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Abstract: An exploration task can be performed by a team of mobile robots more efficiently than
human counterparts. They can access and give live updates for hard-to-reach areas such as a disaster
site or a sewer. However, they face some issues hindering them from optimal path planning due to
the symmetrical shape of the environments. Multiple robots are expected to explore more areas in less
time while solving robot localization and collision-avoidance issues. When deploying a multi-robot
system, it is ensured that the hardware parts do not collide with each other or the surroundings,
especially in symmetric environments. Two types of methods are used for collision avoidance:
centralized and decentralized. The decentralized approach has mainly been used in recent times,
as it is computationally less expensive. This article aims to conduct a systematic literature review of
different collision-avoidance strategies and analyze the performance of innovative collision-avoidance
techniques. Different methods such as Reinforcement Learning (RL), Model Predictive Control (MPC),
Altruistic Coordination, and other approaches followed by selected studies are also discussed. A total
of 17 studies are included in this review, extracted from seven databases. Two experimental designs
are studied: empty/open space and confined indoor space. Our analysis observed that most of
the studies focused on empty/open space scenarios and verified the proposed model only through
simulation. ORCA is the primary method, against which all the state-of-the-art techniques are
evaluated. This article provides a comparison between different methods used for multi-robot
collision avoidance. It discusses if the methods used are focused on safety or path planning. It also
sheds light on the limitations of the studies included and possible future directions.

Keywords: decentralized; multi-robot; collision avoidance; path planning

1. Introduction

The use of autonomous mobile robots has increased in various fields of life in recent
times. Mobile robots are being used in industry, medicine, search and rescue, and other
applications. Most of these applications require a team of robots to fulfill the task ef-
ficiently and in less time than their human counterparts [1]. However, they face some
issues hindering them from optimal path planning due to the symmetrical shape of the
environment. Multiple robots are expected to explore more areas in less time while solving
robot localization and collision-avoidance issues. In a scenario where a team of mobile
robots is operating, it is necessary to keep them safe from collisions and the surroundings.
Collision avoidance for a multi-robot system forms the focus of many current studies. When
deploying a multi-robot system, it is ensured that the hardware parts do not collide with
each other or the surroundings, especially in symmetric environment. There are two main
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approaches used to address collision avoidance in multi-robot systems: centralized and
decentralized [2]. The centralized approach is efficient only for small groups of robots,
and for large groups, the decentralized approach is more effective, as it is less expensive
computationally. A decentralized method that uses a triangular grid pattern was intro-
duced by Yang [3], using previously explored maps and information from neighbors to
avoid collisions.

The agents need a communication system to inform them about their current position
and velocity in a decentralized approach. Various types of communication setups have
been introduced in recent years. The Alternating Direction Method of Multipliers (ADMM)
used by Rey et al. [4] works so that each agent communicates with the neighboring agents,
creating a local coordinate system. The setup can manage transmission from all the agents
simultaneously. Being a decentralized network, it can manage frequent setup changes
and failures. Rodríguez et al. [5] used the velocity information of each agent to create
a cooperative communication setup. The relative velocity of agents was then used to
decrease an individual agent’s detection region, resulting in collision avoidance. A scheme
suggesting the use of a shared memory-driven device for coordination and communication
was presented by Pesce et al. [6]. Each agent utilizes the shared device to learn from the
collective private observations and share relevant information with other agents. Deep
reinforcement learning and Voronoi cell setup were proposed in Wang et al. [7] and Nguyen
et al. [8] to ensure cooperative behavior among the agents. Another approach towards
collision avoidance is by using a local or global path planner. These approaches use
path-planning strategies such as GMapping [9] to avoid collisions [10,11]. Socially aware
path-planning strategies have gained popularity recently. Avoidance of robot-to-pedestrian
collisions, human-like speed of motion, and navigation through dense environments
require carefully planned trajectories [12,13]. When planning a trajectory, the structure of
the environment also plays a vital role in collision avoidance. It is essential to explore the
environment carefully to maintain a low time and energy cost while reaching the target.
Some task planner techniques have been presented to address this issue [14]. However,
very few studies have discussed cluttered and confined environments [15,16].

In the process of exploring the databases for this SLR study, it was observed that
most of the studies on collision avoidance are conducted for aerial vehicles [17–19], surface
vehicles [20–22], ships [23–27] and underwater vehicles [15,28,29] However, the focus of
this SLR is only on ground vehicles. By carefully scanning the titles and abstracts of the
studies, any study using other than ground vehicles was excluded. In this SLR, 17 studies
from 2015 to date are selected after systematic screening. All these studies address the
collision-avoidance issue for multi-robots (ground vehicles) directly or indirectly. These
studies propose new algorithms such as CADRL or innovate classic techniques such as
ORCA to avoid collisions. Although various studies were conducted before 2015, they
rarely addressed the issue of collision avoidance in a decentralized manner for confined
spaces. Many studies attempted to resolve the said issue for no more than two agents.
In this SLR, we select only those studies which use decentralized approaches for a large
group of agents in confined space scenarios. Some studies experimented with up to a
hundred agents in different scenarios [2], while others considered techniques such as ECBS
for a group of agents [30].

This paper aims to retrieve the most relevant studies on collision avoidance for multi-
robot systems. A thorough literature review has been conducted to provide a critical
understanding of the collision-avoidance issue for a group of autonomous ground mobile
robots. This paper answers the following research questions:

RQ1. What is the number of primary studies on collision avoidance in the multi-robot
system since 2015?
RQ2. How do researchers report the implemented techniques for avoiding collisions in a
multi-robot system?
RQ3. How does a collision-avoidance technique solve coordination issues?



Symmetry 2022, 14, 610 3 of 16

RQ4. What are the limitations of the current research on collision avoidance in multi-
robot systems?
RQ5 What are the main directions of future research and possible solutions in multi-
robot systems?

2. Protocol for Identifying Related Works of Collision Avoidance for Multi-Robot

The method used by Okoli et al. [31,32] is used as a guideline to answer RQ1 by
extracting the maximum possible details from the studies on collision avoidance for multi-
robots. This method involves planning, selection, extraction, and execution of the review.
The inclusion criteria for the studies was that the study must address the issue of collision
avoidance for multi-robot systems (more than two agents) and should be evaluated for
multiple scenarios at least through simulation. All the works included provided at least one
successful solution for avoiding collisions. They experimented with as many as a hundred
agents in circular, hallway, and deadlock arrangements [2,13,33]. Some of the works
indirectly addressed the issue of planning a collision-free path for a team of robots [34,35].

Eight electronic databases were selected after considering expert opinions on searching
literature. At the same time, another critical feature in selection was the availability of the
most reliable and relevant data. The following is the list of selected databases: Scopus, Web
of Science, Springer Link, IEEE Xplore, ACM Digital Library, and ProQuest. The academic
search engine Google Scholar was also used to expand the search, as it is one of the
most comprehensive sources. The keywords used for the search string were “Collision
Avoidance,” “Decentralized,” “Multi-robot,” “Drone,” “Aerial,” and “Rotor.” Appropriate
Boolean operators were also utilized to ensure meaningful search results. “AND”,” OR”
and “NOT” operators were used to narrow down the search, while the “-” operator was
used in Google Scholar, which is equivalent to NOT. As every database has its search
algorithm, the keywords and Boolean operators were accordingly modified. Besides the
operators, each database was searched with a slightly different arrangement of keywords.

The screening process followed to retrieve the most relevant articles involved three
steps: initially, 852 papers were retrieved from all the databases. After reviewing for dupli-
cation 692 papers were left. To narrow them down further, each study’s title in this review
was scanned to ensure it was related to the topic. Papers that had keywords in their titles
pointing to different issues than multi-agent collision avoidance were excluded. After care-
ful screening, 121 papers were left from 692, which were included for further investigation.
For further screening, the abstract and keywords were scanned more deeply for a better
understanding of the papers which were more relevant to the topic. The inclusion criteria
for the papers for second screening are shown in Table 1.

Table 1. Inclusion and exclusion criteria for article screening.

Inclusion Criteria Exclusion Criteria

Refer to a collision-avoidance technique for a multi-agent system Addressing collision avoidance for agent other than
ground robots

A decentralized approach is followed The technique followed is not based on
decentralized methods

The solution proposed performs better than the conventional approaches The technique proposed is only tested for two agents
Consider multiple scenarios for the experiments Using the keywords without enough information

Published as journals articles, conference papers, and book chapters Focus on path planning or trajectory optimization as
the main topic

Are written in English Include experience papers, forums, comments,
tutorials, opinions, or discussions.Published in or after 2015

A second screening resulted in 42 papers which underwent full-text screening for
quality appraisal and to ensure their relevance to collision avoidance in a multi-robot
system. We analyzed whether papers included put the right amount of emphasis on the
topic and adequately answered the research questions. The main focus of the analysis



Symmetry 2022, 14, 610 4 of 16

was each paper’s aim, description, and methodology. A comprehensive summary of the
screened papers was assembled to answer specific research questions thoroughly. This final
screening resulted in 17 papers out of 852, which fulfilled the entire criteria for inclusion in
this review. The screening process for the number of articles included from each database
after each step is shown in Figure 1.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

Published in or after 2015 Include experience papers, forums, com-
ments, tutorials, opinions, or discussions. 

A second screening resulted in 42 papers which underwent full-text screening for 
quality appraisal and to ensure their relevance to collision avoidance in a multi-robot sys-
tem. We analyzed whether papers included put the right amount of emphasis on the topic 
and adequately answered the research questions. The main focus of the analysis was each 
paper’s aim, description, and methodology. A comprehensive summary of the screened 
papers was assembled to answer specific research questions thoroughly. This final screen-
ing resulted in 17 papers out of 852, which fulfilled the entire criteria for inclusion in this 
review. The screening process for the number of articles included from each database after 
each step is shown in Figure 1. 

 
Figure 1. Number of articles included from each database after each screening process. 

3. Primary Studies on Collision Avoidance in the Multi-Robot System from 2015 to 
2021 

The main focus of the analysis was each paper’s aim, description and methodology, 
where comprehensive summaries of the screened papers were assembled to answer spe-
cific research questions thoroughly. The overview of the systematic screening for each 
source is presented in Table 2. 

Table 2. Overview of the systematic screening. 

Source Initially 
Retrieved 

After Remov-
ing Duplicates 

After First 
Screening 

After Second 
Screening 

After Third 
Screening 

Scopus 108 87 22 11 5 
WoS 78 17 9 5 4 

Springer Link 219 206 25 3 0 
IEEE Xplore 169 134 34 14 3 

ACM Digital Library 36 34 8 1 0 
ProQuest 242 214  23 8 5 

Total 852  692 121 42 17 

Figure 1. Number of articles included from each database after each screening process.

3. Primary Studies on Collision Avoidance in the Multi-Robot System from 2015 to 2021

The main focus of the analysis was each paper’s aim, description and methodology,
where comprehensive summaries of the screened papers were assembled to answer specific
research questions thoroughly. The overview of the systematic screening for each source is
presented in Table 2.

Table 2. Overview of the systematic screening.

Source Initially
Retrieved

After Removing
Duplicates

After First
Screening

After Second
Screening

After Third
Screening

Scopus 108 87 22 11 5
WoS 78 17 9 5 4

Springer Link 219 206 25 3 0
IEEE Xplore 169 134 34 14 3

ACM Digital Library 36 34 8 1 0
ProQuest 242 214 23 8 5

Total 852 692 121 42 17

We present our analysis for the distribution of year published (Figure 2), countries
(Figure 3), publication types (Figure 4), and statistical results from the papers. When
distributing over databases, it was observed that most of the publications, including the
keywords, were held by ProQuest. The literature search performed in this review started
in 2015, showed no papers published in 2016 or 2018 on this particular topic.
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After careful screening, the resulting 17 studies were considered the primary works on
decentralized collision avoidance for multi-robots during the last seven years. The papers
were divided into two classes: analytical and empirical. Careful analysis revealed that most
of the studies used a combination of analytical and empirical approaches. Furthermore,
2 of the 15 studies used the theoretical approach to validate their results. They compiled
some theorems and proved them to validate their proposed model [36]. The rest of the
studies used both approaches to prove their proposed solutions. The validation of the
proposed algorithms was conducted using different simulation setups. Only one of the
studies used real-time experiments to validate the model. None of the studies used the
quantitative approach, as it was unsuitable for the issue under consideration. Three studies
innovated and applied existing models and used a mixed approach to validate their
proposition [37–39]. No specific studies focused on purely qualitative approaches or case
studies, as these methods are not suitable for the topic. The topic of collision avoidance
in a multi-robot system needs a more practical approach than a theoretical one and needs
experiments to apply and validate the results.
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4. Characteristics of Collision Avoidance in Multi-Robot System Techniques

This section discusses RQ2, involving the main characteristics of various collision-
avoidance techniques using reinforcement learning (RL) and non-reinforcement learning
(non-RL) for a multi-robot system. It was observed that only a few studies address the
said issue directly, while others propose a path-planning algorithm that avoids collisions.
Each study considered the hardware specifications of the agent to implement the proposed
model effectively. Different real-world scenarios were evaluated to narrow the simulation
and real transition gap. Following is a summary of each related study. The summary of the
technique experimental design, benchmark, strength, and weakness on all selected studies
are summarized in Table 3.

Table 3. Synthesis analysis of decentralized collision avoidance.

References Technique No of Agents Experimental Design Benchmark Strength Weakness

Non-RL approaches

[33]
Continuous

Best-Response
Approach

4 Indoor but open
space maps ORCA Shorter paths Prolongation

issue

[30]

Push and rotate
with bounded-

suboptimal
ECBS

4 Open Space ORCA Higher success
rate N/A

[39]
Voronoi cells

superimposed
with RVO cones

4, 10, 25, 70 Open space ORCA
Passive collision

avoidance
guarantees

Not optimized

[40]
Safe Zone

Discrete-ORCA-
MPC

4 Open space PID,
PB-NC-DMPC

Non-holonomic
robots

Not suitable for
the unknown

scenario

[41] Alturistic
coordination 8 Indoor and confined

spaces PID Local adjustments
capability

Ignore low-level
control

parameters

[36] Modified
MR-DFS strategy 2 Open space MR-DFS Reduces edge

traversals
Only static
obstacles

[5] Velocity-based
detection regions Up to 20 Open space Constant

detection radii

Yield faster
and less

conservative
trajectories

N/A

[34]

Spot
Auction-based

Robotic Collision
Avoidance

Scheme
(SPARCAS

Up to 500 Open space M*
Prioritization and

dynamic
handling

Not optimized

[42]
Independent
virtual center

points
2, 6, 8 Open space Monte Carlo An arbitrary

number of agents N/A

RL approaches

[13] CADRL 2, 4, 6, 8 Open space ORCA Higher path
quality

Stuck in a dense
setting

[37] RL-ORCA Up to 42 Open space ORCA
Congestion and

deadlock
capability

N/A

[2] Hybrid-RL Up to 100 Open space with
obstacles NH-ORCA, RL

High success rate
and

generalization
capability

Not socially
compliant

[12] Multi-sensor
Fusion and DRL 4 Open and confined

space A*, D* Dense
environment

Oscillatory
behavior in a

highly spacious
environment

[43] Deep Q
learning—CNN 4 Open and confined

space A*, D* Unnecessary
movement occurs

[44] End-to-end DRL
policy Team of 3 Open space Ind-PPO,

MAPPO

Navigate through
a dense

environment

Unable to address
deadlock
situation

[38] CBF-MARL 2 Open space MADDPG Safety guarantees Only static
obstacles
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For non-RL approaches, eight different studies are selected with various agents in
both open and confined spaces. Most studies used ORCA as their benchmark evaluation.
Cap et al. [33] address the problem of finding a collision-free trajectory for an agent in
a dynamic environment. The setup considered is an infrastructure with agents already
performing tasks when a new task is assigned to an individual agent. The proposed
algorithm implements a token system and plans a global trajectory considering all the
agents. Meanwhile, Dergachev et al. [30] suggest coordinating sub-groups of the agents
that appear to be deadlocked, using locally confined multi-agent pathfinding (MAPF)
solvers. The limitation of this model is its assumption that each agent has prior knowledge
of the environment and its failure to perform in uncertain situations. Arul et al. [39] used
buffered Voronoi cells (BVC) and reciprocal velocity obstacles (RVO) to develop a collision-
avoidance method for dense environments. To calculate a local collision-free path for
each agent, first, a suitable direction is computed by superimposing BVC and RVO cones
together. However, this method does not guarantee deadlock resolution, similar to earlier
decentralized methods—more studies focus on alternative approaches to avoid the need
for global communication among robots [33,41,45].

Mao et al. [40] presented a collision-avoidance approach by considering the non-
holonomic constraints of the agents. The proposed method is cheaper than PB-NC-DMPC,
as it does not use central coordination or rely on communication among the robots. Another
study by Wei et al. [41] proposed altruistic coordination where each robot is ready to make
concessions whenever in congested situations. It is demonstrated that when robots face
a congested situation, they can implement waiting, moving forward, dodging, retreating,
and turning-head strategies to make local adjustments. Another approach using robot
graph exploration is proposed by Nagavarapu et al. [36], in which no direct communication
is needed to avoid collisions. A data structure is proposed to provide efficient information
exchange. Modified Multi-Robot Depth First Search (MR-DFS) strategy is used to achieve
better execution than other tree strategies. Zhang et al. [42]. suggest a technique using
two cooperative strategies to decrease the effective detection regions of the vehicles, for a
random number (large number) of agents, using velocity information. Another approach
using prioritization is presented by Das et al. [34], where agents intentionally disclose
their information in order to become prioritized. Competitive robots take part in spot
auctions, where they show their willingness to pay the price to obtain access to the desired
location. The results show that the proposed method can manage dynamic arrival without
compromising the path-length optimality too much. Zhang et al. [42] propose an obstacle-
avoidance method that incorporates virtual center points, implemented in a distributed
manner, which is set based on the current state of the nearby robots and the agent itself.
The stability of the system is proved using a Lyapunov function. Two control modes—the
obstacle-free mode and obstacle avoidance mode—are used for robots, which are switched
carefully using a direct signal.

Researchers have applied several reinforcement learning approaches for decentralized
collision avoidance. Chen et al. [13] developed an innovative method that applies deep
reinforcement learning to offload the online computation to an offline learning procedure
to predict interaction patterns. A value network that uses each agent’s joint configuration
is developed to estimate the time to the goal. This value network also finds a collision-free
velocity vector by admitting the efficient queries while considering other agents’ motion
uncertainty. However, some robots become stuck when the obstacle field is dense such that
various traps and dead ends are formed. One effective method to resolve the dead-end issue
is presented by [44]. Meanwhile, Li et al. [37] presented a continuous action space-based
algorithm. In this method, only the positions and velocities of nearby agents are observed
by each agent. A solution of simple convex optimization with safety constraints from
ORCA is implemented to resolve the multi-robot collision-avoidance problem. The training
process of the proposed approach is much faster than other RL-based collision-avoidance
algorithms. Fan et al. [2] designed a decentralized sensor-level collision-avoidance policy.
The movement velocity for an agent’s steering commands is directly drawn from raw
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sensor measurements. The technique used here is policy-gradient-based reinforcement
learning. The said technique is integrated into a hybrid control framework to improve the
policy’s robustness and effectiveness. Liang et al. [12] used a depth camera with 2D LIDAR
as multiple perception sensors to detect nearby dynamic agents and calculate collision-free
velocities. The previously unseen virtual and dense real-world environment is directly
transferable from the navigation model learned by the agents. However, in the case of glass
or nonplanar surfaces, the sensors fail to perform accurately.

Bae et al. [43] suggested a combination of Deep q-learning and CNN algorithm. This
combination enhances the learning algorithm and analyzes the situation more efficiently.
Depending on the given situation, the agents can act independently or collaboratively.
The memory regeneration technique is used to reuse experience data and reduce corre-
lations between samples to improve data efficiency. The presented method uses image-
processing techniques such as object recognition [46,47] to obtain the robot’s location.
However, an unnecessary movement occurs in an environment where the generated path
is simple or without obstacles. Lin et al. [44] propose a method with a geometric centroid
of the robot team, which avoids collisions while maintaining connectivity using Deep
RL. The proposed model can sometimes fail to predict the dead-end scenario effectively,
which can cause the agent formation to take extra time to reach the goal. Cai et al. [38]
suggest a combination of Multi-robot Reinforcement Learning MARL and decentralized
Control Barrier Function (CBF) shields based on available local information. They devel-
oped a Multi-robot Deep Deterministic Policy Gradient (MADDPG) to Multi-robot Deep
Deterministic Policy Gradient with decentralized multiple Control Barrier Functions (MAD-
DPGCBF). Each agent has its unique CBFs according to the proposed approach. These
CBFs involve cooperative CBFs and non-cooperative CBFs, which deal with the respective
types of agents.

4.1. Experimental Setup for Decentralized Multi-Robot Collision Avoidance

This section discusses the main characteristics of the experimental approach and hard-
ware specifications of the agent to implement the proposed model effectively. Furthermore,
different real-world scenarios were tested to narrow the simulation gap to real-time tran-
sition. Based on the selected papers, researchers considered several essential scenarios:
circle, random, roundabout, dense crowds, narrow corridors, obstacle shapes, intersection,
edge traversals, deadlock situations, static, dynamic obstacle, and indoor environments.
The environmental setup scenarios’ platform, and the number of robots used by each study
are summarized in Table 4. The distributions of the papers per number of robots and
environment are illustrated in Figures 5 and 6.

Table 4. Environment setup for decentralized collision avoidance.

Simulation Setup Platform No of Robots References

Circle and random Stage, OpenAI Gym 3, 70, 100 [2,37,39,44]
Roundabout ROS, Python 10–500 [34]
Dense crowds ROS, Gazebo, OpenAI Gym 4 [12,44]
Narrow corridors ROS, Gazebo 4 [43]
Obstacle shapes OpenAI Gym 3 [44]
Intersection Matlab 4 [40]
Edge traversals ROS, Matlab 2–10 [12,36]
Deadlock situations BW4T simulator 1 to 8 [41]
Static and non-cooperative Python 2, 4, 6, 8 [13,43]
Dynamic obstacle C++ 4 [43]
Three scenarios ROS, Turtlebot 4, 6, 8 [42]
Three environments
(Hall, warehouse, office) Maven, R up to 35 [33]

Four-grid map C++ 5 to 40 [30]
Vehicle sensing N/A 4, 8, 12, 16, 20 [5]
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4.2. Evaluation Measures

Our analysis presents nine main evaluation parameters used by previous studies as
presented in Table 5. We observed that the four main parameters for multi-robot collision
avoidance are success rate, travel distance, time cost, and velocity. These parameters
are crucial to evaluate the efficiency and successful implementation of the approaches.
The other measurements are position error, minimum separation distance, cumulative
reward, planning time and search scope.

Table 5. Measurement matrices for multi-robot collision avoidance.

Measures Definition References

Success rate m
N , m is the # times reach the goal without colliding with an obstacle, and N is the total attempts. [12,30,33,36,41,44]

Travel Distance Sum of linear movement segments over times intervals, over the total number of attempts. [12,30,34,37–43]
Time cost Mean time to reach the goal over all attempts. [13,39,41,42,44,48]
Velocity Average velocity over the total attempts until a goal is reached or a collision occurs. [12,33,43]

Position error Difference between the position of actual reached position and desired position. [37,41]
Minimum separation distance Euclidean distance to the current waypoint on the agent’s geometric path, πcur. [13,30]

Cumulative reward Total discount factor times rewards of all agents at each time step. [38]
Planning time Time taken to compute the offline path and the time of the online spot. [34]
Search scope Total of search ranges to move to the target point. [43]

5. Collision-Avoidance Techniques to Solve Coordination Issues

To answer RQ3, we analyzed the primary works presenting collision-avoidance tech-
niques for multi-robot systems while considering the coordination issues. The techniques
studied in this work are focused on presenting solutions to the said problem for a group of
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more than two agents. Many studies on collision avoidance in a multi-robot system made a
list when first searched. Most of these studies addressed manipulators or warehouse sce-
narios, which were unsuitable for this work. Studies that addressed the type of agents other
than ground robots were excluded, which resulted in around 121 studies. These studies
were further screened by excluding those that focused on aspects of the multi-robot system
other than collision avoidance, such as trajectory optimization or navigation issues [10,49].
Studies that addressed only the coordination issue without considering collision avoidance
were excluded [7]. The final screening resulted in 17 carefully selected studies for relevance
to the topic, each presenting a unique collision-avoidance strategy.

Collision avoidance is an essential part to be considered when dealing with multi-
robot systems. It includes collisions with obstacles and among the agents. Two types of
methods most often used are centralized and decentralized approaches. The decentralized
approach is computationally inexpensive and enables the agent to be more independent.
Another division is classical and reactive approaches [50]. However, this review provides
information about effective decentralized techniques, classical or reactive. This review is
designed according to the guidelines provided by Okoli [31], which resulted in the final
selection of 17 papers. All the studies included are focused on finding and developing an
effective strategy to avoid collisions in a multi-robot system. Several methods, including
deep reinforcement learning, fuzzy logic, and supervised learning, are used as a base to
validate or apply the proposed strategies. Most of the studies are focused on application
in an open-space environment with static or dynamic obstacles, while confined-space
scenarios are not often studied. Environments such as AC ducts and sewers need to be
explored even more, as these environments offer different types of hurdles for a multi-
robot system compared to open-space environments. Only 2 of the 17 studies addressed
the deadlock situation [2,5], which can appear when agents need to swap their positions
or cross a narrow entrance, while others fail to perform in such scenarios [45]. Some of
the crucial criteria for decentralized multi-robot collision avoidance are summarized as
the following:

Coordination strategy: Several efficient coordination systems have produced successful
collision avoidance for multi-robot systems. The velocity obstacle method allows robots to
transmit and receive each other’s states and intentions via an altruistic coordination net-
work. A token-passing technique based on a synchronized shared memory holds all robots’
current trajectories, which learns a value function that completely encodes collaborative
behaviors. By utilizing the processed data from the LIDAR sensor, agents coordinate with
others via a robot team that works as a centroid or beacon to exchange information among
the robots. In the decentralized control barrier function, local information received through
the agent’s sensors can be shared by other robots nearby.

Traversable region detection region: A unique application of the locally confined multi-
robot pathfinding (MAPF) solvers is suggested by Dergachev et al. [30]. This approach
presents a way to build a grid-based MAPF instance to avoid deadlocks. Through the
learned policies, the robots use local observations of each robot and traversable detection
region to collaboratively plan the move to accomplish the team’s navigation task. A proper
data-structure-based technique is essential for providing efficient information exchange,
as suggested by Nagavarapu et al. [36]. Combining 2D multiple perception sensors using
LIDAR and depth cameras enabled the agents to sense the dynamic agents in the surround-
ings and compute collision-free velocities. An approach using Voronoi cells and RVO cones
provides an efficient calculation of collision-free direction for each agent. On the other hand,
exploiting the velocity information in the proposed technique resulted in less complicated
and collision-free trajectories by the traversable region-detection region. Furthermore,
incorporating virtual center points implemented in a distributed manner should be set
based on the current state of nearby robots and the agent itself.

Optimal multi-robot trajectories: While ensuring optimal collision-free navigation, agents
are also required to maintain a coordination link within their coordinated network to lower
the communication overhead in decentralized systems. One of the essential factors is
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detecting nearby dynamic agents and calculating collision-free velocities. Early detection
and trajectory prediction will result in a higher success rate with less time and trajectory
length taken to the goal. Detection of the obstacle’s direction and assuming it to be the
leader, the agent can be trained to maintain a predefined distance using formation control.

Adaptability: One of the essential criteria for successful application is adaptability,
especially in deadlock situations that often occur in multi-robot systems. Few studies
faced a problem where agents become stuck when deployed in a dense environment.
In some studies, the problem of failing to navigate in an uncertain environment also arose.
In some scenarios, only static obstacles are considered while training the agents, making it
challenging to address inter-agent collisions. Overall, it is observed that not a single study
was able to address all the issues faced when designing a collision-avoidance algorithm.
However, deadlock and inter-agent collisions are two main issues that need to be addressed
to develop an efficient collision-avoidance model.

6. Limitations of the Current Research on Collision Avoidance in Multi-Robot Systems

To answer RQ4, we discussed the challenges with proposed methods in previous stud-
ies. The most common issues mentioned were dealing dynamic obstacles [40], congested
situations [41], narrow passages [33], convergence time, deviation [5] and deadlocks [2,42].
These issues are reported to occur when obstacles are other agents, more than one agent
at one spot, the path not being wide enough, finding the optimal path, and more than
one agent wanting to cross the same spot. The listed issues are addressed by testing the
proposed algorithms in multiple scenarios with different levels of complexity, and promis-
ing results are reported. The summary of challenges and future studies on decentralized
multi-robot collision avoidance is presented in Table 6.

Table 6. Summary of challenges and future studies on multi-robot collision avoidance.

Challenges Context

Decision-Making Dynamic Obstacles Other robots in the system
Congested situations Obstacle rich environment

Narrow passages A path where two robots cannot pass each
other without one stopping

Convergence time Rush to reach the goal
Less deviation Deviation from optimal path to avoid collisions
Deadlocks Same goal and one path available

Decision-Making Dynamic Obstacles: There can be two types of obstacles in a multi-
robot system: static and dynamic. Dynamic obstacles include other agents in the team
as well. These obstacles can cause a problem as each agent can make their own decision
in a decentralized approach; more than one agent can decide to take the same action.
This problem was explored by Mao et al. [40] using linear equations of motion to design
the state-space.

Congested situations: Congested situations are not widely studied when considering
a multi-robot system. It is highlighted by Wei et al. [41] that even when a researcher con-
siders a congested scenario, the agents are still connected to a shared database such as a
reservation table [51] and conflict-avoidance table [52]. Multiple scenarios with very con-
gested situations were successfully tested by Chen et al. [13] using Multi-Robot Cooperative
Pathfinding (MRCP) based on the ideas from Ryan et al. [53].

Narrow passages: When developing a collision-avoidance strategy for multiple agents,
it is preferred to consider some real-life scenarios that an agent can encounter. One such
scenario is a narrow path, where crossing or taking-over other agents is quite tricky. This
can become even more complex if the path has obstacles. Some solutions such as prioritized
planning [54] and complete polynomial algorithms [55,56] were presented, but they fail in
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complex environments. An innovative solution for this issue is presented by Čáp et al. [33],
in which they suggest using an auction system for prioritized path planning.

Convergence time: Convergence is defined as a point when an agent completes an
optimal trajectory without collisions. One strategy for a lower convergence time using
Lyapunov-based analysis [57] was proposed and was extended to multiple cooperative
avoidance control strategies [58]. The main drawback for these techniques was that they
fail to perform in situations with an arbitrarily large number of agents [59–61], or the
paths are too conservative [58,62,63]. This challenge was the main focus in [5], where they
proposed a collision-avoidance strategy with optimal convergence time using velocity-
based detection regions.

Less deviation: Optimal collision-free trajectory is required to be as close to the ideal
trajectory as possible. Standard deviation measures this aspect; lesser deviation indicates
that the trajectory is closer to the ideal path. A method was proposed to ensure the smaller
deviation by [58], but it was not suitable for a large number of agents. By developing
collision avoidance for fully-actuated Lagrangian systems, the authors in [5] successfully
addressed the issue of deviation from the ideal path.

Deadlocks: For a multi-robot system, if the environment has intersections, a small
entrance into a room, or a narrow-shared path, there is a high chance of a deadlock
situation arising. This situation occurs when more than one agent wants to cross each
other, but there is not enough space for them to pass. Some centralized methods [64–66] are
proposed, but they cannot be implemented effectively to a large group of agents. Taking
inspiration from the hybrid control framework proposed by Egerstedt et al. [67], a solution
for operating many agents in the scenarios mentioned above is proposed by Fan et al. [2].
They successfully trained up to 100 agents. Another solution for deadlocks is presented by
Dergachev et al. [30] using MAPF.

7. Future Directions for Multi-Robot the Collision-Avoidance Studies

Above all the issues raised above, there are several key highlights for future studies on
decentralized multi-robot collision avoidance, as summarized in Table 7. To answer RQ5,
the following eight future directions are suggested:

Table 7. Summary of future studies on multi-robot collision avoidance.

Future Studies Context

Adaptability Ready to be implemented in any environment
Complex scenarios Situations with large number of robots and narrow paths
Dense obstacle field Obstacle-rich situation with both static and dynamic obstacles

Outdoor Settings Situations such as roads, sidewalks and related environment
Heterogeneous Agents A team of ground and aerial robots or water and aerial robots

Curvilinear Paths Paths with sharp and blind turns
Larger state space The situation as close as possible to real-world situation

Safety and performance Only focusing on safety and ignoring the path quality

Adaptability in an uncertain environment: Most researchers aim to make their collision-
avoidance algorithm easily generalized to any uncertain environment. Many tasks involv-
ing multi-robots, such as search and rescue, duct exploration, and cleaning a chemical spill,
have a high percentage of uncertainty in the environment under consideration. Further-
more, 2 of the studies from selected 17 admitted to omitting this issue from their current
study and aim to address this issue in their following research [13,27,40].

More complex scenarios: In Čáp et al. [33], paths with wide enough space for passing
more than one agent are tested, such as a warehouse, office room, and other areas. So, they
want to expand their work by improving the proposed method to apply to more complex
scenarios such as confined spaces. At the same time, Fan et al. [2] admitted that their
approach could not compete with a global path planner. Incorporating classical mapping
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methods (e.g., SLAM [68]) and global path planners (e.g., RRT and A) with their algorithms
will be the goal in the future.

Dense obstacle field: The future direction of exploring environments with more obstacles
and even dynamic obstacles is stated by Chen et al. [13]. They declare their proposed
algorithm a collision-avoidance algorithm but not a path-planning one. It performs only in
environments with few obstacles and open space.

Outdoor Settings: Mobile robot systems can be used for outdoor exploration, such as
in Fan et al. [2] and Erdmann et al. [54]. However, Mao et al. [40] only considered indoor
settings with static obstacles when designing a collision-avoidance algorithm. Overcoming
the freezing robot issue and implementation in an outdoor setting is declared the future
goal by Liang et al. [12].

Heterogeneous Agents: In practical applications, multi-robot systems may consist of
heterogenous agents such as turtle-bot and fetch robot. Most of the studies analyzed
in this review have focused on homogenous agents. Only Zhang et al. [42] stated that
their future work would aim to implement the proposed collision-avoidance problem to
heterogeneous agents.

Curvilinear Paths: When moving on curvilinear paths, more collisions are possible
as agents may slip. A piece-wise linear approximation can resolve this issue to a curved
edge between two vertices resulting in multiple virtual vertices with linear edges. This
issue of inter-agent collision considering curvilinear paths is the future direction chosen by
Nagavarapu et al. [36].

Larger state space: There may be complex dynamics when an environment is closer
to real-world situations. Complex dynamics lead to larger state space. It is difficult and
time-consuming to differentiate between relevant and irrelevant actions in ample state
space to achieve an effective collision-avoidance solution. An optimal solution to deal
with ample state space and collision avoidance for the multi-robot system is addressed
by Li et al. [37].

Balance safety and performance: Studies are needed to examine the safety of the agents
and how to keep them from collisions, without considering optimal trajectories too much,
as highlighted by Cai et al. [38]. Further studies should consider algorithms that can balance
the multi-robot system’s safety and performance.

8. Conclusions

This study conducted a systematic review of different RL and non-RL decentral-
ized collision-avoidance techniques for multi-robots. The main goal of this study was to
summarize state-of-the-art decentralized collision-avoidance techniques for multi-robots.
The studies in this review were selected from well-reputed public databases such as
Springer, IEEE Xplore, WoS and other sources. The outputs of these databases were filtered
through a series of screening steps to exclude any irrelevant studies. It was observed that
most of the studies used non-RL approaches to address the issue. Furthermore, China has
conducted the most studies on decentralized collision avoidance for multi-robots in the last
seven years.

In general, the summarized studies related to the topic were analyzed based on using
RL and non-RL approaches. Algorithms such as Discrete ORCA-MPC, CADRL, MR and
MR-DFS and other approaches have been used to solve the problem successfully. Then,
the success rate of the technique proposed, and the coordination strategy used, were
analyzed and discussed. It was observed that only 2 out of 17 studies considered confined-
space scenarios, while others implemented collision-avoidance strategies in relatively open
and empty space. Few studies implemented their algorithms in real-world scenarios, while
others focused on simulations. Scenarios such as deadlocks or swapping in a narrow path
are not widely studied. The most used algorithms are different modified versions of ORCA
implemented in relatively open spaces. All of the techniques proposed, plus benchmark
algorithms, strengths and weaknesses are presented and discussed as references for future
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research. The data used in this review are up to date as per our knowledge and any
omission is unintentional.
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