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Abstract: In this work, we shall exhaustively study the effects of modified gravity on the energy
spectrum of the primordial gravitational waves background. S. Weinberg has also produced sig-
nificant works related to the primordial gravitational waves, with the most important one being
the effects of neutrinos on primordial gravitational waves. With this short review, our main aim is
to gather all the necessary information for studying the effects of modified gravity on primordial
gravitational waves in a concrete and quantitative way and in a single paper. After reviewing all the
necessary techniques for extracting the general relativistic energy spectrum, and how to obtain, in a
WKB way, the modified gravity damping or amplifying factor, we concentrate on specific forms of
modified gravity of interest. The most important parameter involved for the calculation of the effects
of modified gravity on the energy spectrum is the parameter aM, which we calculate for the cases of
f (R, φ) gravity, Chern–Simons-corrected f (R, φ) gravity, Einstein–Gauss–Bonnet-corrected f (R, φ)

gravity, and higher derivative extended Einstein–Gauss–Bonnet-corrected f (R, φ) gravity. The exact
form of aM is presented explicitly for the first time in the literature. With regard to Einstein–Gauss–
Bonnet-corrected f (R, φ) gravity, and higher derivative extended Einstein–Gauss–Bonnet-corrected
f (R, φ) gravity theories, we focus on the case in which the gravitational wave propagating speed is
equal to that of light in a vacuum. We provide expressions for aM expressed in terms of the cosmic
time and in terms of the redshift, which can be used directly for the numerical calculation of the effect
of modified gravity on the primordial gravitational wave energy spectrum.

Keywords: neutron stars; scalar–tensor gravity; Higgs inflationary model

1. Introduction

To date, the current perception of our Universe indicates that the Universe went
through four distinct evolutionary eras, the inflationary era [1–4], the radiation domination
era, the matter domination era, and the dark energy eras. Our knowledge is limited, though,
since we know very well only the physics beyond the recombination era, nearly at redshift
z ∼ 1100, where the Cosmic Microwave Background (CMB) modes exited the Hubble
horizon. Concerning the dark energy era, we do not know the origin of this late-time
acceleration era, and the same applies for the inflationary era and the most mysterious
of all, the reheating and the subsequent radiation domination eras. With regard to the
inflationary era, we do not know whether it even occurred. Modified gravity in its various
forms [5–10] can play a prominent role toward consistently describing inflation and the
dark energy eras with or without the need for scalar fields. In some cases, it is possible to
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describe inflation and the dark energy eras within the same theoretical framework; see [11]
for the first attempt toward this research line, and also Refs. [12–20] for some more recent
works. However, admittedly, the radiation domination era, and specifically its early stages,
remains quite mysterious and, to date, inaccessible by any currently undergoing experiment.
Hopefully, though, all the future interferometric gravitational wave experiments, such as
the LISA laser interferometer space antenna [21,22], the dHz probing DECIGO [23,24],
the Hz-kHz frequencies probing Einstein Telescope [25], and the future BBO (Big Bang
Observatory) [26,27], are expected to probe the frequency range corresponding to the
reheating and radiation domination era. Specifically, the frequency range of the future
gravitational wave experiments corresponds to much higher frequencies compared to the
CMB ones, and will probe modes that became subhorizon shortly after the inflationary era,
during the early stages of the reheating era. At intermediate frequencies, very promising
results may be obtained by the Square Kilometer Array (SKA) [28] and the NANOGrav
collaboration [29,30], which are based on measurements of pulsar timing arrays. In the
literature, there exist several theoretical attempts to efficiently predict the energy spectrum
of the primordial gravitational waves; see Refs. [31–83] and references therein. Notable
is also the work of S. Weinberg in the field; see, for example, Refs. [84,85]; especially
notable is the effect of neutrinos on the primordial gravitational waves, which was first
discussed in [84]. The primordial gravitational waves form a stochastic background, and on
this background, important information during and after the inflationary era is imprinted.
The stochastic primordial gravitational wave background is a unique tool that will probe
directly the inflationary and short-post-inflationary era, since these gravitational waves
are superadiabatic amplifications of the gravitational field’s zero-point fluctuations. More
importantly, the evolution of the primordial gravitational waves is described by linear
differential equations since the coupling of the gravitational waves with matter is tiny,
contrary to the CMB modes, which obey non-linear evolution equations for wavelengths
larger than 10 Mpc. There are three vital effects on the primordial gravitational wave
spectrum: first, the effects of the first horizon crossing during inflation; secondly, the
post-inflationary second horizon crossing, where the primordial tensor modes become
subhorizon modes again, and thirdly, post-inflationary effects on the spectrum, caused
by several sources, such as the matter content of the Universe, supersymmetry breaking,
or even modified gravity. All these effects are encoded on the stochastic background of
primordial gravitational waves and will certainly offer insights into the physics that stretch
back from the electroweak phase transition to the inflationary era.

If the outcome of future interferometric experiments is the discovery of a primordial
gravitational wave stochastic background, modified gravity seems to be a compelling
description of the primordial era of our Universe, and specifically of the inflationary
and short post-inflationary ones. This is due to the fact that standard descriptions of
the inflationary era, such as scalar field theories, fail to produce an observable energy
spectrum of primordial gravitational waves [86], unless tachyons are used. In the context
of modified gravity, on the other hand, blue-tilted inflation is predicted, and a blue tilt
can even explain recent observations on pulsar timing arrays; see, for example, [48,52]. To
be specific, a blue-tilted tensor spectral index or an abnormal reheating era can produce
an observable gravitational wave spectrum. In view of the above, in this paper, we shall
thoroughly study how to calculate the modified gravity effects on the energy spectrum of
primordial gravitational waves. We shall use a WKB method firstly introduced in Ref. [54],
which offers the possibility to quantify the overall effect of modified gravity on an integral
of a single parameter aM. After reviewing how to calculate the energy spectrum of the
primordial gravitational waves, including the modified gravity effects, we shall calculate
the parameter aM for several modified gravity theories of interest. Our aim is to offer all the
information needed for the calculation of modified gravity effects for redshifts stretching
from the present time up to the end of the inflationary era.

This article is organized as follows: in Section 2, we present all the formalisms neces-
sary for the extraction of the energy spectrum of the primordial gravitational waves. We
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review standard features of primordial gravitational waves, and we extract the differen-
tial equation that governs the evolution of the primordial gravitational waves. We also
show explicitly how the effects of modified gravity are encoded on a single parameter
and we discuss how to calculate the overall effect of modified gravity on the primordial
gravitational waves. In Section 3, we calculate and present formulas for the parameter aM,
which quantifies the effect of modified gravity on primordial gravitational waves. We shall
calculate it for several modified gravities of phenomenological interest, and specifically for
f (R, φ) gravity, for Chern–Simons-corrected f (R, φ), for Einstein–Gauss–Bonnet-corrected
f (R, φ) gravity, and for higher derivative Einstein–Gauss–Bonnet-corrected f (R, φ) gravity.
Finally, the conclusions of this work are presented at the end of the paper.

2. The Spectrum of Primordial Gravitational Waves in General Relativity and
Modified Gravity Effects

In this section, we shall review the general features of primordial gravitational waves
in the context of general relativity (GR) and we shall also quantify the way that modified
gravity affects the spectrum. The analysis shall be based on Refs. [34,46,47,54,55,57,76] and
references therein, and more details can be found in [34].

The primordial tensor perturbations are basically perturbations of a flat Friedmann–
Robertson–Walker (FRW) metric,

ds2 = −dt2 + a(t)2
3

∑
i=1

(dxi)2 , (1)

where a(t) is the scale factor as usual. Using the conformal time τ, the perturbed FRW
metric is

ds2 = a2[−dτ2 + (δij + hij)dxidxj], (2)

with xi being the comoving spatial coordinates, and hij denotes the gauge-invariant metric
tensor perturbation, which has symmetric hij =hji, traceless hii =0, and transverse ∂jhij =0
conditions. The reason for the traceless, transverse, and symmetric characteristics is that
every tensor mode describing a gravitational wave should actually have these features.
The second-order Lagrangian corresponding to the tensor perturbation hij(τ, x) is

S =
∫

dτdx
√
−g
[
−gµν

64πG
∂µhij∂νhij +

1
2

Πijhij

]
, (3)

where the tensor part of the anisotropic stress Πµν is

Πi
j = Ti

j − pδi
j (4)

and satisfies Πii = 0, ∂iΠij = 0, while it acts as an external source in the action (3). Upon
varying the action (3) with respect to hij, we obtain

h′′ij + 2
a′(τ)
a(τ)

h′ij −∇2hij = 16πGa2(τ)Πij(τ, x), (5)

with the “prime” denoting differentiation with respect to the conformal time. Upon Fourier
transforming Equation (5), we get

hij(τ, x) = ∑
r

√
16πG

∫ dk
(2π)3/2 εr

ij(k)h
r
k(τ)e

ikx, (6a)

Πij(τ, x) = ∑
r

√
16πG

∫ dk
(2π)3/2 εr

ij(k)Π
r
k(τ)e

ikx, (6b)
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with r =(“+” or “×”) denoting the polarization of the tensor perturbation, and the polar-
ization tensors satisfy [εr

ij(k) = εr
ji(k)], and also εr

ii(k) = 0, and kiε
r
ij(k) = 0. Equation (6)

in conjunction with Equation (3) yields

S=∑
r

∫
dτdk

a2

2

[
hr

k
′hr

-k
′−k2hr

khr
-k+32πGa2Πr

khr
-k

]
, (7)

which is the action for the Fourier-transformed gravitational tensor perturbations. The
resulting theory can easily be quantized, with hr

k playing the role of the canonical variable,
and the corresponding conjugate momentum is

πr
k(τ) = a2(τ)hr

-k
′(τ) , (8)

and, hence, the theory is quantized if the following equal time commutation relations
hold true: [

ĥr
k(τ), π̂s

k′(τ)
]

= iδrsδ(3)(k− k′), (9a)[
ĥr

k(τ), ĥs
k′(τ)

]
= [π̂r

k(τ), π̂s
k′(τ)] = 0. (9b)

The Fourier components of ĥij(τ, x) satisfy the relation ĥr
k = ĥr†

-k , since ĥij(τ, x) is a
Hermitian operator. Therefore, we have

ĥr
k(τ) = hk(τ)âr

k + h∗k (τ)âr†
-k , (10)

where âr†
k and âr

k are the creation and annihilation operators, respectively, which satisfy[
âr

k, âs†
k′

]
= δrsδ(3)(k− k′), (11a)[

âr
k, âs

k′

]
=

[
âr†

k , âs†
k′

]
= 0 . (11b)

More importantly, each mode hk(τ) satisfies the equation

h′′k + 2
a′(τ)
a(τ)

h′k + k2hk = 16πGa2(τ)Πk(τ). (12)

The modes hk(τ) depend both on the conformal time and on the wavenumber
k = |k|, but do not depend on the polarization and on the direction, as is apparent
from Equation (10). The Wronskian normalization condition

hk(τ)h
∗
k
′(τ)− h∗k (τ)h

′
k(τ) =

i
a2(τ)

, (13)

makes compatible the commutation relations (9) and (11), and also the initial condition for
the modes is

hk(τ)→
exp(−ikτ)

a(τ)
√

2k
(as τ → −∞), (14)

which corresponds to the Bunch–Davies vacuum and describes modes which are initially
at subhorizon scales and satisfy Equation (13).

Let us proceed to the spectrum of the primordial gravitational waves Ωgw(k, τ), and
an inherent quantity to the energy spectrum, the tensor power spectrum ∆2

h(k, τ). The latter
can be obtained by considering

〈0|ĥij(τ, x)ĥij(τ, x)|0〉=
∫ ∞

0
64πG

k3

2π2|hk(τ)|
2dk

k
, (15)
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and, thus, the inflationary tensor power spectrum is obtained:

∆2
h(k, τ) ≡

d〈0|ĥ2
ij|0〉

d ln k
= 64πG

k3

2π2 |hk(τ)|
2. (16)

The energy spectrum of the primordial gravitational waves evaluated at present day
Ωgw(k, τ) is equal to

Ωgw(k, τ) ≡ 1
ρcrit(τ)

d〈0|ρ̂gw(τ)|0〉
d ln k

. (17)

By definition, the energy spectrum of the primordial gravitational waves is the energy
density of the gravitational waves, evaluated per logarithmic wavenumber interval. For
the evaluation of Ωgw(k, τ), we can treat the tensor perturbation hij as a quantum field in
an unperturbed FRW geometric background, the stress–energy tensor of which is

Tαβ = −2
δL

δḡαβ
+ ḡαβL, (18)

as is obtained by the action (3), with L denoting the Lagrangian function in Equation (3).
Since the future laser interferometers will seek for primordial gravitational waves in high
frequencies compared to the CMB ones, we can omit the anisotropic stress couplings, and
thus the gravitational wave energy density is

ρgw = −T0
0 =

1
64πG

(h′ij)
2 + (~∇hij)

2

a2 , (19)

and the corresponding vacuum expectation value of it is

〈0|ρgw|0〉 =
∫ ∞

0

k3

2π2

∣∣h′k∣∣2 + k2
∣∣hk

∣∣2
a2

dk
k

, (20)

and hence the gravitational wave energy spectrum reads

Ωgw(k, τ) =
8πG

3H2(τ)

k3

2π2

∣∣h′k(τ)∣∣2 + k2
∣∣hk(τ)

∣∣2
a2(τ)

. (21)

Moreover, using |h′k(τ)|
2 = k2|hk(τ)|

2, the gravitational wave energy spectrum evalu-
ated at present day can be rewritten as follows:

Ωgw(k, τ) =
1

12
k2∆2

h(k, τ)

H2
0(τ)

, (22)

where H0 is the Hubble rate at present day, and we also assume that the present-day scale
factor is equal to unity, in order for comoving quantities (frequencies and wavelengths) to
be identical with physical quantities. The interest in primordial gravitational wave searches
is for large frequency modes that became subhorizon during the dark era of the reheating
and radiation domination era—thus, for modes which entered the Hubble horizon first
after the end of the inflationary era. Let us now be more concrete on the calculation of the
energy spectrum of the primordial gravity waves, and first we consider the effects on it,
caused by the horizon re-entry of a mode k, in which case [34,46,47,54,55,57]

hλ
k (τ) = hλ(p)

k

(
3j1(kτ)

kτ

)
, (23)
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where j` denotes the `-th spherical Bessel function. The Fourier transformation of the
primordial tensor perturbation during a power-law cosmological evolution a(t) ∝ tp is

hk(τ) ∝ a(t)
1−3p

2p J 3p−1
2(1−p)

(kτ), (24)

with Jn(x) being the Bessel function. Moreover, taking into account the damping caused by
the relativistic degrees of freedom in the early Universe, which do not remain constant, the
following factor for hk(τ) is obtained [49]:(

g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3
, (25)

where the scale factor evolves as a(t) ∝ T−1 assuming adiabatic evolution, which follows
by the fact that the entropy of the Universe S is constant:

S =
2π2

4s
g∗s(aT)3 = const . (26)

Above, Tin denotes the temperature of the Universe at horizon re-entry,

Tin ' 5.8× 106 GeV
(

g∗s(Tin)

106.75

)−1/6( k
1014 Mpc−1

)
. (27)

Moreover, it is vital to take into account the damping factor caused by the current
acceleration of the Universe ∼ (Ωm/ΩΛ)

2 [34,35]. The full expression for the present-day
measured primordial gravity waves energy spectrum per log frequency includes all the
aforementioned damping effects and, in addition, and more importantly, it contains the
transfer functions, which are calculated numerically by integrating the evolution differential
equation of the Fourier-transformed tensor perturbation. The full expression for the energy
density of the primordial gravitational waves is

Ωgw( f ) =
k2

12H2
0

∆2
h(k), (28)

with the detailed form of ∆2
h(k) being [34,46,47,54,55,57]

∆2
h(k) = ∆(p)

h (k)2
(

Ωm

ΩΛ

)2( g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3
(

3j1(kτ0)

kτ0

)2

T2
1
(
xeq
)
T2

2 (xR) , (29)

where g∗(Tin(k)) in Equation (29) is [42]

g∗(Tin(k)) = g∗0

A + tanh
[
−2.5 log10

(
k/2π

2.5×10−12Hz

)]
A + 1

B + tanh
[
−2 log10

(
k/2π

6×10−19Hz

)]
B + 1

 , (30)

with the parameters A and B being equal to

A =
−1− 10.75/g∗0
−1 + 10.75g∗0

, (31)

B =
−1− gmax/10.75
−1 + gmax/10.75

, (32)

with gmax = 106.75 and g∗0 = 3.36. Moreover, by replacing g∗0 = 3.36 with g∗s = 3.91,
we can calculate g∗0(Tin(k)), using the same formulas, namely Equations (30)–(32). Note
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that the “bar” above the Bessel function in Equation (29) indicates averaging over many

integration periods. In addition, the term ∆(p)
h (k)2 in Equation (29) denotes the inflationary

era’s primordial tensor spectrum, the analytic form of which is [34,46,47,54,55,57]

∆(p)
h (k)2 = AT(kre f )

(
k

kre f

)nT

, (33)

where the scale kre f = 0.002 Mpc−1 is the CMB pivot scale. Moreover, AT(kre f ) denotes
the amplitude of the primordial tensor perturbations, and nT denotes the tensor spectral
index. Replacing

AT(kre f ) = rPζ(kre f ) , (34)

where Pζ(kre f ) is the amplitude of the primordial scalar perturbations, we have, finally,

∆(p)
h (k)2 = rPζ(kre f )

(
k

kre f

)nT

. (35)

Regarding the transfer functions T1(xeq) and T2(xR), the analytic form of the first one
is [34,46,47,54,55,57]

T2
1 (xeq) =

[
1 + 1.57xeq + 3.42x2

eq

]
, (36)

and it basically characterizes the modes that re-entered the Hubble horizon approxi-
mately during the matter–radiation equality with cosmic time instance t = teq. Re-
garding the notation of several parameters in Equation (36), xeq = k/keq and keq ≡
a(teq)H(teq) = 7.1× 10−2Ωmh2 Mpc−1. Now, regarding the transfer function T2(xR) ap-
pearing in Equation (29), it is related to modes that entered the Hubble horizon during the
reheating era, with the mode k being k > kR. Its analytic form is

T2
2 (xR) =

(
1− 0.22x1.5 + 0.65x2

)−1
, (37)

where xR = k
kR

, and also the kR wavenumber is equal to

kR ' 1.7× 1013 Mpc−1
(

g∗s(TR)

106.75

)1/6( TR

106 GeV

)
, (38)

with TR being the reheating temperature. Moreover, the reheating frequency is

fR ' 0.026 Hz
(

g∗s(TR)

106.75

)1/6( TR

106 GeV

)
. (39)

Having presented the GR primordial gravitational wave energy density, in the next
section, we shall consider the effects caused by modified gravity of various forms on the
GR waveform. Thus, we shall quantify the effects of modified gravity on the GR waveform
in an explicit way.

The Modified Gravity Effect on the Energy Spectrum of the Primordial Gravitation Waves: A
WKB Approach

In this section, we shall quantify the effect of an arbitrary modified gravity on the
GR waveform of primordial gravitational waves. Let us recall for convenience at this
point the differential equation that is obeyed by the Fourier transformation of the tensor
perturbation hij,

ḧ(k) + (3 + aM)Hḣ(k) +
k2

a2 h(k) = 0 , (40)
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with αM being defined as follows:

aM =
Q̇t

QtH
, (41)

where Qt is unique for every distinct modified gravity. The overall effect of modified gravity
is encoded on the parameter aM, and the functional form of this parameter is different for
distinct modified gravities. In addition, the evolution differential Equation (40) character-
izes all the distinct polarizations of the gravitational waves. In order to extract in a consistent
way the overall modified gravity effect, we shall use Nishizawa’s approach [54,55], which
is basically a WKB approach. Expressed in terms of the conformal time, the differential
Equation (40) becomes

h′′(k) + (2 + aM)Hh′(k) + k2h(k) = 0 , (42)

with the “prime” in the above equation indicating differentiation with respect to the
conformal time τ, and also we defineH = a′

a . We shall extract the WKB solution by taking
into account only subhorizon modes satisfying Equation (42) (see Figure 1). This is highly
justified for primordial gravitational wave studies, since the high-frequency interferometers
will probe modes that became subhorizon modes immediately after the inflationary era, so
during the early reheating era.

Hubble 

Radius

1

k>>Hα

Figure 1. Post-inflationary subhorizon modes for which the WKB solution of the evolution Equation (42)
is justified. These subhorizon modes became subhorizon immediately after inflation, so during the
early stages of the dark ages—the reheating and the subsequent radiation domination eras. These early
subhorizon modes will be probed by the future interferometer gravitational wave experiments.

Considering a solution of the form hij = AeiBhGR
ij , for theories in which the speed of

the gravitational wave is equal to unity in natural units, the WKB solution for subhorizon
modes is as given in [54,55], and (42) is of the form

h = e−DhGR , (43)

where hij = heij, with hGR denoting the GR waveform, which is the solution to the differen-
tial Equation (42) by taking aM = 0. More importantly, the parameter D is equal to

D =
1
2

∫ τ
aMHdτ1 =

1
2

∫ z

0

aM
1 + z′

dz′ , (44)

and mainly quantifies the direct effect of modified gravity on the GR waveform of pri-
mordial gravitational waves. Now, if one wishes to calculate the energy spectrum of the
primordial gravitational waves, it is vital to calculate the damping/amplification factor
of Equation (44) starting from redshift z = 0, which corresponds to present time, up to
redshifts corresponding deeply to the reheating era. The latter redshifts correspond to
primordial modes that became subhorizon modes immediately after the inflationary era, so
basically we are interested in extreme subhorizon modes at present day, with significantly
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small wavelength compared to the CMB scale modes. These subhorizon modes will be
probed fifteen years from now, through the LISA, BBO, DECIGO, and other gravitational
wave experiments. Thus, by also taking into account the effects of modified gravity, the
energy spectrum of the primordial gravitational waves at present day is

Ωgw( f ) = e−2D × k2

12H2
0

rPζ(kre f )

(
k

kre f

)nT(
Ωm

ΩΛ

)2( g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3
(

3j1(kτ0)

kτ0

)2

T2
1
(
xeq
)
T2

2 (xR) .

Depending on the specific form of the modified gravity, the parameter D might be
positive or negative. Therefore, the GR energy spectrum might be damped or amplified due
to the overall modified gravity effects. In the next subsections, we shall calculate in detail all
the possible forms of the parameter aM appearing in Equations (41) and (42) corresponding
to various modified gravities of interest. We shall give the expressions of aM both with
respect to the cosmic time and with respect to the redshift, for the calculational convenience
of the reader. We shall also present the results in a table, also for the convenience of
the reader.

3. Primordial Gravity Waves in Modified Gravity in its Various Forms

Let us first consider the calculation of the parameter aM appearing in Equation (41)
for the case of pure f (R, φ) gravity, in which case the gravitational action is

S =
∫

d4x
√
−g
( f (R, φ)

2
− ω(φ)

2
∂µφ∂µφ−V(φ)

)
. (45)

For this form of modified gravity, the parameter Qt is equal to Qt =
1
κ2

∂ f (R,φ)
∂R , where

κ = 1
Mp

, with Mp being the reduced Planck mass. Hence, for pure f (R, φ) gravity, the
parameter aM reads

aM =

∂2 f
∂R∂φ φ̇ + ∂2 f

∂R2 Ṙ
∂ f
∂R H

. (46)

We can express the above formula in terms of the redshift in order to have an expression
ready for the integral in Equation (44) in terms of the redshift. Using the following formula,

d
dt

= −H(1 + z)
d
dz

, (47)

the parameter aM expressed in terms of the redshift reads

aM =
− ∂2 f

∂R∂φ H(z)(1 + z)dφ
dz −

∂2 f
∂R2 H(z)(1 + z)dR

dz
∂ f
∂R H

. (48)

Let us consider the case of a Chern–Simons-corrected f (R, φ) gravity, in which case
the gravitational action reads

S =
∫

d4x
√
−g
( f (R, φ)

2
− ω(φ)

2
∂µφ∂µφ−V(φ) +

1
8

ν(φ)RR̃
)

, (49)

where RR̃ = εabcdRe f
abRcde f and εabcd stands for the totally antisymmetric Levi–Civita tensor.

In the literature, terms of the form ν(φ)R̃R are known as Chern–Simons terms. We need
to note, though, that the term ν(φ)R̃R is formally the Chern–Pontryagin density, which is
connected to an actual three-dimensional Chern–Simons term via the exterior derivative
ν(φ)R̃R = d(Chern− Simons). Notably, the Chern–Pontryagin density is the analogue of
the quantity ∗FµνFµν, which is constructed by the curvature Fµν on a principal bundle with
connection Aµ, but in the literature it is called the Chern–Simons term, due to the analogy
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that we have pointed out. In the Chern–Simons-corrected f (R, φ) gravity, the term Qt is
equal to [87]

Qt =
1
κ2

∂ f
∂R

+
2λ`ν̇k

a
, (50)

where λ` denotes the polarization of the gravitational wave and takes the values λR = 1
for right-handed gravity waves and λL = −1 for left-handed gravity waves, while k is the
wavenumber of the tensor mode. Thus, for the Chern–Simons-corrected f (R, φ) gravity,
the aM term in terms of the cosmic time reads

aM =

1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ + 2λ` ν̈k

a − 2λ` ν̇k H
a(

1
κ2

∂ f
∂R + 2λ` ν̇k

a

)
H

, (51)

where the last term numerator is found by differentiating Qt in Equation (50). Expressing
aM in terms of the redshift, we have

aM =
− 1

κ2
∂2 f

∂R∂φ H(z)(1 + z)dφ
dz −

1
κ2

∂2 f
∂R2 H(z)(1 + z)dR

dz +
2λ`H2(1+z) dν

dz k
a + 2λ`νdd(z)k

a(
1
κ2

∂ f
∂R −

2λ`(1+z)H dν
dz

a

)
H

, (52)

where νdd(z) is equal to

νdd(z) = −(1 + z)H
(

dH
dz

(1 + z)
dν

dz
+

dν

dz
H + H(1 + z)

d2ν

dz2

)
. (53)

Now, let us consider the case of f (R, φ) gravity with an Einstein–Gauss–Bonnet term,
in which case the gravitational action reads

S =
∫

d4x
√
−g
( f (R, φ)

2
− ω(φ)

2
∂µφ∂µφ−V(φ)− 1

2
ξ(φ)G

)
. (54)

For these theories, the speed of gravitational tensor perturbations is not equal to that
of light, but it is equal to [87]

c2
T = 1−

4
(
ξ̈ − ξ̇H

)
∂ f
∂R − 4ξ̇H

. (55)

Since we shall consider only theories for which the gravitational wave speed is equal
to that of light, the condition c2

T = 1 can be satisfied only if the Gauss–Bonnet scalar
coupling function ξ(φ) satisfies the differential equation ξ̈ − ξ̇H = 0. The inflationary
phenomenology of this class of Einstein–Gauss–Bonnet theories has been thoroughly
studied in the literature; see [88–91]. For Einstein–Gauss–Bonnet-corrected f (R, φ) theories,
the parameter Qt reads [87]

Qt =
∂ f
∂R
− 4ξ̇H , (56)

and, therefore, the parameter aM for the Einstein–Gauss–Bonnet-corrected f (R, φ) the-
ory reads

aM =

1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ− 4ξ̈H − 4ξ̇Ḣ(

1
κ2

∂ f
∂R − 4ξ̇H

)
H

, (57)

and ξ̈ must be replaced with ξ̈ = ξ̇H due to the gravitational wave speed constraint c2
T = 1.

In terms of the redshift, the parameter aM has the following form:

aM =
− 1

κ2
∂2 f

∂R∂φ H(z)(1 + z)dφ
dz −

1
κ2

∂2 f
∂R2 H(z)(1 + z)dR

dz + 4H2(1 + z) dξ
dφ

dφ
dz − 4H2(1 + z)2 dξ

dφ
dφ
dz

dH
dz(

1
κ2

∂ f
∂R + 4H2(1 + z) dξ

dφ
dφ
dz

)
H

, (58)
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Finally, let us consider a generalized Einstein–Gauss–Bonnet-corrected f (R, φ) theory
with higher-order derivative couplings, in which case the gravitational action is

S =
∫

d4x
√
−g
( f (R, φ)

2
− ω(φ)

2
∂µφ∂µφ−V(φ)− c1

2
ξ(φ)G − c2

2
ξ(φ)Gµν∂µφ∂νφ

)
, (59)

where Gµν is the Einstein tensor and c1, c2 are dimensionless constants. For this theory, the
gravitational wave speed is again non-trivial and different from that of light in a vacuum.
Specifically, the gravitational wave speed is [87]

c2
T = 1−

8c1
(
ξ̈ − ξ̇H

)
+ 2c2ξφ̇2

∂ f
∂R − 4ξ̇H

. (60)

As in the in Einstein–Gauss–Bonnet-corrected theory we presented previously, we are
interested in theories with gravitational wave speed equal to that of light in a vacuum, and
for the case at hand, the theory can have c2

T = 1 when the Gauss–Bonnet scalar coupling
ξ(φ) satisfies the differential equation

8c1
(
ξ̈ − ξ̇H

)
+ 2c2ξφ̇2 = 0 . (61)

With this constraint satisfied, the only parameter that needs to be calculated for
evaluating the energy spectrum of the primordial gravitational wave spectrum is aM, given
in Equation (41). In the case at hand, the parameter Qt is equal to [87]

Qt =
∂ f
∂R
− 4c1ξ̇H − c2

2
ξφ̇2 , (62)

and, therefore, the parameter aM (41) for the Einstein–Gauss–Bonnet-corrected f (R, φ)
theory with higher derivative coupling terms reads

aM =

1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ− 4c1ξ̈H − 4c1ξ̇Ḣ + c2

2 ξ̇φ̇2 + c2ξφ̇φ̈(
1
κ2

∂ f
∂R − 4c1ξ̇H + c2

2 ξφ̇2
)

H
. (63)

The above concludes the most complicated extension of f (R, φ) modified gravity with
c2

T = 1, for which the parameter aM of Equation (41) can be calculated. It is always a com-
putational challenge to calculate numerically the parameter D appearing in Equation (44)
for redshifts corresponding to modes that became subhorizon after the inflationary era,
during the reheating and the radiation domination era. In Table 1, we gather all the various
forms of the parameter aM for the various forms of modified gravity that were considered
in this section.

Table 1. Forms of the parameter aM for the various modified gravities.

Modified Gravity Type aM

Pure f (R, φ) aM =
(

∂2 f
∂R∂φ φ̇ +

∂2 f
∂R2 Ṙ

)
/
(

∂ f
∂R H

)
C-S f (R, φ) aM =

(
1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ + 2λ` ν̈k

a − 2λ` ν̇k H
a

)
/
(

1
κ2

∂ f
∂R + 2λ` ν̇k

a

)
H

EGB f (R, φ) aM =
(

1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ− 4ξ̈H − 4ξ̇Ḣ

)
/
(

1
κ2

∂ f
∂R − 4ξ̇H

)
H

H-EGB f (R, φ) aM =
(

1
κ2

∂2 f
∂R∂φ φ̇ + 1

κ2
∂2 f
∂R2 Ṙ− 4c1 ξ̈H − 4c1 ξ̇Ḣ + c2

2 ξ̇φ̇2 + c2ξφ̇φ̈
)

/
(

1
κ2

∂ f
∂R − 4c1 ξ̇H + c2

2 ξφ̇2
)

H
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4. Conclusions

In this work, we studied the ways that various forms of modified gravity affect the
energy spectrum of the primordial gravitational waves. We presented the standard features
of the energy spectrum of the primordial gravitational waves in GR, and how modified
gravity affects the spectrum in a quantitative way. The critical effect of modified gravity
on the energy spectrum of the primordial gravitational waves is quantified on a single
parameter denoted aM and its integral for redshifts extending from the present day up to
redshifts corresponding to the early post-inflationary era. We calculated the parameter aM
for several modified gravities of interest, and specifically for the f (R, φ) gravity, for Chern–
Simons-corrected f (R, φ) gravity, for Einstein–Gauss–Bonnet-corrected f (R, φ) gravity,
and for higher derivative extensions of Einstein–Gauss–Bonnet-corrected f (R, φ) gravity.
The motivation for studying several modified gravity effects on primordial gravitational
waves is based on the possible verification of the stochastic primordial gravitational waves
background by future experiments. The actual verification will stir things up significantly
in theoretical cosmology, since theorists must consider how such a signal is generated.
This is due to the fact that standard theories of inflation, such as scalar field theory, do not
produce a detectable signal of stochastic primordial gravity wave background. Thus, a
possible detection will indicate either that some modified gravity controls the physics of
inflation and post-inflation eras, or that some alternative reheating mechanism controls
the post-inflationary physics. However, in the context of GR, the abnormal reheating
effects could be minor and could not amplify the spectrum significantly enough to be
detectable; see, for example, the w EoS post-inflationary parameter C2 of [34]. Thus, it is
rather compelling to study in detail and thoroughly all the effects of modified gravity in its
various forms, on the energy spectrum of primordial gravitational waves. With this paper,
we present a rigid overview of the method needed for calculating, in a formally correct
way, the overall effect of several modified gravities of interest on the energy spectrum of
the primordial gravitational waves.
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