
����������
�������

Citation: Aristov, V.; Stepanyan, I.

Hypothesis of Cyclic Structures of

Pre- and Consciousness as a

Transition in Neuron-like Graphs to a

Special Type of Symmetry. Symmetry

2022, 14, 505. https://doi.org/

10.3390/sym14030505

Academic Editor: Mina Teicher

Received: 4 February 2022

Accepted: 24 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Hypothesis of Cyclic Structures of Pre- and Consciousness as a
Transition in Neuron-like Graphs to a Special Type of Symmetry
Vladimir Aristov 1,* and Ivan Stepanyan 2,3,*

1 Federal Research Center of Computer Science and Control of Russian Academy of Sciences, Vavilov St. 42,
119333 Moscow, Russia

2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street,
117198 Moscow, Russia

3 Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) M.
Kharitonyevskiy Pereulok, 101990 Moscow, Russia

* Correspondence: aristovvl@yandex.ru (V.A.); stepanyan_iv@pfur.ru (I.S.)

Abstract: We study the proposed statistical kinetic model for describing the pre- and consciousness
structures based on the cognitive neural networks. The method of statistics of the growth graph
systems and a possible transition to symmetric structures (a kind of phase transition) is applied.
With the complication of a random Erdőos-Rényi (ER) graph during the percolation transition
from the tree structure to the large cluster structures is obtained. In the evolutionary model two
classes of algorithms have been developed. The differences between the cycle parameters in the
obtained neural network models can reach thousands or more times. This is due to the tree-like
architecture of the neural graph, which mimics the columnar structures of the neocortex. These
cluster and cyclic structures can be interpreted as the primary elements of consciousness and as a
necessary condition for the effect of consciousness itself. The comparison with other known theoretical
mainly statistical models of consciousness is discussed. The presented results are promising in
neurocomputer interfaces, man-machine systems and artificial intelligence systems.

Keywords: neural systems; neural modeling; statistical kinetic methods; Erdös-Renyi growing
random graphs; percolation transition; special type of symmetry; graph cluster; cyclic structures;
Euler’s characteristic; structure of consciousness

1. Introduction

There are opinions, expressed e.g., in [1], about the difficulties of the reduction theory
in treating consciousness and the possibility to use the phenomenological approach. In
contrast to these statements, we intend to develop a reductive constructive approach,
believing that consciousness can manifest itself as a result of the transition of the level
of complexity of the system through a certain threshold. The purpose of this work is
to describe the initial model of neural systems based on kinetic-statistical methods. The
general research methodology and basic concepts that can be formalized are presented.

The goal of the technological race between countries and corporations is to approach
to the size of the brain and a billion biosimilar neurons. At the same time, with a good
hardware base, there is some lag all over the world in the principles of functioning of
biosimilar neural networks. Obviously, learning should be local and based on the neuron
and nearest neighbors. In this regard, the question arises: how should the principles of
plasticity be organized for the transition from a chaotic state of neurons to states of a given
function and to more symmetrical structures? The authors provide a partial answer to
this question in this paper, taking into account an analogy with the phase transition of the
second type (as for the transition from paramagnetic to ferromagnetic).

Neural network algorithms have entered everyday life, these algorithms mainly solve
problems of recognition, control, or decision support. However, research on artificial
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consciousness is now becoming relevant. From this point of view, we can discuss briefly
the common and different features of the animal and human brains and consciousnesses.
Instantaneous fast reactions, correlated with a set of instincts, are approximately the same
in both animals and humans, or at least reaction times are comparable. But human con-
sciousness is more characterized by the study of reflections, not only direct “pathways”
from receptors to effectors. Thus, we can assume that neural networks can be more complex
and contain not only graph trees (from receptors to effectors), but also cyclic, vortex, and
cluster structures in neuron-like networks.

We can mention some ideas and methods that more or less used similar approaches,
first of all the conditioned reflex arc of I.P. Pavlov. The next possibility is related to P.K.
Anokhin’s theory of functional systems. A circle of the efferent excitation and the feedback
can serve as a basic elementary model for studying complex brain structures.

Many works are devoted to the critical problems of artificial neural networks and
algorithms for their synthesis. At the same time, the issues of evaluating cyclic structures
in neuron-like graphs that grow according to certain laws are not considered. However,
some trend towards these studies can be traced. The principal issue is as follows: findings
of the complex clusters and cycles imply structures intrinsic to consciousness with their
special autonomous in cognitive operations.

Conducting a literature review on the topic, we found many works of various scientific
orientations. At the same time, in modern publications, three main areas can be distin-
guished: graph theory, neural network technologies, and the junction of these two areas.

Recent research into large networks, such as the brain, has focused on the three-
dimensional layout of the network, which affects the structure and function of the system.
The results of [2] allow formulating a statistical model for the formation of tangles in
physical networks, with finding that the mouse connectome is more entangled than ex-
pected based on optimal wiring. In [3], general hierarchical models of consciousness were
constructed, including equations governing the cooperative variables for several cogni-
tive modalities: semantic and working memory, attention, emotion, perception, and their
sequential interaction.

It was shown in [4] that network switching in the human brain is decreased with an
increasing timescale opposite to that in random systems. In [5], the authors propose fractal
shapes as a measure of proximity to critical points based on the hypothesis that consciousness
level and complexity of the neural network system are positively related, and are consistent
with previous EEG (electroencephalography), MEG (magnetoencephalography), and fMRI
(functional magnetic resonance imaging) studies in the paper [6], authors constructed the
underlying graph based on the geometrical distances between each electrode pairs.

We used our earlier elaborated methods, constructing graphs [7]. On the other hand,
the approach of statistical physics and kinetic theory is applied. It is capable of describing
open nonequilibrium systems for various equations and formulations of problems, in
particular, to simulate some properties of biostructures [8]. The directly applied apparatus
is based on the kinetic-statistical approach related to the theory of complex networks,
see [9,10]. This approach corresponds to the method of construction of random ER graphs.
In the present paper, we attempt to combine these conceptions and search for large graph
structures, keeping in mind modeling of the mentioned neural systems.

We will also mention some modern works concerning aspects of neuro-nets with the
use of the random graph models and biosimilar structures [11–28]. The latest technology
and a conceptual approach to building neuron nets have resulted in network structures
that capture the basic properties of cortical organization [11–13].

In the paper, the first methods for neuro-simulation are given. Then we consider the
basic mathematical apparatus of the random graphs. Some algorithms are then constructed
to simulate complex graph networks. Simulations and the fixed transitions from tree
structures to clusters are shown. The following is the outline of the paper. Methodology,
which includes a summary of the computational technique, findings, and commentary,
which includes an in-depth comparative analysis of information of neurobiological research.
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Possible comparisons with neuropsychological and multidisciplinary studies are discussed
in the conclusion.

Stochastic models are discussed in [15,16], where the researchers offer a technique
based on an exponentially distributed network modeling approach and performance in
comparison to that of the basic approach. The authors of [17] use Bayesian exponential
random graph modeling (ERGM) to describe an observable structure based on the combined
contribution of local network topologies or characteristics. A cascading random graph
system based on the maximum likelihood method is proposed in [18]. A trajectory planning
approach based on the generation of random pathways among two places is recommended
in [19]. The developed paths were categorized on supplied parameters like the biggest
and smallest pathways. The researchers of [20] demonstrated results in hypergraphs, and
introduced the concepts of protected edge stable subsets. The article describes a network
transfer function model called resource network in [21].

The study [22] proposes an implicit enumeration strategy for detecting the highest
cluster in a random graph, relying on the triangular decomposition of topologies. The
study [23] considers how graphs can be used to describe data. The study [24] focuses on
the concept of network dominance.

The study [25] presents a generalized training system based on extended stochastic
topologies and neural nets. The authors of [26] focus on a parametric problem for class of
random networks with dynamic arrangement. In [27], the authors provide a methodological
guide to visual analysis of brain signals.

Optimization neural techniques have been shown to be highly efficient for a variety
of optimization engineering challenges in current publications. The goal of the work [28]
is to apply a new concept in stochastic optimization methods called “The evaporation
rate-based water cycle algorithm”. It is a tweaked version of the water cycle algorithm that
is applied to adapt an artificial neural network computationally. Despite the evaluation
of cyclic structures, this is just one of the optimization methods for training the synaptic
structures of neural networks.

In [29], the authors studied cyclic processes in neural structures by watching nerve
cells over several days to months and observing the kinetics of their activation in freely
acting mice. Such processes can be tied to both daily activity and brain activity in vari-
ous conditions.

More often than cyclic algorithms, chaotic methods are used in practice in neural
network structures. Chaos-based neural synchronization is proposed for the development
of a public key exchange protocol in the article [30]. A chaotic logistic map is used at
the work [31] to construct a key double logistic sequence in a chaotic encryption system,
and deoxyribonucleic acid (DNA) matrices are created on DNA coding. The denoiser is
a convolutional neural network (CNN). Although these research are purely applied in a
field of cryptography, it demonstrate the importance of application of chaotic processes in
artificial neural structures.

The paper [32] is approached as a combinatorial optimization problem: to identify for-
mulations to compute the Euler number, a neural algorithm based on simulated annealing
is designed.

Study dynamical systems connected with a large family of groups that includes
several well-known examples of intermediate-growth groups at [33]. The orbital graphs
for group actions on d-regular rooted trees and their borders, considered as topological
spaces or spaces with measure, were shown. They form finitely ramified graph families,
and researchers are studying their combinatorics, “isomorphism classes,” and geometric
properties like growth and number of ends.

Graph neural networks (GNNs) have sprung onto the machine learning in last years.
GNN algorithm have applications in electronics, neuroscience, and social networks [34].
The authors of the research [35] suggest a temporal model for constructing customized
random graphs with a set of the “real-world graph attributes”. This line of research seems
promising due to the presence of network structures associated with biological and social
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processes. The morphological and architectural features of these networks can be deter-
mined by comparison with stochastic models, as well as graphs derived from many other
dynamic structures or neurological information. The researchers used a pooled exponen-
tially randomized model that represents the research model in brain functional networking
as a mathematical linkage system that represents a model for studying functional brain
networks using MEG and fMRI measurements in [36]. Modeling cerebral connection net-
works, they say, is crucial for a deeper understanding of the mind’s working mechanism
and inferring specific neural features. According to them, modeling cerebral connection
networks is crucial for better understanding the mechanism of brain function and infer
specific neural features.

As follows from the literature review, the current state of the issue indicates the
widespread use of various algorithms in the theory of neural networks, growing graphs,
chaos and cyclic structures. At the same time, it needs a solution of the problem of
neuromodeling by combining different approaches. To solve this problem, we propose
specialized algorithms for the growth of neuron-like structures.

The paper is organized as follows. Section 1 contains the literature review. Section 2 con-
tains the methodological problems. Section 3 contains basic concepts and methods. Section 4
contains the results. Section 5 contains discussion. Section 6 contains the conclusions.

2. Methodological Problems of Neurosimulation

These following problems, presented in Table 1, are fundamental in nature and are
being addressed by thousands of laboratories around the world. The use of the biocyber-
netic approach will allow us to overcome the above methodological difficulties to make a
breakthrough in creating a working model of the brain (which is now being successfully
done by technological giants such as Ascent, Boston dynamics, Numenta, etc.).

Table 1. Negative and positive aspects of Methodological problems of neurosimulation and the ways
of solutions.

Fundamental
Problem Strengths Weaknesses Opportunities Threats Ways of Solutions

1. The problem of
neuro-biological
data

Updated and
refined quickly. Outdated quickly. Nature-like

neuro-modelling for
the needs of science
and technology.
Currently, there is a
dynamic increase in
the number of
practical applications
in the field of
artificial neural
networks. Therefore,
research in this
direction is vital and
promising.

Inadequacy of
neural network
models to real
processes in the
brain. Real
processes in the
neurons of the brain
are much more
complexly
organized, while
neural network
models are so far
only a simplification
of these processes.

1. Application of basic
proven developments in
the field of
neuro-informatics,
where the listed
problems are absent;

2. Tracking publications
and fixing the latest
knowledge;

3. Combining
bio-cybernetic
algorithms with the
latest neuro-biological
data using
neuro-modeling tools.

2. The problem of
the structure and
functions of the
neuron.

Part of the data is
available, they are
experimentally
verified and
identified.

There is no single
model. All
mechanisms are not
completely clear.

3. The problem of
extremely high
emergence of the
organization of
neuro-biological
systems

Simplification of
the objective
functions in the
decomposition of
the modeling
problem.

No subsystem can
be properly
modeled without
considering external
contours, since it
itself is part of a
superior system.

Hence, the following conclusions can be drawn:
Modeling just one subsystem of the visual analyzer can take years, but more subsys-

tems can take decades. At the same time, the probability of achieving a positive result,
according to experts, ranges from 0.01 to 50%.

The volume of work will be constantly growing due to the replenishment and refine-
ment of data, a significant part of which is phenomenological in nature.

To minimize risks when constructing neurobiological models, it is necessary to use
methodological developments in the field of neuroinformatics and neuromorphic comput-
ing, which have been successfully applied in practice since the 60s of the last century.
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Here, the emergence of neural networks is interpreted using cycles (clusters). It
is believed that the elements of consciousness and self-awareness are associated with
the manifestation of the interaction of such structures. Cycle means the circulation of
electrical and/or chemical signals in it. Thus, the statistical nature of collective interaction
in the structures of large cycles can be attributed to the manifestations of elements of the
phenomenon of consciousness and self-awareness. In principle, consciousness already
presupposes a kind “reflection on reflection”, but this is especially evident, apparently, for
self-awareness, which can be modeled by at least a pair of giant interacting cycles a part is
distinguished from the whole: one part “contemplates” the other.

3. Basic Concepts and Methods

As the number of graph edges increases above the so-called percolation threshold, the
number of loops grows, and a giant graph (cluster) is formed in the graph tree. Moreover,
a kinetic equation is used to describe the change in the distribution of the degree of nodes
in the ER graph. This cluster corresponds to the circulation, maybe partly, of the signal
(electrical or/and chemical) in the appropriate network of neurons.

A mosaic genetic structure can be imposed on a neural-graph network (or appear as a
result of further formalization). This presents a less formal visual system of images that is
close to valid verification by tools. So, it seems possible to simulate a network of random
graphs with the selection of some elements of the structure of consciousness. According to
the classification adopted in [9,10], three types of clusters are distinguished: trees, unicyclic
clusters, and complex clusters. By definition, there are no closed paths (cycles) in a tree, a
unicyclic cluster contains one cycle, and a complex cluster contains at least two cycles.

The idea of the Euler characteristic can be used to identifying different kinds of clus-
tering. The Euler characteristic is defined for graphs: E = Nlinks − Nnodes, Nlinks is the entire
number of links (edges), and Nnodes is the total number of nodes, hence E = Nlinks − Nnodes;
for any tree E = −1.

The development of an ER graph can begin with N isolated nodes, such as N tree-graphs.
We get at a giant tree after making connections between two trees. A randomized

network is a forest at the start of the expansion, which indicates that all clusters are trees.
When a link is added to the inside of the tree, it becomes a unicyclic element. A unicyclic
cluster is formed when a link between a tree and a unicyclic cluster is added, while a
complex cluster is formed when a link between unicyclic clusters is added.

It may seem that a classification based on the selection of trees, unicyclic and complex
clusters is insufficient, since a whole range of clusters of varying complexity will arise.
Instead, we would have to look at complex clusters in more detail and classify them
according to their Euler characteristics. With a further increase in the number of links, a
situation arises when a giant component can contain all nodes.

The kinetic approach leads to mathematical formalism, first based on equations. We
will briefly consider this approach, but we will deal mainly with the geometric approach.

Now we’ll look at a geometrical variation of the method. We will be working here on
building the complicated clustering with the distribution of a huge part in constructing a
randomized ER network, because we believe that the development of this kind of large
cycle in a network is the most significant feature of consciousness, as described above. The
article’s idea is that when randomized neural-like networks are generated, large cyclical
patterns will develop with a specific mathematical probability.

The topic of the presented article relates to graph theory. In this paper, we model
the quasi-chaotic growth of a graph. The algorithm parameters allow you to choose
different growth strategies for a random graph. In this case, the spread of cyclic and
other parameters in the structure of the resulting graphs is estimated. The research strat-
egy is based on repeated series of experiments under equal initial conditions. We have
found that the statistical spread of the output parameters of the synthesized graphs has a
characteristic distribution.
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Speaking about cyclic structures in a graph, we note the connection of such structures
with the phenomena of symmetries and asymmetries of the brain, as well as the phenomena
of reflexes, higher nervous activity, preconsciousness, and consciousness.

We offer two strategies for creating expanding randomized networks with a neural-
like topology.

3.1. Method One

The algorithm is essentially a step-by-step growth of the graph G. At each step, one
vertex is added, which is connected by an edge to a random vertex of the graph until
the maximum number of steps is reached. The algorithm of simulation of randomized
networks that grow is shown in Figure 1.
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Figure 1. The randomized network structure algorithm.

3.2. Method Two

The second method is more neuro-like because it is based on random tree structures.
These tree structures have such parameters as the number of tiers of the tree, and a range
of numbers corresponding to random branches for each neuron. Moreover, the parameter
of the algorithm is the number of feedbacks between the trees to combine them into a
single structure.

Method two is the following. The first step is to create a random tree. The depth and
branching of the trees are the algorithm parameters. The number of outgoing synapses from
each graph vertex is determined by a range of integer values. The number of branches at
each phase is its parameter. The second step is the using of multiple feedbacks to combine
these trees. Only between the outputs of certain trees and the inputs of others link can
be formed.

Tracked parameters: the number of simple paths, the number of simple cycles, Eu-
ler’s characteristic.

Method two generates graph structures that to some extent reproduce the neural
connections in the brain. In the structure of the graph, ganglion formations are reproduced
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in the form of bundles or clusters. The simulated formations have a tree-like structure. In
this regard, free parameters of the algorithm for generating a neural-like graph are the
number of such trees, their depth, their branching, as well as the number of feedbacks
between tree structures. All free parameters are selected equally likely from a given range
of values. The following parameters were used in the experiments:

• Number of trees, 100–1000
• Depth of trees, 4–12
• The number of outgoing edges from each vertex, 2–8
• Number of feedbacks, 10–20

The algorithm is designed to generate a wide range of neural-like structures with vari-
ous properties, such as the intensity of feedbacks, network structure, cluster organization.

Since the algorithm is step-by-step (dynamic), it can to some extent simulate the
process of evolution, the result of which is the emergence of higher nervous activity
and consciousness.

In this study, the authors did not consider the functions of individual neurons, but
studied only the structures of neural-like networks. Classical artificial neural networks
can act as neurons. Multiple feedbacks, which are reproduced by the above algorithm, are
known to be responsible for the processing of dynamic information. However, the practical
application of generated neural networks is beyond the scope of this study.

4. Results of Simulation of the Growing Graphs

Figures 2 and 3 demonstrate the results of simulation experiments with network layouts.
As can be seen from Figure 3, all processes are explosive-like, or a similar nature.

Figure 2a,b shows a sharp exponential growth in graph dynamics. This growth is due to
the growth in the number of simple paths and, at the same time, simple cycles. In Figure 3c
the growth of the Euler number has a different character. In the bottom row of Figure 2,
you can also pay attention to the explosive growth of dynamics. Here we display the
relationship between the variables to each other: this is the Euler number, the number of
simple cycles and the number of simple paths. Thus, almost any described algorithmic
process is associated with explosive dynamics. This dynamics is considered by us as a
complication of the structure of neural networks in the process of natural evolution.
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Figure 3. Based on method one, there are 70 network expansion processes (70 repeats). At the
top, the abscissa axis represents the step, and the ordinate axis represents the value (a—number of
simple paths, b—number of simple cycles, c—Euler number). Below the abscissa axis represents the
number of simple cycles, and the ordinate axis represents the number of simple paths (d); the abscissa
axis represents the number of simple cycles, while the ordinate axis represents Euler’s number (e);
the abscissa axis represents the number of simple paths, and the ordinate axis represents Euler’s
number (f).

To estimate the numerical parameters obtained during the growth of quasi-chaotic
structures according to certain given rules, it is expedient to use the method of multiple
repeated experiments. Thus, fixed parameters of the algorithm (initial conditions) are set,
and the growth of the graphs is repeated N times, for example, N = 100. The idea is to
generate some percentage of complex structures with a large number of neural network
cycles. We believe that with neural network modeling, these networks will have precon-
sciousness. Thus, finding a structure with giant cyclic clusters will facilitate the transition
from artificial intelligence to artificial consciousness.

To analyze the results, we used data from a random experiment, in which we con-
structed networks with a configuration comparable to the columnar arrangement of the
neocortex with natural cycles (Figure 4). Feedback can only be formed between input and
output vertices of different trees. Tables 2 and 3 show the statistical data values.
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Numerical tests have shown that Method two, like Method one, has the property of
a quasi-distribution of the set of generated simple cycles. In 1% of situations, there is a
large increase in the number of simple pathways, which is 1400 times greater than the
average statistically.
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Table 3 shows that even with a limited number of experiments, the differences can be
hundreds of thousands of times (150 experiments). Trees in the structure of the graph, in
accordance with the hypothesis of the study, are used as models of columnar neocortex
structures. The results of quantitative tests are compared with neuropsychology parameters,
revealing that the fMRI data of the normal and pathological cortex differ [37,38].

Table 2. The study of the events in the organization of networks, and the probability of corresponding
value ranges.

Steps
35 45 70

Range Prob. Range Prob. Range Prob.

Paths
Usual behavior [1;120] 98% [1;90] 99% [1;300] 98%

Anomaly [120;160] 2% [100;220] 1% [300;600] 2%

Cycles Usual behavior [1;20] 87% [0;30] 99% [0;30] 97%
Anomaly [20;30] 13% [30;50] 1% [30;60] 3%

Euler number Usual behavior [6;16] 100% [8;18] 100% [13;23] 100%
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Table 3. Probability of belonging to a range of values for evaluating statistical anomalies in the
structure of graphs.

Number of Experiments
150 300

Range/Value Prob. Range/Value Prob.

Paths
Usual behavior [0;1] 99% 0 95%

Anomaly 680 1% [300;7000] 5%

Cycles Usual behavior [0;40] 100% [0;800] 97%
Anomaly - - [450;1400] 3%

Euler number Usual behavior [−30;−5] 100% [−14;−38] 100%

5. Discussion

Speaking about the network and cyclical structures that model consciousness, the
contribution of the Russian neurophysiological school should be noted. These are Pavlov’s
theory of conditioned reflex and academician Anokhin’s theory of functional systems.
The development of the theory of the functional systems is the neurocomputer model of
the brain [39]. This is a technical model of the brain, which is interesting because it is
suitable for studying cyclic structures in neural network processes and, at the same time, is
a combinatorial model given in a discrete space.

We will try to apply this approach to the Embryo neurocomputer (where, in fact, all the
vertices of the network are nested in the space-time hypercube) or to the Zhdanov’s models
(Neurox), where we can run the emulation on an arbitrary graph with the construction of
neurograms of neuron activity over time [40].

Some artificial neural nets, such as the spiking neural network [41], may also prove
valuable in future simulations. Recommendations for conducting real experiments can be
generated based on the results of proper network tests. There have been new studies on
fast neuronal signaling patterns. The brain’s global properties are explored, for example,
in [42]. It has become possible to record the activity of huge populations of neurons and
individual cells [43]. Since new tomographs can record blood flows in the brain, it will be
possible to determine the circulation of neuron messages indirectly using these methods.
Neurogenetic approaches can be used to encode the registered sections of neurons. When
analyzing neural activity systems in different environments, the goal may be to detect
the appearance of signal complication in neuronal systems, up to the detection of cyclic
structures (as aspects of the expression of consciousness).

The results obtained in this work show the self-organizing properties of growing
graphs. At the same time, graphs need not necessarily model only neural networks. They
can also model complex social and eco-biological systems. In this regard, the authors
propose to expand the principles of connectionism, which are widely used in neuroinfor-
matics, with the help of data obtained on the self-organization of complex network systems.
This can be useful in neurosciences and network modeling of complex objects, processes,
and phenomena.

We support the view on the theory of consciousness similar to [44] as a general neuro-
model. Some theories of consciousness are mentioned by Anokhin, namely, a selection
theory of neural groups [45], the theory of neuron coalitions [46], a global neural workspace
theory [47], and an integrated information theory [48]. The author of [16] suggests that to
understand consciousness, it is necessary to consider the brain not as a connectome-neural
network, but as a cognitome—a neural hypernetwork consisting of neuronal groups with
specific cognitive properties. The structure of the cognitome is the structure of the mind,
and consciousness is a specific process of large-scale integration of cognitive elements in
this neural hypernetwork. Our concept actually partially overlaps with Anokhin’s, but
our model is more specific and considers this “hyperstructure” as a cluster (cycle) or a
system of clusters. There are some conditions formulated in [44] for adequate theories
of consciousness, in particular, the theory should reflect the features of evolution. In our
model, due to the peculiarities of algorithms for growing graphs, evolutionary features can



Symmetry 2022, 14, 505 11 of 14

be reflected (such structures are also reproduced in the embryo). The problem is how to
replicate these complex cluster systems in the educational process. Perhaps the structure of
a random graph is insufficient for a complete description, but some necessary conditions
for an adequate reflection of important properties of consciousness have been confirmed.

The purpose of our article was to construct a theoretical justification of the grapho-
neuron model of the hypothetical structure of consciousness and try to distinguish it
among other theoretical concepts centered around the problem of the neural basis of
consciousness. There is a general statement formulated, for example, in [46]: “You do not
need to invoke a homunculus, a little person living in the brain, to interpret the meaning of
perception.” In our approach of random clusters of graphs, the neurosystem as a whole can
be divided into parts of cycles (clusters), and one part can “contemplate” the other, creating
a subjective impression.

We emphasize the fundamental “qualitative leap”, “phase transition” in the complex
tree structure of the graph, which can lead to the manifestation of “elements of conscious-
ness” and even to self-awareness in pairs of clusters. This is a necessary condition, not a
sufficient one, but it provides specific information that can be attempted to be recognized in
experimental studies such as EEG, tomography, etc., and which is referred to in the findings
as prospective. On the other hand, this concept can be compared with other theoretical
approaches, in particular with the mentioned global structure of Anokhin’s cognitom. Note
also that the percolation transition (in a different sense) is the subject of some studies of
brain oscillations during criticality in [16]. Topographic representations may be relevant to
neural networks, but this is questionable.

It should be noted that the presented results are promising in neurocomputer interfaces,
man-machine systems, and artificial intelligence systems. This statement is based on the
fact that the so-called impulse neural networks today got a wide distribution. In such
networks, it is not the coefficients of synaptic connections that are fundamentally important
but the structures of synaptic connections between neurons. The corresponding area
of algorithmic mathematics related to optimization or finding the form of giant neural
networks is undoubtedly significant. Networks with a dynamic tunable structure are
much more flexible and reliable compared to networks with a fixed structure. In particular,
classical neural networks with a fixed synaptic structure can fall into the local optimum of
control functions when optimizing procedures. This can lead to a result that is inadequate
to the real situation and, as a result, to an unjustified risk in man-machine systems.

6. Concluding Remarks

In the course of simulations, the properties associated with cyclic structures were
estimated. The described approach allows us to investigate clusters.

The human brain, as well as all its organs, suborganic structures, and tissues, have
pronounced fractal properties with their own symmetries and asymmetries. The same
applies to DNA structure. This is especially clearly demonstrated in the article [14] with a
description of the DNA visualization algorithm and examples of fractal structures display.
These structures have symmetrological properties. It is logical to assume that the inherited
fractal structure of DNA is realized in the form of a fractal structure of the brain and the
whole organism, with preservation of fractal and symmetrological properties.

In this regard, our proposed theory of the origin of consciousness certainly has a
connection with evolutionary genetics. From the point of view of symmetry, the fact of
symmetrological properties of human brain and DNA is of great evolutionary importance,
which is caused by interference properties of multilevel organization of complex fractal
structures of living matter.

Recently, there has been a trend toward the use of artificial intelligence systems for
assessing and monitoring the state of operators of complex technical systems (airplanes,
high-speed trains, etc.). This is an important area of research, due to the fact that the
accuracy of actions, the efficiency, and the safety of large technical systems are associated
with the health of the operator, his motor control, and mental functions. In this regard, the
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study of the phenomenon of consciousness from the standpoint of complex cyclic structures,
symmetries, and neuro-modeling can be useful for the design of neuro-interfaces in critical
control systems. The relevance of assessing the condition of operators of complex technical
facilities will be increasing constantly.

It seems promising to refine the presented algorithms so that they allow modeling the
symmetry and asymmetry of large cerebral structures and the whole brain, including the
cerebellum, hypothalamus, right and left hemispheres, each of which is responsible for the
corresponding higher mental and cognitive functions.

The algorithms presented in this paper can improve the understanding of methods for
developing machine vision systems, decision support systems, medicine, rehabilitation,
manufacturing, and in intelligent agents. Overall, the presented concept, covering the
algorithms for the synthesis of cortical networks, symmetry in DNA, and the brain, seems
promising to the authors and requires further research. We see that the improvement of
algorithms for generation of neural structures based on genetic and molecular genetic
algorithms, as well as by introducing symmetry/asymmetry coefficients into the generated
large neural-like structures, is promising.

The possibility to modify the algorithm for the synthesis of neurostructures with
generalization to two hemispheres at once will make it possible to construct biosimilar
objects in which, as we believe, a highly organized model of consciousness can emerge.
However, this requires a series of experiments using high-performance supercomputers.

This approach to the construction of giant neural networks differs from the classical
one, in which the network uses a relatively small number of neurons, necessary to provide
only the problem to be solved. On the other hand, the approach based on the percolation
theory allows us to take a fresh look not only at the phenomenon of consciousness but also
at neuroinformatics in general. Obviously, the future is in large neural networks modeling
complex processes in the brain, including complex cyclical processes and structures. A
step in this direction is recurrent neural networks, which are widely used for analysis and
prediction of dynamic processes.

It should be noted that this study can be compared with transitions to new types of sym-
metry, for example, in phase transitions of the second order: ferromagnetic-paramagnetic,
etc. In general, the chaos-order transition can be accompanied by the appearance of complex
structures with symmetric properties (Benard cells, etc.).

Modeling of consciousness is promising in the gaming industry and social networks.
Social connections can be displayed in the form of graph structures, and the actual identi-
fication and modeling (design) of closed cycles of different scales, fractal structures, and
symmetries in social networks is an important and urgent task. It is necessary to improve
the efficiency of socio-economic relations, social engineering with the ultimate goal of
building highly developed social structures.

Control of large clusters based on the theory of percolations in both large neural-like
and real socio-economic systems will make it possible to identify new types of processes
and phenomena at the intersection of various subject areas, the study of which may be
of significant interest for science and technology. This becomes especially relevant in
connection with the rapid development of bioinformatics, where new tools for research
and genome editing are emerging. In this regard, it is advisable to apply the methods of
visualization of large genetic data in conjunction with neuro-modeling of large networks to
search for giant clusters in biological and ecological systems.

The use of the percolation approach is also promising for the study of mental processes,
in particular, speech disorders or other disorders caused by mental disorders or lesions
of cerebral structures. Devices that stimulate different parts of the brain or individual
neurons by electrical or electroacoustic influence for preventive and therapeutic purposes
are currently being developed and implemented. These devices should take into account
the structure of large cycles in the brain responsible for the corresponding pathologies.
This will make it possible to fine-tune the operating modes of the device to enhance
the therapeutic effects. This refers to increasing the efficiency of the brain based on the
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method of transcranial stimulation. Complex configurations of cyclic structures can set
the parameters of the electromagnetic field acting on the brain of a human operator in the
process of solving a problem or controlling a technical object to increase the productivity of
mental work, safety and efficiency of the operator’s activity.
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