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Abstract: Image SR reconstruction methods focus on recovering the lost details in the image, that is,
high-frequency information, which exists in the region of edges and textures. Consequently, the low-
frequency information of an image often requires few computational resources. At present, most of the
recent CNN-based image SR reconstruction methods allocate computational resources uniformly and
treat all features equally, which inevitably results in wasted computational resources and increased
computational effort. However, the limited computational resources of mobile devices can hardly
afford the expensive computational cost. This paper proposes a symmetric CNN (HDANet), which is
based on the Transformer’s self-attention mechanism and uses symmetric convolution to capture the
dependencies of image features in two dimensions, spatial and channel, respectively. Specifically, the
spatial self-attention module identifies important regions in the image, and the channel self-attention
module adaptively emphasizes important channels. The output of the two symmetric modules can be
summed to further enhance the feature representation and selectively emphasize important feature
information, which can enable the network architecture to precisely locate and bypass low-frequency
information and reduce computational cost. Extensive experimental results on Set5, Set14, B100,
and Urban100 datasets show that HDANet achieves advanced SR reconstruction performance while
reducing computational complexity. HDANet reduces FLOPs by nearly 40% compared to the original
model. ×2 SR reconstruction of images on the Set5 test set achieves a PSNR value of 37.94 dB.

Keywords: super-resolution; attention mechanism; deep learning; symmetry

1. Introduction

Image super-resolution (SR) reconstruction aims to generate a high-resolution image
by certain technical means, which improves the image quality while magnifying the image.
Single image super-resolution (SISR) reconstruction is an asymmetric problem that aims to
reconstruct a high-resolution (HR) image by recovering the high-frequency information
lost during image acquisition using a low-resolution (LR) observed image, with a difficult
forward process and a simple reverse process [1,2]. Deep neural networks, with their
powerful nonlinear fitting, feature extraction, and fault tolerance capabilities with high-
dimensional data processing, have been deeply applied in various fields, especially in the
field of image processing. The technical problems in the field of computer vision have
been solved one by one with the increasing maturity of neural network technology, and
SISR based on the convolutional neural network has also emerged, including depth-blind
super-resolution [3,4] and accelerated super-resolution [5,6]. Smart devices such as tablets
and cell phones are becoming increasingly popular, but their computational resources are
still limited, which urgently requires the implementation of efficient SR techniques.

Dong et al. [7] first applied CNN networks to single-image super-resolution reconstruc-
tion, proposing a three-layer convolutional neural network, SRCNN, and since then, more
and more studies have tried to use CNN to implement SISR. The shallow layer neural net-
work has a low level of feature abstraction, while the deeper the layer, the higher the level
of feature abstraction [8], and more studies have focused on exploring the effect of “depth”
on the expressiveness and performance of the model. Kim et al. [9] proposed VDSR, which
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increased the number of layers to 20 and improved the hyper-segmentation performance.
Lim et al. [8], proposed a wider and deeper network architecture, EDSR, which increased
the depth of the network to more than 60 layers and improved the hyper-segmentation
performance. RCAN [10] borrows the idea of residuals from ResNet and directly increases
the depth of the network to 400 layers through the global residual structure and the local
residual structure. The huge improvement in the performance of the RCAN network proves
that the network depth is crucial for the SR technique. However, increasing the number of
network layers can lead to higher computational costs while improving the SR performance.
The widespread popularity of mobile terminals, such as smartphones and tablets, has led
to increasing demand for high-resolution images from users, but the hardware resources of
these mobile devices are limited to bear the excessive computational cost [7,10]. To address
this problem, knowledge distillation migrates knowledge learned from a complex model
or multiple models to another lightweight model, making the model lighter without losing
performance [11]. Furthermore, pruning methods have shown to be effective at reducing
the size of deep neural networks while keeping accuracy almost intact [12]. However,
these schemes still involve redundant computations. Image SR reconstruction focuses on
recovering lost details in the image, i.e., high-frequency information present in edge and
texture regions. Therefore, a smooth area (smoothed area) requires less computational
resources [1]. However, these CNN-based SR methods extract features from the original LR
input and treat all locations equally, and such a process leads to the redundant computation
of low-frequency features.

To address the above problems, a novel framework is proposed in this paper, called a
Hybrid Domain Attention Network (HDANet), for single-image super-resolution, which is
illustrated in Figure 1. It introduces the self-attention mechanism of the Transformer [13]
to improve the inference efficiency of the network. Specifically, in this paper, two parallel
self-attention modules are added to the feature extraction process, namely, the spatial
self-attention module and the channel self-attention module. The spatial self-attention
module captures key image information (e.g., edge and texture regions) and adaptively
finds the regions in the image information that need to be attended to. The channel
self-attention module captures the interdependencies between different feature channels
and adaptively reinforces the important channels to suppress the non-important ones.
The two modules work in concert to further refine the redundancy calculation. Such a
hybrid domain self-attention mechanism enables the network to bypass low-frequency
information and focus on more useful information to effectively accomplish the task of
image SR reconstruction [14].

Figure 1. An overview of HDANet.
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The main contributions of this paper are twofold: (1) A hybrid domain network with
a self-attention mechanism is proposed to dynamically skip redundant computations for
efficient image SR reconstruction. Different from existing methods that focus on lightweight
networks, this paper improves the efficiency of SR reconstruction by reducing redundant
computations. (2) This paper proposes a spatial self-attention module to learn the region
that needs to be paid attention to in the image and design a channel self-attention module
to allocate the resources among the individual convolutional channels. These two modules
work together to locate redundant computations.

2. Related Work

With the development of computer vision and deep learning, image super-resolution
has ushered in a wave of development. From traditional image super-resolution methods
to deep learning-based super-resolution methods, image super-resolution techniques have
been significantly improved. After the attention mechanism is proposed, deep neural
networks no longer treat all features equally, but highlight key features and suppress
useless features with the help of an attention mechanism to improve the efficiency and
accuracy of information processing. This section focuses on the methods related to image
SR reconstruction.

2.1. Traditional Methods

Traditional methods to improve image resolution are based on certain rules to calculate
the value of the inserted pixels, such as interpolation, reconstruction, and learning [15].
Interpolation refers to the use of known data to predict unknown data, while image
interpolation involves predicting the value of a pixel given a pixel point based on the
information of the pixel points around it [16]. The common interpolation methods are
bicubic interpolation, nearest-neighbor interpolation, and bilinear interpolation. Among
them, bicubic interpolation is the most complex and produces the best results to interpolate
the object accurately. By the same token, it is also the slowest due to its computational
complexity. The interpolation-based method is simple and easy to implement, does not
consider the semantic information of the whole image, and only uses the information
between the pixels of the low-resolution image to improve the resolution. The interpolation
method reconstructs high-resolution images faster and enables real-time super-resolution
reconstruction of images. Although the pixel points of images are increased, the quality
of super-resolution reconstructed images is lower and often has problems such as mosaic,
jaggedness, and blurred edges. Reconstruction methods include maximum a posteriori
estimation and iterative back-projection algorithms, which have better reconstruction
results than interpolation methods, but the shortcomings are that the models are inefficient
and are influenced by the magnification factor [17]. Local embedding [18] and sparse
coding [19] are both learning-based hyper-segmentation algorithms, and the reconstruction
quality of these algorithms is the best compared to the first two methods, and they are the
mainstream direction of current research.

2.2. Methods Based on Deep Learning

Deep learning is widely used in various fields with its powerful feature extraction
and model fitting capabilities, especially in the field of image processing and computer
vision [10]. Convolutional neural networks have made a big splash, which has led a large
number of researchers to apply deep learning to the field of super-resolution reconstruction.
Deep learning-based image super-resolution methods address the shortcoming that tradi-
tional methods are difficult to learn deep features of images and achieve the current optimal
reconstruction performance and results on several publicly available datasets. According
to the different network models, the deep learning-based super-resolution reconstruction
methods can be divided into two categories, one is the SR method based on CNN networks
and the other is the SR method based on GAN networks. The former is most widely used
in the field of SISR reconstruction.
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Among them, the SR methods based on CNN network models are further divided
into direct-connected models, residual models, dense models, and attention models. The
SRCNN algorithm and FSRCNN algorithm are simple direct-connected model structures,
which are very easy to implement, but the network training is difficult, and the SR recon-
struction effect is not good. The algorithms, such as VDSR, EDSR, DRCN, and DRRN,
improve the SR reconstruction effect by increasing the number of network layers with
the help of the residual idea of the ResNet network, and these algorithms belong to the
residual model structure. To solve the problem of gradient disappearance caused by
increasing network depth, SRDenseNet [20] was inspired by residual connectivity and
applied densely connected networks to SR reconstruction for the first time, and the image
reconstruction quality was greatly improved. The above network model treats all features
equivalently and involves the redundant computation of useless information. Inspired
by the human visual attention mechanism, RCAN introduces channel attention mecha-
nism into image super-resolution reconstruction, dynamically assigns channel weights to
strengthen useful channels while suppressing useless channels, and fully utilizes computa-
tional resources [10].

If CNN achieves a new breakthrough in image super-resolution reconstruction, then
generative adversarial networks push the quality of image super-resolution reconstruction
to a new level, making the recovered images more realistic and natural, such as SRGAN
and ESRGAN algorithms. Although GAN-based super-resolution reconstruction methods
are more capable of generating high-quality images, their complex network structure and
slow learning speed will lead to greater training difficulty.

3. Proposed Method
3.1. Overview

To generate high-quality high-resolution images, the symmetric network shown in
Figure 1 is designed in this paper. HDANet consists of three main parts, namely, the shallow
feature extraction part, the deep feature extraction part, and the up-sampling part. The
shallow feature extraction part consists of a convolutional layer, which is used to extract
the edge, shape, and other information of the image. The deep feature extraction part is
used to extract more abstract semantic information. Figure 2 shows the results of shallow
feature and deep feature visualization. The deep feature extraction part borrows the idea
of residuals from the ResNet network and uses multiple serial residual groups, where
each residual group contains multiple building blocks, namely HDA blocks and short skip
connections. The short skip connection, also known as residual connection, solves the
problem of gradient disappearance caused by network depth increase while increasing the
network depth and achieving high-performance image SR [10]. HDA block, as a feature
extraction module, mainly consists of two parallel and symmetric attention modules, which
are spatial domain self-attention module and channel domain self-attention module, and its
specific implementation process is shown in Figure 3. The HAD block enables the network
to focus on the focal region, focusing on recovering the high-frequency information of the
image and skipping the redundant computation. Meanwhile, the long skip connection
is used to pass detailed information from the bottom to the top layer to improve the
up-sampling results by fusing shallow features and deep features. The combination of
short-skip connections and long-skip connections further improves the performance of
image SR. The up-sampling methods are deconvolution, inverse pooling, and interpolation.

3.2. Hybrid Domain Attention Network

The low-level features have high resolution and contain more location and detail
information, but their semantic information is less and more noisy. The high layer features
have low resolution and are less perceptive of details, but their semantic information is
richer. As shown in Figure 1, a convolutional layer is used to perform shallow feature
extraction on the input low-resolution image. The operation can be expressed as follows:

Y0 = F(ILR) (1)
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where ILR denotes the low-resolution image and F(·) denotes the convolution operation. To
obtain a more abstract feature representation, the obtained low-level features Y0 ∈ RC×H×W

are input to multiple residual groups for deep feature extraction. The operation can be
expressed as follows:

YRG = FRG(Y0) (2)

where FRG(·) indicates multiple residual groups for further deep feature extraction of the
input shallow features. The obtained high-level features YRG are added to the bottom-level
features Y0 in a pixel-by-pixel phase after a convolution layer to achieve feature fusion, and
then the fused deep-level features are input to the up-sampling module to complete the
image super-resolution reconstruction. The operation can be expressed as follows:

IHR = FUP(Y0 + F(FRG)) (3)

Figure 2. Visualization of the feature map. (a) Shallow feature map; (b) Deep feature map.

Figure 3. HDANet. An illustration of Spatial Attention Module and Channel Attention Module.

Most super-resolution reconstruction networks use pixel-based loss function to train
the network, but the pixel loss function does not in consideration of the perceptual, texture
quality of the image, and the network often outputs perceptually unsatisfactory results,
for example, the output image lacks high-frequency details. Moreover, this paper adopts
the perceptual loss function proposed by Bruna et al. [8], which can recover richer high-
frequency details, and the feature reconstruction loss function proposed by the pre-trained
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VGG19 network to extract the hyper-resolution reconstructed image and the original high-
resolution image in the feature space for the feature mapping, whose expressions are:

Lij =
1

Wj Hj

Hj

∑
h=1

Wj

∑
w=1

(
ϕj(IHR)x,y − ϕj

(
GθG (ILR)

)
x,y

)
(4)

where GθG (X) is the generated high-resolution image and ϕj is the feature map obtained
by the j-th convolution of the VGG19 network.

3.3. Spatial Self-Attention Module

The computational process of the self-attentive mechanism can be summarized into
two processes, the first process is to calculate the weight coefficients based on Query and
Key, and the second process is to weight the summation of value based on the weight
coefficients. The spatial self-attention module treats each channel feature equally and
ignores the information interaction between channels, while the channel self-attention
module pools the information within a channel directly globally on average and ignores
the local information within each channel [21]. Therefore, in this paper, the self-attention
mechanism is applied to both the spatial and channel domains. As shown in Figure 2,
the shallow feature extraction is first performed on the images input to the HAD block,
and then the obtained feature maps are input to the spatial self-attention module and the
channel self-attention module, respectively.

Not all regions that contribute to the image super-resolution reconstruction are equally
important, and only the regions related to SR reconstruction are required to be related. The
spatial self-attention module is to find the important parts of the network for processing,
which is essential to locate the target and perform some transformations or obtain weights.
In this paper, the spatial attention module locates the important regions of the image and
skips the redundant computation. It is implemented as follows:

Suppose the feature map input to the spatial attention module is A ∈ RC×H×W , and
after convolution, the feature map Ai ∈ RC×H×W(i = 1, 2, 3) is obtained, which is denoted
as Query, Key and Score, respectively. The operation can be expressed as follows:

Ai = Fi(A), (i = 1, 2, 3) (5)

where Fi(·) denotes the convolution operation, and then the reshape operation is performed
on Ai(i = 1, 2, 3), that is, a C-dimensional matrix down to two dimensions, the specific im-
plementation of the C two-dimensional matrix stitching into a two-dimensional matrix. The
resulting feature map is Areshape

i ∈ RC×N(i = 1, 2, 3), where, N = H ×W. The operation
can be expressed as follows:

Areshape
i = R

(
Ai
)

, (i = 1, 2, 3) (6)

where R(·) denotes the reshape function, which is used to expand multiple two-dimensional
vectors into a single two-dimensional vector. Subsequently, Areshape

1 is transposed to obtain(
Areshape

1

)T
. This operation can be expressed as:(

Areshape
1

)T
= T

(
Areshape

1

)
(7)

where T(·) denotes the transpose function that converts the size of the matrix from C× N
to N × C. The resulting matrix after transposition is multiplied by Areshape

2 to obtain the
weight coefficient score, and the result is denoted as S ∈ RN×N . This operation can be
expressed as:

S =
(

Areshape
1

)T
× Areshape

2 (8)
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S =

 x11 . . . x1N
...

. . .
...

xN1 · · · xNN

 (9)

Then, softmax is performed on S, and the resulting feature map is Sso f tmax. This
operation can be expressed as:

aij =
exp

(
xij
)

N
∑

i=1,j=1
exp

(
xij
) (10)

Sso f tmax =

 a11 . . . a1N
...

. . .
...

aN1 · · · aNN

 (11)

After obtaining the feature map Sso f tmax, then transpose it to find
(

Sso f tmax

)T
, and

multiply the transposed
(

Sso f tmax

)T
with Areshape

3 . The result of the multiplication is
transposed and then added with the original features A input to the HDA block to obtain
the spatial attention feature map E ∈ RC×H×W . The operation can be expressed as:

E = A + α× T
(

T
(

Sso f tmax

)
× Areshape

3

)
(12)

where α is the scale factor, representing the degree of integration of local features with
global features, initialized to 0 and gradually learned to assign larger weights. From
Equation (12), it can be inferred that each position in the obtained spatial feature E is a
weighted sum of the features of all positions and the original features. Therefore, it has
global semantic information.

3.4. Channel Self-Attention Module

Each layer of CNN has multiple convolutional kernels, and each convolutional kernel
is for a featured channel, and each channel is related to the important information to a
different degree. If the weight represents the relevance of the channel to the important
information, then the higher the weight, the higher the relevance. Conversely, the lower the
degree of relevance. In this paper, the channel attention module adaptively allocates the
resources among each convolutional channel according to the calculated weights, which is
mainly implemented as follows:

Suppose the feature map input to the spatial attention module is B ∈ RC×H×W , and
after convolution, the feature map Bi ∈ RC×H×W(i = 1, 2, 3) is obtained, which is denoted
as Query, Key and Score, respectively. The operation can be expressed as follows:

Bi = Fi(B), (i = 1, 2, 3) (13)

where Fi(·) denotes the convolution operation, and then the reshape operation is performed
on Bi(i = 1, 2, 3), that is, a C-dimensional matrix down to two dimensions, the specific
implementation of the C two-dimensional matrix stitching into a two-dimensional matrix.
The resulting feature map is Breshape

i ∈ RC×N(i = 1, 2, 3), where, N = H×W. The operation
can be expressed as follows:

Breshape
i = R

(
Bi
)

, (i = 1, 2, 3) (14)

where R(·) denotes the reshape function, which is used to expand multiple two-dimensional
vectors into a single two-dimensional vector. Subsequently, Breshape

1 is transposed to obtain(
Breshape

1

)T
. This operation can be expressed as:
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(
Breshape

1

)T
= T

(
Breshape

1

)
(15)

where T(·) denotes the transpose function that converts the size of the matrix from C× N
to N × C. The resulting matrix after transposition is multiplied by Breshape

2 to obtain the
weight coefficient Score, and the result is denoted as S ∈ RN×N . This operation can be
expressed as:

S =
(

Breshape
1

)T
× Breshape

2 (16)

S =

 y11 . . . y1N
...

. . .
...

yN1 · · · yNN

 (17)

Then, softmax is performed on S, and the resulting feature map is Sso f tmax. This
operation can be expressed as:

bij =
exp

(
yij
)

N
∑

i=1,j=1
exp

(
yij
) (18)

Sso f tmax =

 b11 . . . b1N
...

. . .
...

bN1 · · · bNN

 (19)

After obtaining the feature map Sso f tmax, then transpose it to find
(

Sso f tmax

)T
, and

multiply the transposed
(

Sso f tmax

)T
with Breshape

3 . The result of the multiplication is
transposed and then added with the original features B input to the HDA block to obtain
the spatial attention feature map E ∈ RC×H×W . The operation can be expressed as:

E = B + β× T
(

T
(

Sso f tmax

)
× Breshape

3

)
(20)

where β is the scale parameter, initialized to a value of 0, and then the weights are gradually
increased by learning. From Equation (20), it can be inferred that each channel in the
obtained channel features E is the sum of the additive persuasion of the features of all
channels and the original features.

3.5. Hybrid Domain Attention Module

Most existing methods use compressed neural networks to achieve efficient image SR
reconstruction. Commonly used methods for compressing neural networks are knowledge
distillation and model pruning. These methods can reduce the complexity of neural
network models and improve the inference speed of the models, but still involve redundant
computations. For this reason, this paper introduces a hybrid domain attention module
(HDAM) in the network to reduce the redundant computations in both dimensions, space,
and channel, to obtain efficient image SR reconstruction. Specifically, in each HDAM,
a spatial self-attention module and a channel self-attention module are introduced in
a symmetric manner, and these two modules generate spatial and channel scores by
computing spatial correlation and channel correlation among features, respectively, as
shown in Figure 2. The obtained scores are multiplied with the convolved features, thus
skipping the redundant calculations in both spatial and channel dimensions. The outputs
of the two modules are then summed pixel-by-pixel to achieve feature fusion and further
enhance the feature representation. Compared with cascading, the cascaded approach can
reduce the GPU footprint and speed up the model operation.
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4. Experiment
4.1. Datasets and Implementation Details

The DIV2K [22] dataset, which is widely used in learning-based image SR reconstruc-
tion methods, was selected to train the network, which consists of 800 training images
and 100 validation images. The performance of this paper’s method is evaluated on the
B100, Set5 [23], Set14 [24], and Urban100 datasets, and the SR results are evaluated using
the PSNR and SSIM on the Y channel (i.e., luminance) of the transformed YCbCr space.
Meanwhile, the method of this paper is evaluated on the Urban100 dataset by comparing
the visual results of SISR reconstruction.

We implement our method based on Pytorch [25] with an NVIDIA Titan Xp GPU. For
training, eight patches of a size randomly cropped from LR images and the corresponding
HR patch are used as input, and then to drive the depth model to the best performance,
random cropping and horizontal flipping are used to expand the dataset. We train our
model with the ADAM optimizer [26]. β1, β2, and ε are set to 0.9, 0.99 and 10−8, respectively.
The initial learning rate is set to 10−4 and then reduced to half after every 200 epochs.

4.2. Effect of Data Preprocessing

To explore the effect of data preprocessing on the performance of image SR recon-
struction, this paper conducts ablation experiments on the public dataset Set14. First, two
different sets of experiments, denoted as G1 and G2, are designed. Group G1 experiments
do not perform any preprocessing on the data, and group G2 experiments perform data
enhancement (cropping, horizontal flipping) on the data. Then, to verify the validity of the
experiments, the public data set Set14 is chosen as the validation set and the images are pro-
cessed with 2-fold magnification, while PSNR, SSIM, and FLOPs are used as experimental
evaluation metrics to represent the SR reconstruction performance, and the experimental
results are shown in Table 1. It can be seen that the G2 group experiments did not perform
data amplification, so its computation is slightly lower than that of G2, but its image SR
reconstruction quality is inferior to that of the G2 group. These comparisons prove that
the model computation will slightly increase after the data is preprocessed, but the image
reconstruction quality will be improved. Thus, it can be seen that data preprocessing can
improve the generalization ability of the model at a lower computational cost.

Table 1. Ablation study with ×2 SR on Set14.

Group Data Preprocessing FLOPs PSNR SSIM

G1 × 112.3 G 33.51 0.9169
G2

√
130.4 G 33.59 0.9175

4.3. Effect of SAM and CAM

To explore the effects of the spatial self-attentive module (SAM) and the channel
self-attentive module (CAM) on the model, ablation experiments are conducted on the
public dataset Set5. First, four different models are designed. Model 1 is the model without
either SAM or CAM added and is denoted as model 1. Model 2 and model 3 are the models
with only the CAM module added and SAM module added, respectively. Model 4 is the
model with both the SAM and CAM modules added and is also the model used in this
paper. Then, to verify the validity of the experiment, the public data set Set4 is chosen as
the validation set, and the images are processed with 2x magnification, while PSNR, SSIM,
Parameters, and FLOPs are used as the experimental evaluation indexes to represent the
image reconstruction performance.

The comparison results are shown in Table 2. It can be seen that model 1 without
adding SAM and CAM modules has the highest computational cost, and its FLOPs value is
almost twice as high as the other models. This is because model 1 processes all features
equally when extracting deep features. Model 2 adds only the CAM module to trim redun-
dant channels on all spatial information, so model 2 has the least number of parameters and
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FLOPs. However, its image SR performance is severely degraded compared to other models
(37.83 vs. 37.86), which is because the CAM module filters out the unimportant channel
while filtering out all the spatial information of that channel, which contains important
features. Model 3 adds only the SAM module, which filters only the non-important features,
so its SR reconstruction performance is higher than that of model 2, but its FLOPs decrease
as the performance increases. Our network with both SAM and CAM modules reduces
the computational effort to 40% of the original while improving the SR reconstruction
performance (37.94 vs. 37.86). This is because the SAM module treats each channel feature
equally, ignoring the information interaction between channels, and the CAM module
pools the information within a channel directly and globally, ignoring the local information
within each channel. Model 4 combines the outputs of the CAM and SAM modules, im-
proving the shortcomings of both modules, further bypassing low-frequency information
and focusing on more useful information. The SR reconstruction performance is improved
while reducing the computational effort. These comparisons strongly demonstrate the
effectiveness of SAM and CAM, and that the best results are achieved when the two work
together on the network.

Table 2. Ablation study with ×2 SR on Set5.

Model SAM CAM Params FLOPs PSNR SSIM

model 1 × × 1.00 M 213.8 G 37.86 0.9582
model 2 ×

√
0.67 M 128.3 G 37.83 0.9583

model 3
√

× 1.25 M 139.1 G 37.90 0.9591
model 4

√ √
1.06 M 130.4 G 37.94 0.9598

4.4. Comparison with State-of-the-Arts

To verify the sophistication and validity of the model, HDANet is compared with Bicu-
bic, RDN-DAQ, SRCNN, VDSR, LapSRN, and CARN in this paper. Quantitative results are
shown in Table 2 and visualization results are provided in Figure 3. The implementations
of these methods are based on the officially released source code and their experimen-
tal results are evaluated using the trained weights. As shown in Table 3, the proposed
HDANet achieves the highest PSNR and SSIM on most of the datasets for the current
state-of-the-art methods. For example, for ×2 SR, HDANet achieves better performance
than CARN with 4a 1% and 33% reduction in FLOPs and parameters, respectively. With
comparable model sizes our HDANet achieves better thrust efficiency in terms of FLOPs
(66.7 G vs. 118.8 G). With comparable computational volume (40.5 G vs. 52.7 G), HDANet
has 30% fewer parameters. For ×2/3/4 SR, our HDANet achieves much higher PSNR and
SSIM values than VDSR, but its FLOPs values are much smaller than VDSR. These results
show that our approach overcomes the dilemma caused by the performance improvement
well, achieving high PSNR performance and low computational cost.

The visual results of image SR reconstruction are shown in Figure 4. The images used
for testing are selected from the public dataset Urban100, and the comparison shows that
the HDANet method generates clearer images with better details and higher contrast, and
HDANet has significant improvements over Bicubic, SRCNN, VDSR, LapSRN, and CARN.
For example, in terms of the 4-magnification effect of image img001, it is obvious that the
stripes of the buildings in the image generated by HDANet are clearer, while the stripes of
the buildings in the image generated by other methods are very blurred and have obvious
distortion compared to the original image.
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Figure 4. Visual comparison for ×4 SR on Urban100 datasets.
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Table 3. Performance evaluation of each network model on Set5, Set14, B100, and Urban100 test sets
(×2, ×3, ×4). Best results are shown in bold.

Model Scale FLOPs Params Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Bicubic

×2

33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403
SRCNN [7] 52.7 G 1.55 M 36.66/0.9545 32.42/0.9063 31.36/0.8879 29.50/0.8946
VDSR [9] 612.6 G 0.67 M 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140

LapSRN [27] 29.9 G 0.81 M 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101
CARN [28] 222.8 G 1.59 M 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
HDANet 130.4 G 1.06 M 37.94/0.9598 33.59/0.9175 32.13/0.8988 32.17/0.9283

Bicubic

×3

30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
SRCNN [7] 52.7 G 1.55 M 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
VDSR [9] 612.6 G 0.67 M 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279

LapSRN [27] 29.9 G 0.81 M 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280
CARN [28] 118.8 G 1.59 M 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
HDANet 66.7 G 1.06 M 34.35/0.9210 30.28/0.8405 29.11/0.8053 28.23/0.8531

Bicubic

×4

28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
SRCNN [7] 52.7 G 1.55 M 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
VDSR [9] 612.6 G 0.67 M 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524

LapSRN [27] 149.4 G 0.81 M 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560
CARN [28] 90.9 G 1.59 M 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

RDN-DAQ [29] 6.9 M 31.61/. 28.21/. 27.31/. 25.52/.
HDANet 40.5 G 1.08 M 32.15/0.8941 28.61/0.7810 27.56/0.7338 26.12/0.7871

5. Conclusions

In this paper, a symmetric hybrid domain attention network (HDANet) for image
SR reconstruction is presented, which utilizes Transformer’s self-attention mechanism to
suppress unimportant information and skip redundant computations. Specifically, the
spatial self-attention module captures the important features of the image, the channel
self-attention module suppresses the non-important channels, and then the outputs of the
two symmetric modules are summed to further enhance the feature representation, thus
locating the redundant computations. The experimental results show that our self-attentive
network achieves the highest PSNR and SSIM on most of the datasets. Moreover, HDANet
reduces the computational effort by nearly 40% compared to the original model first. This
shows that HDANet effectively accomplishes the task of image SR reconstruction and
achieves excellent performance while reducing the computational cost. In the next work,
we will further investigate how to reduce the computational complexity of the model and
how to enhance the robustness of the model to obtain effective improvement in image
quality and efficiency.
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