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Abstract: Traditional endoscopic treatment methods restrict the surgeon’s field of view. New ap-
proaches to laparoscopic visualization have emerged due to the advent of robot-assisted surgical
techniques. Lumen simultaneous localization and mapping (SLAM) technology can use the image
sequence taken by the endoscope to estimate the pose of the endoscope and reconstruct the lumen
scene in minimally invasive surgery. This technology gives the surgeon better visual perception
and is the basis for the development of surgical navigation systems as well as medical augmented
reality. However, the movement of surgical instruments in the internal cavity can interfere with the
SLAM algorithm, and the feature points extracted from the surgical instruments may cause errors.
Therefore, we propose a modified endocavity SLAM method combined with deep learning semantic
segmentation that introduces a convolution neural network based on U-Net architecture with a
symmetric encoder–decoder structure in the visual odometry with the goals of solving the binary
segmentation problem between surgical instruments and the lumen background and distinguishing
dynamic feature points. Its segmentation performance is improved by using pretrained encoders on
the network model to obtain more accurate pixel-level instrument segmentation. In this setting, the
semantic segmentation is used to reject the feature points on the surgical instruments and reduce the
impact caused by dynamic surgical instruments. This can provide more stable and accurate mapping
results compared to ordinary SLAM systems.

Keywords: augmented reality; simultaneous localization and mapping (SLAM); deep learning;
semantic segmentation

1. Introduction

Most hospitals are now equipped with two-dimensional endoscopes to assist doctors
in minimally invasive surgery of the abdominal cavity, thoracic cavity, and throat. The
advantage is that doctors no longer need to cut the abdominal cavity and can operate
only through a tiny incision in the abdomen. Compared to traditional surgery or earlier
minimally invasive surgery, modern minimally invasive surgery has the advantages of
smaller incisions, less bleeding, and faster recovery of patients after surgery, all of which
reduce patient trauma and pain. Therefore, it is increasingly popular and widely used in
surgery [1]. However, surgeons are prone to disorientation and hand–eye dissonance while
finding targets and performing complex procedures through the 2D visual display of the
endoscopic video stream, making it difficult to empirically match the laparoscopic field
of view with the preoperative images to determine the site of the lesion. The main reason
for this is the relatively incomplete or poor visual feedback, which does not allow direct
observation of the overall environment of the internal cavity. Reconstructing the three-
dimensional (3D) image of the lesion site from the acquired images enables the surgeon to
make a more accurate diagnosis.
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Minimally invasive surgery is gradually merging with computer vision techniques,
and the use of computers for image processing to extend the surgical field of view has
broken the limitations of traditional surgery [2–4]. Three-dimensional models allow a more
intuitive view of the surgical scene and simplify the localization process. There are some
solutions for the three-dimensional imaging methods based on computer vision in the
lumen environment. For example, time-of-flight and structured light-based solutions have
also been used for dense scene reconstruction, but they are less commonly used in the
endocavity environment due to hardware constraints such as size and cost [5–7]. Structure-
from-Motion (SFM) has been widely used in studies relating to camera motion tracking and
3D reconstruction [8,9], but it is ineffective for low-resolution, weakly textured images such
as internal cavities and requires offline processing; hence, it has a limited application in
internal cavities. Shape-from-Shading (SFS) performs 3D reconstruction of internal cavity
organs based on light and dark changes in image grayscale information [10], but there are
multiple mappings between 2D images and surface shapes, resulting in relatively higher
errors in the results obtained by SFS.

In recent years, simultaneous localization and mapping, such as Simultaneous Local-
ization and Mapping from Visual sensor (VSLAM), used only the camera as an external
sensor for robotics self-localization in unknown environments and reconstructing maps
of the surroundings [11]. VSLAM has also been gradually applied to the medical field to
provide new solutions for 3D reconstruction of internal cavities by moving the endoscope
and using the features of each image frame for incremental composition of soft tissues
and organ structures. Such methods have been used for endoscopic image reconstruction
in [12–15].

Nonetheless, in VSLAM, if dynamic objects are present in the real scene, the moving
objects cause degradation in the performance and robustness of the SLAM system and
may lead to errors in image feature matching, camera pose estimation, map construction,
and loop closure detection, thereby making the algorithm fail. Therefore, recognition
and removal of dynamic objects in the scene needs to be considered. The first system to
successfully fuse SLAM with moving object detection and tracking in a normal scene was
proposed by Wang [16], and subsequently several researchers have investigated SLAM
in dynamic environments. For example, Kundu [17] detected dynamic features by using
epipolar geometric constraints and flow vector bound (FVB) constraints, but the effect
of rejecting dynamic feature points is affected by the accuracy of the visual odometry,
and it is not able to properly handle a moving object that stops in the middle. Wang [18]
implemented moving object segmentation based on optical flow computation followed by
sparse point trajectory clustering and densification, but the optical flow method works on
the basis of constant light brightness, so it is easily affected by light changes. Moreover,
some researchers have also tried to combine deep learning to remove potential dynamic
objects by methods such as semantic segmentation, e.g., a complete semantic SLAM system
in dynamic environments (DS-SLAM) [19] used a deep convolutional encoder-decoder
architecture for image segmentation (SegNet) combined with a movement consistency
detection method in order to filter out moving people in the scene, but the improvements
in low dynamic sequences were small and humans were the only dynamic objects targeted.
Tracking, mapping and inpainting by SLAM in dynamic scenes (DynaSLAM) [20] removes
dynamic objects, such as people and cars, by performing pixel-by-pixel segmentation of
a-priori dynamic objects in images using the instance segmentation network called region-
based masked convolutional network (Mask R-CNN). This method chooses to remove
all potentially moving objects, which may leave too few static feature points available to
affect the camera’s pose estimation. The method is also computationally intensive and
time-consuming.

In minimally invasive surgery, the only typically dynamic objects that have an impact
are surgical instruments, such as surgical forceps and scissors, without fear of sudden
movement of other potential objects. Nevertheless, due to the change of light in the
lumen and the complexity and dynamics of the background tissue, the segmentation
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of surgical instruments is more difficult. Related applications of deep-learning-based
methods to robotic instrument segmentation proved their excellent performance in internal
cavity binary and multiclass segmentation [21,22]. Therefore, we considered combining
deep learning for surgical instrument segmentation in the SLAM process to prevent the
mismatching of extracted features and other situations.

In medical image segmentation, U-Net [23] shows very excellent performance, as it
is able to build more feature channels in the upsampling phase while associating feature
maps from the downsampling phase due to the presence of skip connections. In addition,
the model training requires fewer datasets and is able to converge on a small amount of
data. U-Net has now become a cornerstone in the field of medical image segmentation [24]
and is the most popular and effective technique for dealing with medical image segmenta-
tion. For example, Francia et al. added residual blocks to the U-Net network to achieve
accurate segmentation of retinal blood vessels [25]. Ding et al. proposed a U-Net-based
deep attention network with a color normalization operation to implement end-to-end
segmentation of the glottal region [26]. Siddique et al. reviewed the application of U-Net in
the field of medical image segmentation and in other medical image analyses and pointed
out that the U-Net based architecture is quite innovative and valuable to medical image
diagnosis and is one of the most important deep learning techniques [27].

In this paper, we note that although visual SLAM is widely used in medical scenarios,
it is fragile and difficult to use stably under dynamic environments. Especially in the
minimally invasive surgery setting, the impact of moving surgical instruments is a problem
that needs to be considered for medical robots facing complex environments in internal
cavities. Deep learning allows intelligent segmentation of images in order to understand
what is in them and makes analysis of each part easier. Detecting and processing dynamic
objects is necessary for SLAM to estimate a stable map, which is helpful for its application.
From this perspective, we hypothesize that the use of application-specific CNN networks
in SLAM systems to reject dynamic objects can reduce the false association information
when the SLAM system works. For neural networks, better performance can be obtained
by using pretrained encoders, which also help to avoid overfitting.

Accordingly, we propose the use of a neural network based on the U-Net architecture to
distinguish dynamic features on surgical instruments from static features in the background
by segmenting the surgical instruments, rejecting the dynamic features as outliers, and
using only the static features to track the endoscope position as well as to complete the
subsequent SLAM process. Thus, semantic SLAM based on deep learning in the endocavity
environment is proposed in this paper. By incorporating semantic segmentation, a dynamic
SLAM system is constructed that can operate in complex internal cavity environments. The
moving surgical instruments are masked out using semantic information. This solves the
problem of feature extraction, localization, and 3D reconstruction in the case of moving
surgical instruments in the internal cavity. Avoiding errors caused by incorrect matching
and system crashes during internal cavity SLAM enables more robust SLAM performance
in an inner cavity environment.

The rest of this paper is organized as follows: Section 2 introduces the proposed SLAM
and deep learning work. Section 3 gives the experimental results and analysis. Finally, the
conclusion is made in Section 4.

2. Materials and Methods

The overall framework of the proposed dynamic SLAM system for the internal cavity
is shown in Figure 1. The SLAM system based on the Oriented FAST and Rotated Brief
(ORB-SLAM) [28] consists of four main modules: instrument segmentation, tracking, local
mapping, and loop closing. We introduced semantic segmentation based on convolutional
neural networks into the SLAM process to construct binary masks from RGB images,
ensuring dynamic feature points on the surgical instruments were eliminated in the tracking
module to avoid incorrect data association information. Then, only the feature points
extracted from the regions other than the surgical instruments were used for localization
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and map construction of the internal cavity scene. Thus, the SLAM system could estimate
the endoscope motion more consistently, as well as obtain accurate soft tissue reconstruction
of the internal cavity. It is possible to give the surgeon more intuitive visual feedback in
the endoscopic SLAM system, which can assist the surgeon in making judgements. In
order to facilitate the possible manipulation of surgical instruments while visualizing the
endoscopic scene, the influence of dynamic objects, i.e., surgical instruments, on the system
was significantly reduced by combining segmentation networks.
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Figure 1. System framework of SLAM combined with semantic segmentation.

The endoscope is first used to observe the environment of the inflated internal cavity,
and the acquired sequence of internal cavity images is transmitted to the SLAM tracking
thread and the semantic segmentation network based on the U-Net architecture. Since
it is in a minimally invasive surgery scene, moving medical instruments are considered
in the image frames, and the surgical instruments are segmented by pixel through the
semantic segmentation network to obtain a binary mask. In the tracking thread, for each
new frame, ORB feature points with stable geometric features are extracted. The mask
obtained from the segmentation is also used to judge whether the current feature point
is a dynamic feature point. If so, it is identified as an outlier and eliminated. Otherwise,
it can be classified as a static candidate feature point. The static feature points are then
used for the subsequent tracking and mapping steps of SLAM, including estimating the
camera pose using the matching correspondence of adjacent frames, obtaining the depth
estimation using the triangulation method, and jointly optimizing the map and camera
pose using local and global bundle adjustments.

2.1. Surgical Instrument Segmentation

In addition to the moving surgical instruments in the endocavity scene, the surround-
ing environment is not completely rigid and the organs or soft tissues are also subject to
certain deformations, making it very difficult to distinguish moving objects from the scene
using only the geometric approach in SLAM. To separate the surgical instruments from
the soft tissue background, we used a neural network based on the U-Net architecture to
segment the surgical instruments using semantic information.

U-Net is a fully convolutional network with a symmetric encoder–decoder structure.
This encoder–decoder structure of U-Net containing skip connections is able to fuse features
from different layers to obtain accurate pixel-level localization with excellent segmentation
results and was shown to perform well for segmentation problems with limited data [29],
making it well-suited for segmentation of surgical instruments in medical scenarios. To
improve its binary segmentation performance, we used a pretrained VGG16 encoder on the
U-Net infrastructure, which is called TernausNet-16 [30], and then integrated it into SLAM
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as the semantic segmentation network of the system. Figure 2 illustrates the TernausNet-
16 network model used in the proposed segmentation algorithm, which is a classical
full convolution network. Each rectangular box represents a transformed multichannel
feature map. The number of channels is below the rectangular box. The height of the box
corresponds to the resolution of the different feature maps. The blue arrows indicate skip
connections, where information is transferred from the encoder to the decoder. The lumen
image is used as the input. The left side is the encoder for downsampling, also known as
the contracting path, and the right side is the decoder for upsampling, also known as the
expansive path. The two are associated through skip connection.
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The specific operation of the encoder for this network is given in Table 1; a simple pre-
trained VGG16 network is used as the encoder. VGG16 consists of 16 forward-propagating
network layers, which contain 13 convolutional layers. The convolutional kernel size
is 3 × 3, and each convolutional layer is immediately followed by an ReLU activation
function. The convolution layer is also followed by five 2 × 2 max pooling layers, which
perform dimensionality reduction on the feature map. The first convolutional layer has
64 channels, and each subsequent pooling operation doubles the number of channels up
to 512.

Table 1. Encoder Configuration.

Operator Size Filter Layers

Convolution_1 3 × 3 64 2
Maxpool_1 2 × 2/2 \ 1

Convolution_2 3 × 3 128 2
Maxpool_2 2 × 2/2 \ 1

Convolution_3 3 × 3 256 2
Convolution_4 1 × 1 256 1

Maxpool_3 2 × 2/2 \ 1
Convolution_5 3 × 3 512 2
Convolution_6 1 × 1 512 1

Maxpool_4 2 × 2/2 \ 1
Convolution_7 3 × 3 512 2
Convolution_8 1 × 1 512 1

Maxpool_5 2 × 2/2 \ 1

The specific architecture of the decoder is given in Table 2. The decoder section is
a symmetrical structure to the encoder, and replaces the fully connected layer with a
convolutional layer. The feature map size is enlarged by using transposed convolution. The
output of the transposed convolution is used as the output feature map of the corresponding
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part of the decoder, which is then processed by direct convolution operations to keep the
number of channels the same as the symmetric encoder term. At the end of the network, the
feature maps of the background and target foreground are obtained, and then a probability
map of the categories is obtained by the soft-max function.

Table 2. Decoder Configuration.

Operator Size Filter Layers

Convolution_9 3 × 3 512 1

Transposed
Convolution_1 4 × 4/2 256 1

Convolution_10 3 × 3 512 2

Transposed
Convolution_2 4 × 4/2 256 1

Convolution_11 3 × 3 512 2

Transposed
Convolution_3 4 × 4/2 256 1

Convolution_12 3 × 3 256 2

Transposed
Convolution_4 4 × 4/2 64 1

Convolution_13 3 × 3 128 2

Transposed
Convolution_5 4 × 4/2 32 1

Convolution_14 3 × 3 64 2

Soft-max \ \ 1

Since the network combines low-resolution information in downsampling and high-
resolution information in upsampling and shallow and deep features of the image, it is
able to achieve excellent pixel-by-pixel localization and segmentation. As an output of the
model, the surgical instruments are distinguished from the pixel values in the background
area, and a binary mask can be obtained by binarizing the pixel probabilities finally.

2.2. Internal Cavity Vision SLAM

ORB-SLAM2 is an advanced visual SLAM system based on feature tracking that
has reliable and excellent performance in most scenarios. There have been related works
applying ORB-SLAM2 to 3D reconstruction of internal cavities [31,32] which proved that
it can cope with the complex environment of internal cavities. Therefore, this paper
implements a global feature-based endoluminal SLAM scheme based on ORB-SLAM2
and improves the robustness and accuracy of the endoluminal SLAM system by adding
a decision module that uses semantic information to distinguish surgical instruments,
segmenting dynamic features and removing them as outliers. A brief framework of the
system proposed in this paper is plotted in Figure 3.

The system performs ORB feature point extraction for each image frame collected by
the endoscope in the tracking thread, compares the descriptors of each feature point, thus
obtaining the corresponding point pairs, and then estimates the endoscope motion based
on the correspondence. Therefore, the correctness of feature points and their matching
relationships are important for the tracking and mapping results of SLAM. Random sample
consistency (RANSAC) is an algorithm that estimates the parameters of a model in an
iterative manner in and obtains valid data from data containing outliers. It is usually
used to eliminate outliers from a large number of matched point pairs and select the
more reliable pairs. However, the dynamic feature points on the surgical instruments
can also produce incorrect matching relationships, and the probability of the extracted
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feature points becoming internal points will gradually increase when the moving surgical
instruments appear in the picture for a longer period of time. Therefore, we used the mask
obtained by semantic segmentation to accurately reject the dynamic feature points on the
surgical instruments.
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Based on the initially extracted ORB feature points and the binary mask results ob-
tained through the TernausNet-16 segmentation network, the preselected feature points
were removed if they were within the mask range, thus excluding the erroneous feature
points detected on the moving surgical instruments. Suppose the set of feature points
extracted from the input Kth frame image is given by the following equation

AK
l =

{
pK

1 , pK
2 , pK

3 , . . . , pK
i

}
, (1)

where pK
i is the ith feature point in the Kth frame. The set of pixels in the region where the

surgical instruments were located in the binary mask of the Kth frame image is defined
as follows:

SK
N =

{
sK

1 , sK
2 , sK

3 , . . . , sK
n

}
, (2)

where s represents the pixel point in the area where the mask is located in the frame. If
there was a point in the sequence of feature points that satisfied pK

i ∈ SK
N , it would be

identified as a dynamic feature point and removed from the sequence of feature points.
By using the binary mask generated by semantic segmentation, preselected feature

points were filtered and dynamic feature points located on the surgical instruments were
successfully removed, thus evading the detrimental effect of incorrect correspondence on
SLAM. At the same time, feature points in other background regions were used as static
feature points, and then outliers were further removed by the RANSAC algorithm. Finally,
the endoscope’s pose was estimated based on the correct correspondence.

Once the initial pose estimation was completed, the subsequent estimation could
be continued by the Perspective-n-Point (PnP) algorithm or Iterative Closest Point (ICP)
algorithm. The match between the current frame and the local map was obtained by
tracking the endoscopic pose and the local map. Pose optimization was performed using
minimization of reprojection errors, and then the keyframe generation is determined by
the pose and motion of adjacent frames. In the local mapping thread, the local map is
constructed by filtering the newly generated map points, triangulating the map points
with a high degree of coviewing, performing Bundle Adjustment (BA) optimization, and
removing redundant keyframes. Lastly, the map was updated by performing global BA
optimization on the global poses and map points.

3. Experimental Results and Discussions

This paper constructs a modified endoscopic SLAM algorithm combined with semantic
segmentation (SS-SLAM), using the Hamlyn Center’s endoscopic video dataset (London,
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UK) [33] to validate the overall construction improvement. This dataset includes endoscopic
scene images of various organs and soft tissues for tasks such as polyp detection, image
segmentation, and localization. The sequences with instrumental invasion were selected as
experimental data. To verify that the proposed method in this paper could effectively reject
dynamic feature points on surgical instruments when performing monocular SLAM in an
internal cavity scene, experiments were conducted using publicly available medical image
datasets and compared to the original ORB-SLAM2 algorithm. The experiments were all
conducted on a computer equipped with an Intel Xeon D-1581 CPU, NVIDIA GTX 1070Ti
GPU, and 32 G RAM.

The segmentation network proposed above was first trained in order to segment
a-priori moving objects, i.e., surgical instruments, under endoscopic images using frame
sequences acquired from the da Vinci Surgical System provided by the MICCAI [34] in
Quebec, Canada. Each image was in RGB format and had a 1920 × 1080-pixel resolution.
The training dataset had 8× 255 frame sequences. True value labels were provided for each
image frame in the dataset, and the labels of the various parts of the surgical instruments
were manually labelled in each frame for training purposes. The frames in each video
were correlated, so we performed 4-fold cross-validation and split the data based on this
dependency, dividing the training set into four quarters. Three quarters were used for
training and one for validation. We repeated this four times until all quarters had a chance
to be the validation set at least once. The network was trained using the Adam optimizer
for 40 epochs, with the initial learning rate set to 0.00001. The original RGB images were
passed into the system and a pixel-by-pixel prediction mask of the images was obtained
after segmentation of the surgical instruments present in the images by the TernausNet-
16 network to achieve a binary semantic segmentation of the surgical instruments and
the background.

The Jaccard index, also referred to as the Intersection Over Union (IoU), was chosen
for the evaluation metric, which was used to measure the similarity between two sets. For
two finite sets A and B, it is defined as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| . (3)

For images, the above equation can also be rewritten in the following form:

J =
1
n

n

∑
i=1

(
yi ŷi

yi + ŷi − yi ŷi
), (4)

where yi is the binary label of pixel i and ŷi is its predicted probability. For the image
binary segmentation problem, which can also be viewed as a pixel classification problem, a
combination of the binary cross-entropy loss function H is used in this paper as follows:

L = H − log J. (5)

U-Net achieves excellent performance in different biomedical segmentation applica-
tions and is a very classical network. The validation learning curve of the TernausNet-16
network versus the original U-Net network is represented in Figure 4. The TernausNet-16
network model converges to a stable value much faster than the original U-Net. The final
steady-state result of TernausNet-16 is also higher than that of the U-Net, which means
that the improved segmentation framework performs better segmentation of surgical
instruments with higher accuracy compared to the original U-Net network.
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Another commonly used metric is the Dice coefficient. Given a vector of ground truth
labels T1 and a vector of predicted labels P1, Dice coefficient can be defined as:

D(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

. (6)

The Dice coefficient is usually used to calculate the similarity of two sets, with values
ranging from zero to one. The performance characterization of segmentation algorithms
for different segmentation targets is an important issue. It is therefore more reasonable to
evaluate the accuracy of the proposed method through multiple performance metrics.

Specifically relating to the training accuracy of binary segmentation, U-Net obtained an
IoU of 0.721 while TernausNet-16 obtained an IoU of 0.842, which showed an improvement
in training accuracy. Furthermore, a quantitative comparison was carried out on the test set
and the results are shown in Table 3. Predictions were made for each image and the final
results were averaged. Our model achieved better results; its IoU was 0.813 in comparison
with an IoU of 0.698 for the U-Net and its Dice coefficient was 0.894 in comparison with
a Dice coefficient of 0.805 for the U-Net. We conducted statistical tests to compare the
performance of the segmentation in terms of IoU and Dice metrics. Using the Wilcoxon
Signed Rank Test, TernausNet-6 was found to display statistically significant improvement
(p < 0.05) in IoU and Dice over the U-Net.

Table 3. The quantitative results of segmentation by different network models.

Network IoU Dice Coefficient

U-Net 0.708 0.805
TernausNet-16 0.826 0.894

Figure 5 shows the results of the segmentation of moving surgical instruments. The
segmentation results clearly show that our model based on TernausNet-16 was able to
segment the surgical instruments more completely and the segmented images were closer
to the ground truth. However, the segmentation results of U-Net have some omissions
and mislabeling. This indicates that the dynamic surgical instruments can be detected
more accurately by our segmentation network and the corresponding binary masks can
be generated. The input monocular RGB images are preprocessed where the surgical
instruments are segmented in order to facilitate the subsequent rejection of dynamic feature
points extracted in SLAM. The mask obtained from the above results can cover the area
where the surgical instruments are located, so it can be used for subsequent processing
to properly remove the feature points extracted from this part of the area. Overall, the
performance of the U-Net model was improved by adjusting the encoder part. In the binary
segmentation task, it could converge to the optimal stable value more quickly and reduce
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the training time of the model. The final accuracy has also been improved, allowing for a
more detailed and complete segmentation profile of the surgical instrument.
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Figure 5. Comparison of semantic segmentation results for surgical instruments. (a) The original
image; (b) The ground truth; (c) U-Net-based segmentation; (d) TernausNet-16-based segmentation.

For each input frame containing surgical instruments, a mask is obtained by binary
semantic segmentation calculation. The features obtained by the ORB feature extraction
algorithm in the SLAM system are removed from the feature sequence when they are
located in the mask region, while the features in other regions continue to be used for
subsequent tracking and mapping. By using the mask to limit the feature detection area
and thus prevent the feature points from concentrating on the surgical instruments, false
extraction and matching can be avoided. As shown in Figure 6, the feature point detection
on the surgical instruments is successfully excluded by using the mask.
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Compared with the original ORB-SLAM2 algorithm, the feature points on the surface
of dynamic surgical instruments are eliminated using semantic segmentation, and a higher
quality of map construction can be obtained. In Figure 7, the feature points on the surgical
instruments were successfully excluded in the tracking and mapping.
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Figure 7. Results of endoluminal SLAM reconstruction. (a) frame from datasets video; (b) feature
points extraction results obtained by SLAM (top) and SS-SLAM (bottom); (c) 3D points obtained by
SLAM (top) and SS-SLAM (bottom).

The more detailed visualization results obtained after extracting more feature points
and performing the densification operation are shown in Figure 8, where our proposed
method yields more accurate results in reconstructing the map points and successfully
rejects the surgical instruments in the region where the surgical instruments move for
a long time. It can be seen in the figure that there are more missing parts of the recon-
struction results in (a), probably due to dynamic interference, but our method results in a
better reconstruction of the inner cavity background by removing dynamic feature points.
Consequently, our method has significantly improved the reconstruction of the internal
cavity background, which is beneficial to improving the accuracy of 3D reconstruction by
monocular visual SLAM.
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4. Conclusions

In this paper, we build an endoluminal vision SLAM framework incorporating seman-
tic segmentation for minimally invasive surgery scenarios. The semantic segmentation
network was based on the TernausNet-16 network architecture and improved in order to
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effectively segment the surgical instruments in the internal cavity image. Then a dynamic
feature point judgment module was added to the SLAM to remove the feature points in the
surgical instrument mask region, thus eliminating the dynamic feature points detected on
the surgical instruments and using only reliable feature points to provide a good basis for
the subsequent modules. This enabled the SLAM system to be more robust in processing
internal cavity image sequences and to obtain more accurate mapping results. In the
endoscopic video dataset experiments, our proposed method achieved better results in
both surgical instrument segmentation and mapping. In the future, extensions of this work
may include building effective models of endoluminal soft tissue deformation to cope with
more complex endoluminal scenarios and considering densification operations on less
endoluminal data to eventually achieve a realistic dense reconstruction of the endocavity.
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