering

e− tan θb
j Â(j;b|)etan θa

i Â(a;i|) = etan θa
i Â(a;i|)etan θa

i tan θb
j (
(

δij Â(a;b|)−δab Â(j;i|)
)

e− tan θb
j Â(j;b|). (40)
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The last operator is removed when it acts on the reference. The middle operator (which
is a mixed operator) can only have one term in it, since we cannot have both i = j and
a = b, otherwise the two original UCC factors would have been identical, which we assume
does not happen. In either case, when this middle term operates on the reference state, the
exponent annihilates, because we cannot destroy in the b spin-orbital nor create in the j
spin-orbital. So, we are left with the second re-ordering we need to do, namely

e− ln
(

cos θb
j

)(
Â(|b;j)−Â(|j;b)

)
etan θa

i Â(a;i|) = etan θa
i Â(a;i|)e− tan θa

i ln
(

cos θb
j

)
(δij+δab)Â(a;i|)

× e− ln
(

cos θb
j

)(
Â(|b;j)−Â(|j;b)

)
. (41)

The rightmost term gives a factor of cos θb
j , while the middle term combines with the

left-most term, since the operators are the same. So, after the re-ordering, we have

eθb
j (â†

b âj−â†
j âb)eθa

i (â†
a âi −â†

i âa)|Ψ0〉 = cos θb
j cos θa

i etan θb
j â†

b âj +tan θa
i

(
1−ln

(
cos θb

j

)
(δij+δab)

)
â†

a âi |Φ0〉. (42)

This is in the CC form, with one exponential of a sum of excitation operators. Note
that if none of the indices are the same, it gives us the standard form. You can also check
that if either i = j or a = b, where the double-excitation term cannot be excited, we also
get the correct state. We can also see that the relationship between the two ansatzes is
complicated. A UCC amplitude has to have its tangent taken for the CC amplitude. The
overall factor of cosines is neglected in the traditional CC ansatz, which is why it does not
preserve the norm of the state, in most cases.

This example does not show the effect of de-excitation, because neither of the terms
given there can de-excite—for now. However if we add in an additional singles factor,
removing the spin-orbital k and occupying the spin-orbital c, then we will have a de-
excitation if c = a and k = j, for example. So we consider this case next. We have i 6= j and
a 6= b. Then

eθa
j (â†

a âj−â†
j âa)eθb

j (â†
b âj−â†

j âb)eθa
i (â†

a âi −â†
i âa)|Ψ0〉 = cos θb

j cos θa
i etan θa

j â†
a âj

× e− ln
(

cos θa
j

)
[n̂a(1−n̂j)−n̂j(1−n̂a)]e− tan θa

j â†
j âa etan θb

j â†
b âj +tan θa

i â†
a âi |Φ0〉. (43)

We have two more re-orderings to carry out. The first is

e− tan θa
j â†

j âa etan θb
j â†

b âj etan θa
i â†

a âi

= etan θb
j â†

b âj +tan θa
j tan θb

j â†
b âa e− tan θa

j â†
j âa etan θa

i â†
a âi

= etan θb
j â†

b âj etan θa
j tan θb

j â†
b âa−tan θa

j â†
j âa etan θa

i â†
a âi

= etan θb
j â†

b âj etan θa
i â†

a âi +tan θa
j tan θb

j tan θa
i â†

b âi −tan θa
j tan θa

i â†
j âi etan θa

j tan θb
j â†

b âa−tan θa
j â†

j âa

= etan θb
j â†

b âj etan θa
i â†

a âi etan θa
j tan θb

j tan θa
i â†

b âi e− tan θa
j tan θa

i â†
j âi etan θa

j tan θb
j â†

b âa e− tan θa
j â†

j âa . (44)

The three rightmost terms are removed when they act on |Ψ0〉.
The second is

e− ln
(

cos θa
j

)
[n̂a(1−n̂j)−n̂j(1−n̂a)]etan θb

j â†
b âj etan θa

i â†
a âi etan θa

j tan θb
j tan θa

i â†
b âi

= etan θb
j sec θa

j â†
b âj e− ln

(
cos θa

j

)
[n̂a(1−n̂j)−n̂j(1−n̂a)]etan θa

i â†
a âi etan θa

j tan θb
j tan θa

i â†
b âi

= etan θb
j sec θa

j â†
b âj etan θa

i sec θa
j â†

a âi etan θa
j tan θb

j tan θa
i â†

b âi e− ln
(

cos θa
j

)
[n̂a(1−n̂j)−n̂j(1−n̂a)]; (45)

when the rightmost operator acts against the reference state, it produces a cos θa
j . Note

that the exponential re-orderings here are of the form where the Hadamard has an infinite
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number of terms, but they can all be summed and the net effect is to renormalize the
coefficients of some term by multiplying them by a power of the secant. To see this, note
first that n̂a(1− n̂j)− n̂j(1− n̂a) = n̂a − n̂j, so that we need to compute eαn̂a â†

ae−αn̂a = eα â†,
which is derived most easily by computing the differential equation with respect to α and
solving it. Because α = − ln(cos θa

j ), we get the result stated above.
Putting them all together then gives us

eθa
j (â†

a âj−â†
j âa)eθb

j (â†
b âj−â†

j âb)eθa
i (â†

a âi −â†
i âa)|Ψ0〉 = cos θb

j cos θa
j cos θa

i

× etan θa
j â†

a âj +tan θb
j sec θa

j â†
b âj +tan θa

i sec θa
j â†

a âi +tan θa
j tan θb

j tan θa
i â†

b âi |Ψ0〉. (46)

Again, one can see there is a complicated relationship between the UCC amplitudes
and the CC amplitudes. If we expand the operators using the two different identities
(the generalization of the Euler formula versus the above result), we find that the two
wavefunctions agree, as they must. Note that we have to expand the exponential in the
CC form through the quadratic power to include all terms. This example is instructive,
because it clearly shows that different amplitudes can enter into the CC than enter into the
exponential factors in the factorized form of the UCC. This essentially underlies the earlier
work that showed that a UCC and CC ansatz are not equivalent; of course, we should never
have expected them to be. Our goal is to determine how they inter-relate. Indeed, it is
most likely that a low-rank representation (say UCC-SD in a factorized form) will not be
represented by a low-rank CC ansatz, and this is the key to the difference in the ansatzes.
However, to see that, we need to go beyond examining just singles.

In exploring these singles excitations, everything worked nicely, because the terms in
the exponents were always of a similar form. In addition, for the cases we looked at, we
never encountered the situation where Â matched Â′ and Â′ matched Â, which is the case
that is challenging for our operator identities.

Now, we will explore how the conversion from UCC to CC works for rank-two
(doubles) terms. We start by re-ordering the case with two doubles UCC factors. First, we
use the exponential disentangling identity to separate the terms in each:

eθcd
kl

(
â†

c â†
d âl âk−â†

k â†
l âd âc

)
eθab

ij

(
â†

a â†
b âj âi −â†

i â†
j âb âa

)
|Ψ0〉

= eθcd
kl

(
Â(cd;kl|)−Â(kl;cd|)

)
eθab

ij

(
Â(ab;ij|)−Â(ij;ab|)

)
|Ψ0〉

= etan θcd
kl Â(cd;kl|)e− ln

(
cos θcd

kl

)(
Â(|cd;kl)−Â(|kl;cd)

)
e− tan θcd

kl

(
Â(kl;cd)

)
× etan θab

ij Â(ab;ij|)e− ln
(

cos θab
ij

)(
Â(|ab;ij)−Â(|ij;ab)

)
e− tan θab

ij

(
Â(ij;ab)

)
|Ψo〉. (47)

The rightmost term has an exponent that annihilates against the reference and can be
removed. The second rightmost term will yield a cosine when it acts on the reference. Our
first re-ordering involves the next two terms, as we move leftward through the products.
It becomes

e− tan θcd
kl Â(kl;cd)etan θab

ij Â(ab;ij|)
= etan θab

ij Â(ab;ij|)−tan θab
ij tan θcd

kl [Â(kl;cd),Â(ab;ij)]e− tan θcd
kl Â(kl;cd), (48)

Because we cannot have Â match Â′, because the two doubles operators would be
identical if they did. These calculations get quite lengthy, as there are eight possible terms
that can contribute in this first re-ordering. However, because a 6= b, c 6= d, i 6= j, and k 6= l,
at most three terms, can contribute. However, it is cumbersome to include the most general
situation, even for doubles. So, instead, we will consider some specific cases. The first one
we will look at is where one index is in common, and we choose, as an example, the case
i = k. This gives

e− tan θcd
kl Â(kl;cd)etan θab

ij Â(ab;ij|)
= etan θab

ij Â(ab;ij|)e− tan θab
ij tan θcd

kl Â(lab;jcd|)e− tan θcd
kl Â(kl;cd), (49)
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where we use a convention where the real orbital indices are less than the virtual orbital
indices. Note how the commutator form is a triples operator. This is what typically happens
with higher-rank operators—commutators increase the rank because we remove one pair in
the product of the two operators from the commutator. The rightmost two terms annihilate
against the reference state (this is true in the general case for all possible terms that can
arise from the commutator). The second re-ordering is

e− ln
(

cos θcd
il

)(
Â(|cd;il)−Â(|il;cd)

)
etan θab

ij Â(ab;ij|)
= etan θab

ij

(
cos θcd

il

)−n̂l−n̂c+n̂l (n̂c+n̂d) Â(ab;ij|)

× e− ln
(

cos θcd
il

)(
Â(|cd;il)−Â(|il;cd)

)
, (50)

which requires the full Hadamard, just like before; except here, because the number operator
that matches with the lowering operator (index i) is multiplied by number operators, they
therefore enter into the exponent. When the right-most term operates on the reference, it
gives a cosine as well. For the next term, we can replace the exponent by −1 when acting
on the reference. Putting this all together yields

eθcd
kl

(
â†

c â†
d âl âk−â†

k â†
l âd âc

)
eθab

ij

(
â†

a â†
b âj âi −â†

i â†
j âb âa

)
|Ψ0〉

= cos θab
ij cos θcd

il etan θcd
il â†

c â†
d âl âi +tan θab

ij sec θcd
il â†

a â†
b âj âi |Ψ0〉. (51)

One can check that this gives the correct result. Note, that this is in the standard CC
form because we could remove the operator exponent on the cosine factor in the amplitude
by acting on the reference state before putting all the excitation terms in the same exponent.

We show one final example, consisting of two doubles that commute with each other
(so they excite a quad), followed by another double, which has a de-excitation from the
quad. The re-ordering of the first two terms is simple, because they commute with each
other. We choose the first double to have indices ij; ab, the second to be kl; cd, and the third
to be ik; ac; we assume, for simplicity, that i < j < k < l < a < b < c < d. As before, for the
first two terms, the de-excitation term annihilates against the reference and the exponentials
involving the projection operators will evaluate to single powers of cosines as well. Using
the factorizations we have already shown, and the fact that no indices in the first two terms
are in common, we have that the application of these three terms can be written as

eθac
ik

(
â†

a â†
c âk âi −â†

i â†
k âc âa

)
eθcd

kl

(
â†

c â†
d âl âk−â†

k â†
l âd âc

)
eθab

ij

(
â†

a â†
b âj âi −â†

i â†
j âb âa

)
|Ψ0〉

= cos θab
ij cos θcd

kl etan θac
ik â†

a â†
c âk âi e− ln

(
cos θac

ik

)(
n̂a n̂c(1−n̂i)(1−n̂k)−(1−n̂a)(1−n̂c)n̂i n̂k

)
× e− tan θac

ik â†
i â†

k âc âa etan θcd
kl â†

c â†
d âl âk+tan θab

ij â†
a â†

b âj âi |Ψ0〉. (52)

First, we need to move the de-excitation operator through the two excitation operators
to the right in the last line. We do this one operator at a time so that the commutator
correction terms commute with the other operator in the exponent. This gives
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e− tan θac
ik â†

i â†
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c â†
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i â†
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d âa âl (n̂c−n̂k)

× etan θab
ij â†
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e− tan θac
ik â†

i â†
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kl â†
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d âa âl (n̂c−n̂k)e− tan θac
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(((
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ij â†
k â†

b âd âj (n̂a−n̂i)((((
(((

e− tan θac
ik â†

i â†
k âc âa , (53)

because we only need the single commutator correction term. Here, we canceled the last
two terms, which vanish when they act on the reference state. There is a new excitation
operator, multiplied by projection operators as the second term in the next to last line.
Because the projection operators commute with the rest of the operator, and because they
evaluate to one when they act on the reference state, they can be removed from that term.
Then, the leftmost term on the second to last line commutes with the term to the right, and
after re-ordering, it is removed when it operates on the reference state. So, after acting on
the reference, we are left with three pure excitation terms, given by

etan θcd
kl â†

c â†
d âl âk etan θab

ij â†
a â†

b âj âi e− tan θac
ik tan θcd

kl tan θab
ij â†

b â†
d âl âj . (54)

Each one of these terms must be re-ordered against the projection term; the third factor
already commutes with that term and can just be re-ordered. As we have seen before, the
projection term renormalizes the coefficient of the excitation term and the projection term
evaluates to a cosine against the reference state. Following a similar calculation as before,
we find that our final result becomes
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ik

(
â†

a â†
c âk âi −â†

i â†
k âc âa

)
eθcd
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(
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k â†
l âd âc

)
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i â†
j âb âa

)
|Ψ0〉

= cos θab
ij cos θcd

kl cos θac
ik etan θac

ik â†
a â†

c âk âi etan θcd
kl

(
cos θac

ik

)−n̂a(1−n̂i)−(1−n̂a)n̂i â†
c â†

d âl âk

× etan θab
ij sec θac

ik â†
a â†

b âj âi e− tan θac
ik tan θcd

kl tan θab
ij â†

b â†
d âl âj |Ψ0〉. (55)

This final result is important, because it shows that one cannot immediately remove
the operator term in the exponent of the amplitude of the excitation operator. This is
because it does not commute with the excitation term to the right of it. It can be removed by
picking the proper value of the exponent when it acts directly on the reference, and adding
in higher-rank terms to fix coefficients of determinants with the wrong exponent, but we
will not show further details for how this can be done in this work, as it is not critical that
we show that the final form of the CC ansatz can be written in the traditional CC form.

4. Discussion

We now discuss why this process should work, even though we have not shown how
it works in the most general case. The reason is rather simple. We can take the factorized
form of the UCC and use the Euler-identity like relation, from Equation (9), which breaks
each UCC factor into either an identity operator, or a term that has a cosine multiplying one
term and a sine multiplying another. This means when we have created an intermediate
ansatz wavefunction, by acting a number of UCC factors onto the reference, we find that
the next UCC factor will either leave a determinant in the superposition unchanged, or
will multiply it by a cosine and add a second determinant that is multiplied by a sine. This
means all terms in the expansion for the wavefunction involve polynomials in sines and
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cosines of the different angles. As we saw in our examples, we expect the transformation
from UCC to CC to have a prefactor of a cosine of the angle for each UCC factor. This will
change many of the cosine factors in the polynomial coefficients to ones and will change
sines to tangents (it may also introduce some secant terms). However, there are no other
types of terms that can be created. Furthermore, all of the determinants in the UCC ansatz
are excitations from the single reference. This implies that either we never run into any
of the “edge” cases, where separating out the different exponents after reordering two
operators is one of the complicated cases (such as when the two operators match in each
direction), or the separation can be performed, yielding a simple final result. While not
a rigorous proof, this is a strong indication that the above algorithm will always work to
convert the UCC ansatz to the CC ansatz, even if edge cases do occur. However, note that
this argument does not preclude that the CC form may need to be a factorized form and
that the amplitudes may be raised to operator-valued integer powers.

Another point worth discussing is regarding the situation when we approximate the
traditional UCC by a Trotter formula with some number of Trotter steps. In this case, we will
eventually need to move excitation operators past their precise de-excitation counterpart
due to the repeating nature of the factors in the Trotterized form. This is one of the edge
cases we have been discussing (Â matches Â′ and Â′ matches Â), but this case can be
handled easily, because it is well known that one can create disentangling identities in
any order for the three factors (exponentials of Ŝ+, Ŝz, and S−) [18]. If we have to reorder
Trotter factors, we would be presented with a product of the form z, −, +. We simply
use the different identities to turnover the product into +, z, −, which is guaranteed to be
possible. So, such a situation will not cause any problems for carrying out the conversion
to the factorized CC form either.

Another point we have found in our analysis is that the conversion from UCC to
CC often requires additional terms than those that were in the original UCC ansatz. It
is possible that these new terms could be the same rank as the terms that were being
re-ordered (if they have a definite rank), or it can be a higher rank, although creating a
higher-rank term that does not annihilate against the reference will require terms arising
from many re-orderings. In addition, many of the terms we create as we re-order will
annihilate against the reference, this keeps the identity (which is an exact operator identity)
from becoming too large, which it easily can if we do not apply to the reference. We also
expect that a UCC ansatz that is low rank, involving excitation-de-excitation operators all
less than some specific rank, will likely map to a CC ansatz that has many higher-rank
terms. In fact, it is likely that the number of amplitudes that we find in the mapped CC
ansatz are as many as the determinants in the ansatz wavefunction, because the exponential
form that arises from the CC ansatz does not produce the same amplitudes for higher-rank
determinants as the UCC does—then an additional higher-rank amplitude is needed to
produce the same ansatz wavefunction. Finally, because some of the amplitudes determined
in this operator identity depend on the determinants that they operate on, we have to use a
factorized form for the CC ansatz, because not all factors commute with each other. This is
able to be fixed by employing additional higher rank factors, but we do not pursue that
more thoroughly here.

The fact that the UCC approximation is unitary (hence the state remains unit norm)
and the CC approximation can be extracted from the UCC in the way we describe, with an
additional product of cosine factors, suggests that the norm of the CC state is larger than
one (since a product of cosines is always less than one). It is not clear there is anything
physically meaningful in this statement, but it is an observation that can be made. Finally,
the UCC approximation is variational and it maps to a similar CC approximation, but
including many terms of higher rank. What this suggests, however, is that there may be a
way to restore the variational nature of the approximation to a CC ansatz by modifying
the ansatz to not be low rank. It is not clear whether there is any simple way to determine
how to do the modification, or if it requires adding in too many additional amplitudes to
be practical, but it is an interesting insight brought forward by this analysis.
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The Euler-identity like relation for the factorized form of the UCC suggest an alterna-
tive way to relate to the CC. We first compute the desired ansatz wavefunction by using
the Euler-identity like relation. This creates the full wavefunction ansatz. We then apply an
algorithm similar in spirit to the elimination algorithm [9], but that is able to be applied
much more easily for the CC situation. One starts from the determinants that can be reached
by applying a rank-one operator to the reference. We pick the amplitude of the determinant
to be the amplitude of the CC term. Then, we compute the exponential of the CC operator
and subtract off all of the amplitudes for any higher-rank determinants that are generated
by applying the rank-one CC operator to the reference. Then we repeat with the rank-two
amplitudes and so forth. Because we do not expect the higher-rank terms to be created by
a low-rank CC operator, this procedure will continue up to the highest-rank determinant in
the UCC ansatz wavefunction. This is, in part, the reason why the manipulations for the
re-ordering create so many new operators.

An important question is whether the additional terms arising from the re-ordering are
important or can be neglected. If the amplitudes are all small angles, then these higher-order
terms will typically include higher-powers of tangents or sines of these angles. If the angles
are small, these powers can become very small quickly—hence, there is a possibility for
weakly correlated molecules that the correction terms are not important. Only quantitative
analysis and a clear error bound can resolve how important the extra terms are. However,
because we expect at least some of the amplitudes to be large, we do anticipate at least
some of the correction terms to be large enough to be important. Working out examples of
that is beyond what will be covered in this paper.

An alternative approach that one can try is to form the commutator algebra by com-
muting all of the operators of a given class that is included in the UCC ansatz to determine
the closed commutator algebra of the system. If there are a total of N spin orbitals, then
this operator algebra is a subalgebra of the SU(2N) Lie algebra. One can then perform a
Cartan decomposition of the Lie algebra (assuming one finds an appropriate involution)
and use the KHK construction to compute the UCC ansatz as well [17]. Then one can try
to convert the KHK form into a CC form. However, it is unlikely that one could work out
such a program, even for a small system, because the Lie groups become too large too
quickly (once doubles or higher-rank operators are included, the commutator algebra tends
to become closed only for the full Lie algebra).

So, the best way to carry out this algorithm is on a computer following the rules
we developed above. Because the UCC ansatz in the factorized form can involve an
exponentially large number of terms, again the algorithm is likely to be limited to smaller-
size systems as well. In addition, how do we find the connection between UCC and CC for
the traditional UCC? We simply use the Trotter formula with a large enough number of
steps to accurately produce the conventional form of the UCC. So, while not providing an
analytical formula connecting the amplitudes of the two ansatzes, the approach outlined
in this work helps us understand how the two ansatzes (CC versus UCC) compare to
each other.

Finally, we discuss how this approach (of relating UCC to CC) might work for a CC
variant such as the sequential transformation to the multireference CC method [19]. In this
approach, one factorizes the CC operator, which has active space orbitals that appear as
both excitation and de-excitation operators, into factorized products of the CC operators
of different ranks. Unfortunately, in this form, one cannot immediately use our method,
because the factors of definite rank would need to be further factorized (into excitation
and de-excitation pairs with the same amplitude, but opposite sign) in order to have our
method applied to them, because we require them to have the effective spin symmetry
for our methodology to work. However, if the approach was reformulated into a fully
factorized form, then our method would work for them, and we anticipate the results
would be similar. We do not examine this further here.
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5. Conclusions

In this work, we have shown how one can relate a single-reference UCC ansatz in
factorized form to its corresponding single-reference CC ansatz in a factorized form. By
using the Trotter product formula, this approach can be extended to also include the
traditional UCC ansatz, and by adding additional higher-rank terms, the factorized form of
the CC ansatz can be converted to the traditional form. This resolves a longstanding issue
in quantum chemistry about how the UCC and CC ansatzes relate. However, determining
an explicit formula for a particular ansatz is too complicated to be carried out analytically.
It is a straightforward exercise to perform the algebraic manipulations using a computer
and this would make an interesting follow-up study for systems where the wavefunction
does not have too many determinants contributing to it.

This work is important for quantum computing because it shows how a common
quantum computing ansatz relates to the conventional computing ansatz based on the CC
approach. This allows for better understanding of the accuracy we anticipate we will be
able to achieve with quantum computing.
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