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Abstract: In the present work, a single-crystalline epitaxial nonpolar a-plane AlN film with in-plane
two-folder symmetries was successfully achieved on an r-plane sapphire substrate, by combining
physical vapor deposition and a high-temperature annealing technique. Moreover, by varying the
AlN thickness, the evolution of crystalline quality and structure were systematically investigated
using X-ray diffraction, Raman spectroscopy, and atomic force microscopy. The crystalline quality
was much improved by the annealing treatment. Most importantly, when the thickness of AlN was
increased up to 1000 nm, the AlN lattice was found to endure strong distortion along the out-of-plane
direction, and the lattice showed an obvious expansion. The change of the surface morphology
induced by high-temperature annealing was also tracked, and the morphology displayed structural
anisotropy along the

[
1100

]
direction. Our results act as a crucial platform to better understand and

employ the nonpolar AlN template; in particular, it is of importance for subsequent device fabrication.

Keywords: nonpolar; a-plane AlN; r-plane sapphire

1. Introduction

In the past decades, the development of GaN based light-emitting diode (LED) and
laser devices has thoroughly revolutionized human luminescence history [1–5]. However,
several intrinsic properties, of both material and physics aspects, still act as disadvantages
to block their further develop. One of the significant reasons is the strong polarization
induced by the quantum confined stark effect (QCSE), which causes the deviation of carrier
wave function along the c-axis [6,7]: the spontaneous polarization along the [0001] direc-
tion in a conventional LED sets up an electric field that undesirably impedes the carrier
recombination in the quantum well region [6–8]. In particular, such a phenomenon grad-
ually dominates upon increasing the c-axis polarization contribution, e.g., it is obviously
enhanced when aluminum concentration is increased in an AlGaN compound [9–11]. This
is detrimental to luminance devices with a high Al concentration, e.g., an LED or laser in
the ultraviolet-C region (UVC band, wavelength < 280 nm) [10]. Moreover, in UVC–LED
devices, such intensive polarization results in high TM luminance mode, which transfers a
large part of emissions from the plane to edge region; thus, this again reduces the emission
of the device [12,13]. It is worth noting that, under the above-mentioned influences, the
UVC–LEDs normally exhibit a wall plug efficiency (WPE) less than 10%, which is far from

Symmetry 2022, 14, 573. https://doi.org/10.3390/sym14030573 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030573
https://doi.org/10.3390/sym14030573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0124-6315
https://orcid.org/0000-0001-7129-1974
https://doi.org/10.3390/sym14030573
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030573?type=check_update&version=3


Symmetry 2022, 14, 573 2 of 11

the value of a GaN based blue-LED [11,14]. Therefore, exploring a strategy to reduce the
polarization field is of great interest, to further develop UVC luminance devices.

In fact, utilizing the non-polar or semi-polar face of a nitride semiconductor has
been proven effective to improve the performance of luminance devices in the visible
band, through avoiding the polarization field. For instance, Nakamura’s group reported
excellent lighting efficiency by employing a semipolar

(
2021

)
and

(
1011

)
InGaN/GaN

LED [15,16]; a green LED on
(
1112

)
a free-standing GaN template also presented the

advantages of high power and high efficiency [17]. Therefore, it is expected that the
strategy of a non-polar or semi-polar sapphire substrate will be introduced into UVC–LEDs,
due to the UVC-transparent characteristics of sapphire substrates, and plenty of studies
have been carried out into the preparation of various types of non-polar AlN templates
on sapphire substrates [18–24]. Recently, the technique of high temperature annealing has
become attractive, due to its success in improving c-plane AlN template quality and the
corresponding UVC–LEDs [25–27]; thus, it makes senses that such a strategy is employed
in the preparation of a non-polar AlN template.

In the present work, by fully combining physical vapor deposition and a high tem-
perature annealing technique, we successfully achieve a single-crystalline non-polarized
a-plane AlN on a semi-polarized r-plane sapphire substrate. According to systematic
investigations on crystalline structure, a two-folder structural symmetry was created in the
as-sputtered a-plane AlN on an r-plane sapphire substrate. Moreover, the high temperature
annealing operation greatly improved the crystalline quality and reset the strain statues
in the as-sputtered samples. In particular, upon increasing AlN thickness, a crystalline
distortion along the out-of-plane direction was found to present a strain evolution. As a
result, our results act as a solid and meaningful example for lateral research on non-polar
nitride semiconductors based LEDs, by fully employing the structural symmetry of a
nitride semiconductor.

2. Experiment
2.1. Synthesis

The AlN templates were prepared on r-plane sapphires by physical vapor deposition
(PVD). The aluminum (purity ~ 99.999%) was the target, and the sputtering ambience
was a mixture of argon and nitrogen, at a ratio of 1:4. The sputtered AlN was 500 nm, by
calibrating the growth speed, and the sputtering power and temperature were 3000 W and
500 ◦C, respectively. Afterwards, the as-grown AlN templates were annealed in a tube
furnace at 1700 ◦C for 5 h, and the annealing ambience was nitrogen.

2.2. X-ray Diffraction (XRD) Characterization

The X-ray diffraction rocking curves of AlN (100) and (110) planes, 2theta-omega,
and phi scans were measured using X-ray diffraction (XRD, Brucker D8 Discovery), to
obtain the AlN crystalline information. A Cu target was used to excite the Kα1 X-ray, with
λ = 0.154056 nm.

2.3. Atomic Force Microscopy (AFM) Characterization

Atomic force microscopy (AFM, Veeco Dimension TM 3100) with a typing mode was
used to explore the surface morphology of all AlN samples.

2.4. Raman Spectroscopy Characterization

Raman spectroscopy was performed using a LabRam HR Evolution microscopic
confocal Raman spectrometer from Horiba. The micro-Raman spectroscopy was excited by
532 nm laser, and the laser beam was focused on a spot size about 0.7 µm in diameter.

3. Result and Discussion

Figure 1 shows the crystalline quality of the as-grown and annealed AlN samples
using an X-ray diffraction rocking curve, in order to evaluate the contribution of high
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temperature annealing to lattice reordering. Therefore, (110) and (100) crystalline planes
were selected to explore the crystalline order along the out-of-plane and in-plane com-
ponents, respectively. Before the high temperature annealing operation, both planes did
not present any diffraction peaks, indicating poor crystallinity. However, the annealing
treatment triggered the crystallization of the lattice, and, accordingly, both planes displayed
strong diffraction peaks in the X-ray diffraction rocking curves. The full width at half
maximums (FWHM) of the (110) and (100) plane rocking curves were 0.36◦ and 0.42◦,
respectively. According to a previous study, the quality of our a-AlN is comparable with
an MOVPE grown a-AlN at the optimal temperature of 1250 ◦C [28]. However, it is worth
noting that it seems that the annealing time does have an influence on the crystallinity
of nonpolar AlN templates. According to the study from Chia-Hung Lin et al. [21], an
annealing time of only 10 min at 1700 ◦C produced an outstanding crystalline quality, with
(110) and (002) FWHMs of 770 and 640 arcsec, respectively. Actually, the crystallinity is
strongly dependent on the layer thickness, due to the effect of the AlN–sapphire interface.
In Figure 1c, the thickness dependent FWHMs of both planes are plotted for analysis. The
500-nm thick sample exhibits the best crystal quality, probably as the main AlN part is
away from the interface.
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Figure 1. XRD rocking curves of (a) (110) and (b) (100) planes of as-grown and annealed 500 nm
thick samples; (c) thickness-dependent FWHMs of (110) and (100) plane rocking curves of annealed
AlN samples.

For the out-of-plane direction, the coexistence of the sapphire (012), (024), (036), and
AlN (110) plane diffractions can be clearly observed, which indicates the epitaxial relation
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of the a-plane AlN on r-face sapphire. For the as-grown sample, the AlN (110) peak is
broad and noisy, whereas the annealing treatment intensively sharpens the diffraction
peak, indicating an improvement in crystallinity. Moreover, after the high-temperature
operation, the diffraction of the (100) plane with in-plane component started to appear
when the measured Chi was set as 30◦, as shown in Figure 2b. As presented in Figure 2c,
calibrated by the sapphire (024) diffraction peak, the annealed a-plane AlN films present
almost the same diffraction position at 2θ = 59.19◦ as the (110) plane, when the thickness is
below 500 nm. However, the (110) plane diffraction shifted towards the small angle side at
2θ = 59.05◦ for the 1000 nm thick sample, suggesting that lattice expansion occurred. The
lattice parameter was calculated as 1.5640 Å for the 1000-nm thick sample, which is larger
than the value of 1.5608 Å in the other samples. According to a previous study [29], an
MOCVD grown 1000-nm thick AlN exhibited a (110) diffraction peak at 2θ = 59.4◦, which
means that the annealed AlN sample exhibited larger lattice parameters than an MOCVD
grown sample. Such a difference is probably due to the ultra-high temperature treatment
inducing an intensive compressive strain in the annealed sample.
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Figure 3 shows the Raman spectra of annealed samples with different thicknesses,
and various phonon vibration modes were investigated. The measurements were carried
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out under natural light excitation; therefore, consideration of polarized vibration was
not needed. As shown in Figure 3a, for annealed samples with different thicknesses, the
coexistence of sapphire and AlN signals was observed. In all samples, various sapphire
vibration phonons were observed at positions of 378.5, 415.5, 429.6, 575.7, and 749.8 cm−1.
For AlN film, three vibration peaks were seen: the A1(TO), E2

H, and E1(TO) modes at
around 644.2, 663.2, and 675.8 cm−1; the corresponding vibration mode schemes are shown
in Figure 3b. The appearance of all Raman signals indicates the good crystallinity of the
annealed samples.
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Figure 3. (a) The full Raman spectra of annealed samples with different thicknesses, and the phonon
vibration signals of the sapphire substrate and AlN epilayer are labelled; (b) the scheme of different
phonon vibration modes in the AlN lattice.

In order to show more detailed information, the AlN peak region of both the as-grown
and annealed samples are both zoomed in, for a convenient reading and comparison.
The Raman peaks of the annealed samples are much sharper than ones in the as-grown
samples, indicating the crystalline quality was greatly improved by the annealing process.
All Raman scattering peaks from the AlN fit, in terms of the Lorentzian function, and the
FWHMs and Raman shifts are shown in Figure 4c,d. It is worth noting that the A1(TO)
mode did not change very much, despite it being under the annealing operation, including
both the FWHM and Raman shift. In addition, it can be observed that the A1(TO) vibration
presents a redshift feature upon increasing thickness. A similar characteristic was observed
in a-AlN with buffers grown at different temperatures, which resulted from the introduced
strain [30,31]. However, the HTA had an obvious contribution to the E2

H peak, and it can be
noted that both the FWHM and Raman wavenumber were greatly decreased by HTA. The
FWHM reduction mainly resulted from the improvement of crystalline quality; however,
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the decreased Raman wavenumber was caused by the strain resetting after annealing.
When compared with the strain-free E2

H signal at 657 cm−1 in bulk AlN, our as-grown
a-AlNs present a blueshift, while the annealed samples exhibit a redshift. According to
previous studies [32], the phonon frequency reduction and increase are caused by the lattice
expansion and shrinkage, respectively. The Raman results are in agreement with the XRD
2Theta-Omega scans.
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Figure 4. The region of Raman spectra from 630 to 680 cm−1 of (a) as-grown and (b) annealed
samples; the FWHM (blue open labels) and Raman shift (red solid labels) of (c) A1(TO) and (d) E2

H

modes, as dependent on the thickness of the as-grown (diamonds) and annealed (squares) samples.

The epitaxial relation between r-plane sapphire and a-plane AlN film is presented
in Figure 5. According to the phi scans in Figure 5a, when the Chi was set as 57.61◦ and
30.66◦, respectively, peaks from the sapphire (006) and AlN (100) planes were visible. The
phi positions of the two diffraction peaks are both vertical, indicative that the in-plane
component of the r-sapphire c-axis is parallel with the c axis of a-AlN. Such a phenomenon
is consistent with previous studies on AlN and r-sapphire substrates [33–35].
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Figure 5. (a) The XRD phi-dependent polar figures of r-sapphire substrate (006) and a-AlN (100) film,
it is clearly observed that the in-plane components of the AlN and sapphire are both vertical. (b) The
lattice scheme of the a-AlN and r-sapphire from the out-of-plane direction (r-direction of sapphire
and a-direction of AlN); (c) three-dimensional crystalline scheme of the epitaxial relationship between
the sapphire substrate and AlN epilayer.

The detailed epitaxial structure between the a-AlN and r-sapphire substrate is shown
in Figure 6. Unexpectedly, when a Chi scan was carried out to examine the (100) plane, the
value of the Chi angle continuously reduced upon increasing the thickness. In particular,
after being calibrated by the sapphire miscut angle and AlN out-of-plane

[
1120

]
direction,

the Chi angle was as small as 25.4◦ when the thickness was 1000 nm. This is smaller than
28.0◦ in the 500-nm thick sample and the ideal 30◦ in the strain-free case, as shown in
Figure 6a. Such a difference indicates a uniaxial structural distortion in the lattice, and this
is presented in Figure 6b.
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Figure 6. (a) Chi scans of the (100) plane of AlN samples with 500 and 1000 nm thickness after
calibrating the

[
1120

]
direction of the sapphire substrates; (b) the corresponding scheme of lattice

distortion describe in (a).

In order to investigate the surface morphology, we employed atomic force microscopy
for the as-grown and annealed a-AlN, for a comparison. Unlike the conventional c-AlN
on c-sapphire, which presents a particle-like morphology, the as-grown a-AlN shows
an obvious lattice-direction oriented morphology along the AlN

[
1100

]
direction. The

growth mode of the as sputtered AlN layer has a typical three-dimensional (3D) growth
before thermal annealing, due to the lack of sufficient Al immigration during the low
temperature sputtering process. The root mean square (RMS) index was calculated as
4.9 nm. Subsequently, the annealing operation activated the merging of the micro-crystals,
and it can ce observed in Figure 7b that the crystal size became larger and the

[
1100

]
oriented feature is much more obvious. However, a similar morphology was observed
in a-GaN or a-AlN on r-sapphire substrate by MOCVD; however, the surface from the
MOCVD grown sample was flatter than the sample herein [18,36]. Actually, the selection of
preparation conditions can modulate the morphology, e.g., the employment of a three-step
pulsed flow growth method can suppress the appearance of such a surface by MOCVD [31].
Interestingly, for the hydride vapor phase epitaxy (HVPE) grown sample, the as-grown
sample presented an obvious anisotropy morphology when it was prepared at 900 ◦C, and
this strip-like form was retained during the 1600~1700 ◦C annealing [21]. However, in
our case, the annealed sample presented 9.6 nm RMS, which is twice the value of the as-
grown sample, which was probably due to the surface decomposition during the annealing
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operation, although the Al immigration was ensured in such a high temperature treatment.
Therefore, it is particularly worth noting that in order to avoid a negative contribution from
the morphology, the surface decomposition has to be considered.
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Figure 7. The AFM images of (a,c) as-grown and (b,d) annealed samples.

The evolution of the AlN lattice and morphology is critically important for subsequent
device epitaxy. The crystalline state determines the dislocation behavior and strain in the
upper device, including dislocation generation, movement, merging, and annihilation.
The strain state not only works through the above-mentioned dislocation features, it also
contributes to the device performance via energy band modulation. The morphology
has a great effect on nucleation in the subsequent epitaxy process; therefore, acting as
an important base, which has to be considered for the upper device design and growth.
When compared with the other studies of a-AlN, our investigation mainly focused on the
crystalline information; moreover, we also initially explored the large lattice distortion
along the out-of-plane direction upon increasing the AlN thickness.

4. Conclusions

In summary, through combing physics vapor deposition and a high-temperature
annealing technique, we successfully prepared an in-plane two-folder symmetric epitaxial
nonpolar a-plane AlN on a semipolar r-plane sapphire substrate. The high-temperature
annealing intensively reordered the lattice; therefore, improving the crystalline quality of
the as-sputtered AlN film. According to systematic studies by XRD, Raman, and AFM, the
post-annealed lattice can endure expansion upon gradually increasing the AlN thickness. In
particular, it was found that a large thickness of around 1000 nm leads to adverse stretching
along the out-of-plane direction, according to the XRD results. When compared with other
conventional template materials, e.g., c-AlN, which exhibits intensive polarization along
the out-of-plane direction, the specific in-plane two-fold symmetric structure confirms
the successful preparation of a non-polar AlN template, and has potential to enhance the
emission performance along the out-of-plane direction in optoelectronic devices.
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