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Abstract: Using complex network analysis methods to analyze the internal structure of geographic
networks is a popular topic in urban geography research. Statistical analysis occupies a dominant
position in the current research on geographic networks. This perspective mainly focuses on node
connectivity, while other perspectives, such as geometric and algebraic perspectives, can provide addi-
tional insights into network structure. Using 11 different real-world geographic networks as examples,
this study examines geographic networks from statistical, geometric, and algebraic perspectives. The
following are some of the paper’s new findings: (1) When viewed statistically, geometrically, and
algebraically, geographic networks have completely different properties. The statistical perspective
describes both local and global connectivity; the Ricci curvature in the geometric perspective can
assess the network’s development potential as well as describe its transmission capability, and the
algebraic perspective can capture the global network topology other than connectivity; (2) Networks
are qualitatively and quantitatively classified from three perspectives. The classification results are in
accordance with the topological robustness experiment results, which indicate that an analysis from
many angles has a lot of practical relevance; (3) Statistical indicators are better than Ricci curvature in
identifying essential nodes in networks from a geometric standpoint, whereas the latter is better at
detecting significant edges. Overall, studying geographic networks from various perspectives may
provide new insights into their understanding.

Keywords: complex network theory; geographic network; network classification; topological robustness

1. Introduction

When studying the relationships between elements in a system, researchers often
use the form of a network to model the system, i.e., the elements are abstracted as nodes,
and the relationships between elements are abstracted as edges, with an attempt to obtain
knowledge by analyzing the network. Geographic systems are no exception. In geographic
research, transportation systems, as typical complex spatial networks, have received strong
attention in the field of complex network research [1–3]. In addition to transportation
systems, global trade activities [4], urban spatial divisions [5], industrial clusters [6], tem-
perature data [7] and even climate hydrological factors [8,9] can be studied abstractly
as networks.

The objective of modeling a geographic system as a complex network is to grasp the
underlying nature of geographically complex phenomena and processes. The key to achiev-
ing this is to examine the geographic network structure. When studying the structural
characteristics of complex networks, many models and indicators have been proposed to
characterize the structural characteristics of networks. These methods can be classified
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into three types of perspectives. Due to the different mathematical theories behind them,
the three perspectives can characterize the network with different focuses. The statistical
perspective is derived from statistical physics, which focuses on the connectivity proper-
ties of the nodes in the network. The geometric perspective originates from differential
geometry, and it focuses on the transmission properties of the edges in the network. The
spectral perspective originates from matrix analysis and focuses on the global structural
information of the network.

The statistical perspective is the mainstream perspective currently used for complex
network analysis. Indicators based on this perspective mainly describe the topological
connection characteristics based on the statistical characteristics of nodes or edges, such
as the degree, average path length, clustering coefficient, and betweenness centrality.
Some most representative complex network models [10–12] are also characterized by these
statistical indicators. Indicators from a statistical perspective can also become scalable
to investigate the properties of large-scale nodes and their connections in the network.
However, existing research has discovered that statistically similar networks can exhibit
radically different behaviors when viewed from different perspectives [13]. Thus, it is
insufficient to characterize the network’s structural properties solely through statistical
information alone.

Another perspective considers the transmission characteristics of edges in a network
by their geometry, where Ricci curvature plays an important role. Ricci curvature is distinct
from traditional statistical indicators and measures the energy transmission and intrinsic
characteristics in a network. Specifically, the Ricci curvature of a network reveals the
interrelationship between the nodes by measuring the transmission distance between the
neighborhoods of the nodes, which lays the foundation for understanding the transmission
relationship between networks [14]. At present, there are two main discretization methods
for the Ricci curvature calculation on the graph: Ollivier–Ricci curvature (hereinafter
referred to as OR curvature) [15] and Forman–Ricci curvature (hereinafter referred to as
FR curvature) [16]. Existing studies have proved that the Ricci curvature exhibits good
performance with regard to characterizing a network [17–23].

The third type of perspective is to help characterize and understand the deep struc-
tural information of a network with spectral analysis. The normalized Laplacian matrix
plays an important role in spectral analysis and is currently considered to be superior [24].
Some scholars have studied the topological structure characteristics of networks from the
perspective of the normalized Laplace spectrum and applied it in practice. The normalized
Laplace spectrum cannot only comprehensively describe the network topology but also pro-
vide substantial information regarding the network structure [25], including the algebraic
connectivity, bipartition [26], community structure [27,28] and motif structure [29].

At present, research on geographic networks from the perspective of complex networks
occupies a dominant position in existing research. However, it is generally established
that geographic networks are utilized to illustrate human–land relationships or spatial
interactions, whereas the statistical approach mainly focuses on node information. This
means that should researchers examine a geographic network exclusively from a statistical
standpoint, the relationships will be overlooked.

We argue that ignoring certain perspectives can lead to limited interpretations and
insights into relationships in the network. Therefore, this article analyzes the character-
istics of typical urban geographic networks from three perspectives. After analyzing the
characteristics, we found that even networks with the same statistical characteristics show
different characteristics in the geometric and algebraic perspectives. Based on different
perspectives, we qualitatively and quantitatively classified the network. The experimental
analysis of the network’s topological robustness verified the reliability of our classification
system. The main contributions of this article are as follows:

1. We found that different perspectives differ in their characterization of geographic
networks. The statistical perspective describes the local or global connection rela-
tionships in geographic networks. The Ricci curvature in the geometric perspective
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can both measure the development potential of the network and describe the traffic
transmission relationships in geographic networks. The algebraic perspective can
better describe the global topology of networks.

2. We proposed a new classification system based on the characteristics of a network.
This classification system is not limited to the characteristics displayed from a single
perspective of the network but instead comprehensively considers the global topology,
local topology, and transmission characteristics of the network.

3. Our empirical research shows that the classification system utilizing multiple per-
spectives has good application potential in geographic networks. The experimental
analysis of the network topological robustness verifies the credibility of the geographic
network classification results.

4. We point out that statistical indicators outperform indicators based on the geometric
perspective in recognizing important nodes; however, in recognizing important edges,
the OR curvature based on the geometric perspective is superior to the betweenness
centrality based on the statistical perspective.

The remainder of this article is organized as follows. The next section introduces the
experimental data and methods in detail. The third part analyzes the experimental results.
Section 4 discusses the content of this article, and the conclusion of this article is provided
in the last section.

2. Materials and Methods
2.1. Model and Real Networks

This article mainly uses typical urban geographic networks as research objects. In
addition, we selected some of the most representative complex network models to compare
with real-world networks. The basic information about the networks is shown in Table 1.

We considered eleven typical urban geographic networks, including travel, road,
power facility, aviation, and geographic adjacency networks. These types of urban geo-
graphic networks are all undirected networks. The SHS network was constructed from
the subway travel data of Shanghai on 1 September 2011. Subway stations are encoded as
nodes, and the edges represent passenger behaviors between two subway stations. The
USAA network [30] is a route map between airports in the United States wherein nodes
represent airports and edges represent flights between airports. The SHT network was con-
structed from taxi trip data in Shanghai in April 2015. The study area is divided into grids
of the same size, and each grid is represented as a node, while edges represent the taxis’
travel routes. Nodes in the CNA network represent airports in China, and edges represent
routes between airports. The SHM network was constructed from Shanghai Mobike travel
data in April 2015. Mobike is a kind of bicycle sharing that is suitable for residents traveling
short distances. Nodes represent grid areas of the same size, while an edge represents users’
travel behavior between two grid areas. The OF network [30] contains flights between
airports around the world which were collected by the OpenFlights.org project. The USAP
network [31] contains information about the power grids of the states in the western United
States, wherein edges represent power lines and nodes are generators, transformers, or
substations. The ATC network [32] was constructed from the Preferred Routes Database
of the USA. Nodes represent airports or service centers, and edges are preferred routes
recommended by the National Flight Data Center (NFDC). The EUR network [33] is an
international road network largely located in Europe. Nodes represent cities, and an edge
indicates that a road connects them. The CR network [34] is a road transportation network
in the Chicago area (USA), where nodes are transportation nodes and edges are roads. The
CUSA network [35] is an adjoining network comprising 48 consecutive states within the
United States and the District of Columbia (United States). Edges indicate that two states
have a common border.

Except for the SHS network, SHM network, SHT network, and CNA network, the
data for the remaining seven geographic networks were downloaded from the KONECT
database [36].
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In addition to the eleven typical urban geographic networks described above, we
considered the three following model networks for comparison with the real ones: The
Erdǒs–Rényi (ER) model [11] is used to describe random phenomena in the network.
In this paper, the network scale N is set to 3000, and the probability p is set to 0.001;
The Barabási–Albert (BA) model [12] is a network structure model that demonstrates the
phenomenon of the power-law distribution in real networks. In this paper, the number
of initial nodes m0 is set to zero, the number of edges generated when a new node is
introduced is four, and the total number of nodes in the network after growth is 3000. The
Watts–Strogatz (WS) model [13] is a network structure model introduced to explain the
small-world phenomenon in real networks. The number of nodes of the WS network is
also set to 3000, the parameter K that controls the size of neighbors of each node is set to 4,
and the probability p of random reconnection is set to 0.3.

Table 1. Basic statistical characteristics of real and model networks.

Network Nodes Edges AD ACC APL

Real networks

SHS network 241 19,525 162.033 0.852 1.325
USAA network 1574 28,236 35.878 0.469 3.204
SHT network 1607 249,611 310.655 0.654 1.881
CNA network 191 1813 18.984 0.813 2.055
SHM network 1126 30,094 53.453 0.498 3.041
OF network 2939 15,677 10.668 0.589 4.097

USAP network 4941 6594 2.669 0.107 18.989
ATC network 1226 2615 4.266 0.04 7.957
EUR network 1174 1417 2.414 0.02 18.371
CR network 1467 1298 1.77 0 5.837

CUSA network 49 107 4.367 0.507 4.163

Model networks
BA model 3000 11,984 7.989 0.015 3.565
ER model 2847 4439 3.155 0.001 7.234
WS model 3000 6000 4 0.199 7.393

2.2. Methods
2.2.1. Statistical Analysis Method

The small-world and scale-free characteristics in a network are mainly described
by three statistical indicators: node degree, average path length and average clustering
coefficient. In addition to these three most basic indicators, centrality is also one of the
critical indicators for measuring the nature of the network. The definitions and calculation
formulas of relevant statistical indicators for a network G with N nodes are as follows.

(1) Degree and degree distribution
The degree Di of node i in the network G is defined as the number of other nodes

connected to the node. The average degree (AD) used in this article is the average of the
node degrees of all nodes in the network:

AD =

∑
i∈G

Di

N
. (1)

(2) Average path length (APL)
The path length between any two nodes i and j in a network G is the number of edges

connecting the two nodes. The average path length (APL) is then defined as the average of
shortest path distance (L) between any two nodes in the network:

APL =

∑
i,j∈G,i 6=j

Lij

1
2 N(N − 1)

. (2)
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(3) Average clustering coefficient (ACC)
The clustering coefficient Ci describes the degree to which the neighbors of node i are

clustered. It is reflected by the ratio of edges between the vertices within i’s neighborhood
and the number of edges that could possibly exist between them, formulated as Ci =

2Ei
Di(Di−1) . Here, Ei is the number of edges that actually exist between the neighbors of node
i, and Di(Di − 1)/2 denotes the total number of edges that may exist in this neighborhood.
The average clustering coefficient (ACC) of all nodes in the entire network is then defined
as

ACC =

∑
i∈G

Ci

N
. (3)

(4) Betweenness centrality (BC)
Betweenness centrality measures the degree to which a given node i or a given edge e

is in between other node pairs. It is defined as the ratio of the number of shortest paths
between nodes through the given node or the given edge to the total number of shortest
paths in the network:

BCi = ∑
i∈G,u 6=v∈G

Puv(i)
Puv

; BCe = ∑
e∈G,u 6=v∈G

Puv(e)
Puv

, (4)

where Puv represents the total number of shortest paths between any two nodes u and v in
the network G, and Puv(i) and Puv(e), respectively, represent the number of shortest paths
between nodes u and vs. via node i or edge e.

(5) Small-world effect
The small-world network is a type of network in that most of its nodes can be reached

from others with small path lengths—though they are not direct neighbors. In general, to
evaluate whether a network has a small-world effect, the average clustering coefficient and
average path length of the network are compared with the average clustering coefficient
and average path length of a random network of the same size. If formulas (5) and (6) are
satisfied, the network has a small-world effect:

APL ∼ APLrand. (5)

ACC � ACCrand. (6)

2.2.2. Geometric Analysis Method

The geometric perspective characterizes complex networks based on the aspects of
energy transmission and intrinsic characteristics. The most important index from this per-
spective is the Ricci curvature. There are several definitions of Ricci curvature, the Ollivier–
Ricci curvature ( OR curvature) [15] and Forman–Ricci curvature (FR curvature) [16] on the
graph.

(1) OR curvature
The definition of OR curvature is based on the transport distance between two points

in metric space. Specifically, the neighborhoods of any two points in the network are
regarded as two independent balls in the network. OR curvature is based on computing
the distance between any point pair in the two balls under the optimal match, where the
total transportation cost is the smallest compared with other matches. The OR curvature is
positive when the transportation distance between two balls is smaller than the distance
between two nodes. Suppose there is an unweighted and undirected graph, then we define
the probability distribution of node i with degree Di and neighborhood Ngb(i) as

mx =

{ 1
Dx

, if j ∈ Ngb(i)
0, otherwise .

(7)



Symmetry 2022, 14, 797 6 of 18

Then, the OR curvature of edge e can be defined as

RicO(e) = 1−
W1(mx, my)

d(x, y)
, (8)

where x and y are nodes connected by the edge e, mx and my denote the probability distri-
bution of node x and y, W1(mx, my) is the 1-Wasserstein distance between two distributions
mx and my.

The RicO(e) can quantify the strength of interaction or overlap between the neighbor-
ing nodes of x and y. For example, if there is no link between Ngb(x) and Ngb(y), then
RicO(e) will be negative; if Ngb(x) and Ngb(y) are densely connected, then RicO(e) will
be positive. Moreover, the OR curvature can capture the role of an edge, and edges with
negative OR curvature act as "bridges” which connect two independent groups.

The OR curvature of a node is then defined as the ratio of the sum of OR curvatures of
all edges connected to this node to the degree of this node.

(2) FR curvature
The idea behind the definition of the FR curvature [16] is to use the Ricci curvature to

measure the speed of the “distance sphere” volume growth. In networks, this refers to the
speed at which edges spread in different directions. Specifically, edges with very negative
Ricci curvatures should play a unique role in network information diffusion. The formula
for calculating the FR curvature of edge e in an undirected network is as follows [20]:

RicF(e) = ω(e)[
ω(x)
ω(e)

+
ω(y)
ω(e)

− ∑
ex∼e,ey∼e

(
ω(x)√

ω(x)ω(ex)
+

ω(y)√
ω(y)ω(ey)

)]. (9)

In Equation (9), x and y are two vertices that constitute the edge e, and ω(e), ω(x) and
ω(y) are the weights of edge e, node x, and y, respectively; ex ∼ e represents the set of
edges connected to nodes x except edge e. It should be noted that, when calculating the
FR curvature of the edges in unweighted networks, the node weights are replaced by the
node degrees, and the edge weights are all 1. The FR curvature of a node in the network
is defined as the ratio of the FR curvature of all connected edges of the node to the node
degree of this node.

2.2.3. Algebraic Analysis Method

At present, the analysis of complex networks based on the algebraic perspective has
been successfully applied to the deep structure information mining of networks. Among
these analyses, algebraic analysis based on the normalized Laplacian matrix is commonly
considered superior to others.

We abstract an urban geographic network as a simple undirected graph, where V
represents the nodes, n represents the number of nodes, and E represents the connected
edges. The adjacency matrix A of network G is defined as follows: if two nodes vi and
vj in network G are connected with edges, then A(i, j) = A(j, i) = 1; otherwise, A(i, j) =
A(j, i) = 0. D is the degree matrix of network G, and the diagonal elements are the degrees
of nodes, i.e., D(i, i) = di. The Laplacian matrix L of network G is defined as

L = D− A. (10)

The Laplacian matrix is a real symmetric matrix so its eigenvalues are all real numbers
and are called the Laplacian spectrum of the network.

To study the network structures of different sizes and scales, the normalized Laplacian
matrix l is defined as

l(G) = D−1/2LD−1/2 = I − D−1/2 AD−1/2. (11)
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The eigenvalue sequence of the normalized Laplacian matrix is called the normalized
Laplacian spectrum, which is distributed between 0 and 2. Normalized Laplacian spectra
are closely related to the connectivity of the graph. In addition to observing the spectral
density distribution of the network, we can also analyze the structural characteristics
of the network through the following quantitative indicators. Motif multiplicity is the
multiplicity of λ = 1 in the normalized Laplace spectrum and can be used to determine
the basic structure in the network. The spectral radius ρ(G) is the largest eigenvalue of
the normalized Laplacian matrix and is a good indicator for comparing the connectivity
of graphs with different sizes. The algebraic connectivity α(G) is the second smallest
eigenvalue of the normalized Laplacian matrix, and the absolute value of the corresponding
eigenvector is the algebraic connectivity of the corresponding node, which is very suitable
for measuring graphs’ connectivity.

3. Results
3.1. Network Analysis from a Single Perspective

In this section, we start from the perspectives of statistics, geometry, and algebra
separately, and conduct a multiperspective analysis of the eleven geographic networks
selected to identify the different characteristics of a network from different perspectives.

3.1.1. Network Analysis from the Statistical Perspective

Analyzing a network from the statistical perspective is generally to acknowledge
whether the network has one or more of the following characteristics: a small-world effect,
scale-free effect, or random characteristics. To gain a preliminary understanding of the basic
statistical properties of the network, we use the average node degree, average clustering
coefficient, and average path length of the network to analyze the overall structure. The
basic statistical characteristics of the network are shown in Table 1.

To quantitatively analyze whether the network has a scale-free effect, we fit the net-
work degree distribution using the power function. The fitting function and the coefficient
of determination R2 are reported in Table 2. Among the eleven geographic networks we
selected, we found that the SHS network and USAA network do not have the scale-free
effect, while other networks do have the scale-free effect.

Table 2. Fitting function and credibility R2 after fitting the networks’ degree distribution using the
power function.

Network Fitting Function R2 γ

SHS network y = 0.3359x0.3083 0.1298 −0.3083
USAA network y = 225.39x−1.047 0.8236 1.047
SHT network y = 15.588x−0.372 0.3774 0.372
CNA network y = 21.615x−0.72 0.676 0.72
SHM network y = 94.974x−0.742 0.6717 0.742
OF network y = 993.07x−1.396 0.9067 1.396

USAP network y = 10, 221x−2.845 0.8808 2.845
ATC network y = 960.01x−1.921 0.8576 1.921
EUR network y = 1170.1x−2.494 0.741 2.494
CR network y = 231.88x−2.115 0.4866 2.115

CUSA network y = 3.0304x0.2466 0.0273 −0.2466
BA model network y = 5563.8x−2.035 0.8396 2.035

Similarly to the scale-free effect, whether the network has the small-world effect can
also be quantitatively determined. The results are shown in Table 3. As seen from Table 3,
six networks have the small-world effect, including the SHS network, the USAA network,
the SHT network, the CNA network, the SHM network, and the OF network. Although the
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USATC network satisfies formula (6), it fails to satisfy formula (5); therefore, it is considered
to have no small-world effect.

Table 3. Small-world effect evaluation index of geographic networks.

Network ACC ACCrand ACC/ACCrand APL APLrand APL/APLrand

SHS network 0.852 0.56 1.521 1.325 1.44 0.92
USAA network 0.469 0.022 21.318 3.204 2.413 1.328
SHT network 0.654 0.184 3.554 1.881 1.816 1.036
CNA network 0.813 0.099 8.212 2.055 2.043 1.006
SHM network 0.498 0.047 10.596 3.041 2.033 1.496
OF network 0.589 0.003 196.333 4.097 3.637 1.126

USAP network 0.107 0.001 107 18.989 8.487 2.237
ATC network 0.04 0.004 10 7.957 4.751 1.675
EUR network 0.02 0.001 20 18.371 7.559 2.43
CR network 0 0 0 5.837 11.289 0.517

CUSA network 0.507 0.055 9.218 4.163 2.759 1.509

Based on the above analysis, statistical indicators can reveal the connection characteris-
tics, e.g., the average node degree can reveal the average number of nodes that each node in
a network is connected. Through simple statistical indicators, we can obtain a preliminary
understanding of whether the network exhibits the scale-free effect, the small-world effect,
etc. Nonetheless, we have limited understanding of the relationship between nodes.

3.1.2. Network Analysis from the Geometric Perspective

The Ricci curvature reveals the interrelationships between nodes by measuring the
transmission distance between the nodes’ neighborhoods. This section compares the Ricci
curvature of eleven real-world geographic networks and three model networks.

First, we compare the distribution law of the FR curvature in synthetic networks and
real-world networks in Figure 1. We can see that the FR curvature distributions of half
of the geographic networks are similar to the FR curvature distribution of the BA model
network. The FR curvature distributions of the other networks are not similar to those of
the three model networks. There are networks with a scale-free effect whose Ricci curvature
distribution does not have similarities with those of BA model networks. The same problem
also occurs in networks with a small-world effect.

We also compared the distribution law of the OR curvature of synthetic networks
and real-world networks. The results are shown in Figure 2. We found that the USAP,
EUR, and OF datasets have a higher development potential than the other networks. The
OR curvature distributions of USAA, CNA, USAP, SHM, OF, and ATC are similar to the
distribution of the WS model network. It is impossible to distinguish whether the network
has a scale-free effect by the distribution of the OR curvature.

To more intuitively understand the difference between the two kinds of Ricci curvature
of geographic networks, we calculated the average Ricci curvature as a global characteristic.
The results are shown in Table 4. It can be found from Table 4 that the average FR curvature
can refine the distinction between networks with the scale-free effect, and that the average
OR curvature can explain the developability of a network.
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Figure 1. FR curvature distribution of real and model networks.

Table 4. Global indicators based on the Ricci curvature.

Network AFR_edge AOR_edge AFR_node AOR_node

SHS network −25.794 0.313 −24.329 0.293
USAA network −20.257 0.069 −13.603 0.023
SHT network −42.421 0.18 −31.917 0.116
CNA network −20.064 0.112 −19.034 0.072
SHM network −10.895 0.128 −5.327 0.081
OF network −8.665 −0.036 −3.649 0.046

USAP network −0.121 −0.103 −0.085 −0.011
ATC network −0.862 −0.279 −0.549 −0.184
EUR network −0.113 −0.106 −0.078 −0.016
CR network −0.71 0.13 −0.573 0.281

CUSA network −1.033 0.065 −0.877 0.101
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Figure 2. OR curvature distribution of real and model networks.

Based on the above analysis, we can determine whether the two networks have struc-
tural similarities by comparing the Ricci curvature distributions of real-world networks. In
addition, the FR curvature can refine and complement the scale-free effect of the network,
while the OR curvature can serve as both a refinement and a supplement to the characteris-
tics of the small world, and it can also measure the network’s development potential.

3.1.3. Network Analysis from the Algebraic Perspective

In this part, we have drawn the normalized Laplacian spectra of eleven geographic
networks and three model networks and analyzed the structures of the studied networks
from a macro perspective.

It can be seen from Figure 3 that networks with the small-world effect have similar
spectral density distributions, while networks with the scale-free effect exhibit significant
differences in spectral density distribution. The spectral distribution of most networks has
a high degree of symmetry. Its peaks mainly appear near 1, and the eigenvalues in the
interval of 0–2 are widely and densely distributed, indicating a rich and complex network
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structure. The spectral distributions of the model networks are very different from those of
the real geographic networks, which indicate that the normalized Laplacian spectrum has
a stronger ability to describe the network topology than the model network.

Figure 3. The normalized Laplacian spectra of eleven geographic networks and three model networks.

To quantitatively describe the global structure of the network, we calculated the
algebraic connectivity α(G), motif multiplicity and spectral radius ρ(G). The calculation
results are shown in Table 5. It can be seen from Table 5 that the SHM network and the
CNA network have higher algebraic connectivity, which means that neither of these two
networks can be easily divided into two. The maximum eigenvalue verified this finding. A
maximum eigenvalue close to 2 indicates that the graph is dichotomous. Motif multiplicity
can explain the basic components of a network. We can see that four networks, i.e., the CR
network, the CNA network, the USAA network, and the OF network, have the highest
motif multiplicity, indicating that there are large numbers of star topologies in the basic
topologies of these four networks. In other words, these networks have some high-degree
nodes. The motif multiplicities are all zero in the SHM network, SHS network, and USATC
network because the node degrees of these three networks are evenly distributed.

Based on the above analysis, we can see that the normalized Laplacian spectrum
can reflect the overall structural information of a geographic network and information
regarding the community structure, network constituent units and dichotomy that can be
used to study the network structure.
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Table 5. Algebraic connectivity, motif multiplicity and spectral radius reflected in the Laplacian
spectrum of real networks.

Networks α(G) α(G) Rank Motif Multiplicity Multiplicity Rank ρ(G) ρ(G) Rank

SHS network 0.2711 3 0 9 2 1
USAA network 0.018 6 0.3183 3 2 1
SHT network 0.0623 4 0.0127 8 2 1
CNA network 0.3769 2 0.3385 2 1.6175 5
SHM network 0.8052 1 0 9 1.248 6
OF network 0.0145 7 0.2763 4 2 1

USAP network 0.0003 11 0.12 5 1.9917 2
ATC network 0.0127 8 0.0987 6 1.9861 3
EUR network 0.0005 10 0.0417 7 2 1
CR network 0.0016 9 0.5706 1 2 1

CUSA network 0.0291 5 0 9 1.7182 4

3.2. Network Classification from Different Perspectives

In previous research, we found that different perspectives differ in their characteri-
zation of geographic networks. We can therefore qualitatively and quantitatively classify
geographic networks based on the above studies.

3.2.1. Network Classification from a Single Perspective

Network classification criteria and results from different perspectives are displayed
in Table 6. The principle for classifying networks from the statistical perspective mainly
considers whether the network has a scale-free or small-world effect. Based on the content
of Section 3.1.1, we can roughly divide the eleven networks considered in this article into
four categories based on various statistical indicators. The average OR curvature can basi-
cally represent the global characteristics of a network, so we consider roughly classifying
networks based on the average OR curvature. Based on the content of Section 3.1.2, we can
roughly divide the eleven networks considered in this article into two categories. From the
algebraic perspective, the basis for classifying networks is mainly the normalized Laplacian
spectrum distribution. The eleven studied networks can be roughly divided into four
categories according to the normalized Laplacian spectral characteristic values.

Table 6. Network classification criteria and results from different perspectives.

Network
Statistical Geometric Spectral

Class
Small-World Scale-Free Class AOR < 0 Class Symmetry Wide Narrow Irregular Class

SHS X STC1 GC1 X X SPC1 MC1
USAA X X STC2 GC1 X X SPC1 MC1
SHT X X STC2 GC1 X X SPC1 MC1
CNA X X STC2 GC1 X X SPC1 MC1
SHM X X STC2 GC1 X X SPC1 MC1
OF X X STC2 X GC2 X X SPC1 MC1

USAP X STC3 X GC2 X X SPC2 MC2
ATC X STC3 X GC2 X X SPC2 MC2
EUR X STC3 X GC2 X X SPC2 MC2
CR X STC3 GC1 X X SPC3 MC3

CUSA STC4 GC1 X X SPC4 MC4

3.2.2. Network Classification from Multiple Perspectives

In previous research, we found that different perspectives in network analysis can
complement each other so we can consider combining the three perspectives to qualitatively
and quantitatively classify networks. Qualitative classification is mainly based on whether
the network has scale-free or small-world effects, its Ricci curvature distribution, and



Symmetry 2022, 14, 797 13 of 18

whether spectrum distributions are similar. Quantitative classification is mainly performed
by clustering the feature vectors of considered networks.

From the three perspectives, the eleven networks can be roughly classified into four
categories from a qualitative perspective. The classification results are shown in Table 6
and the classification criteria are shown in Table 7. We can also perform cluster analy-
sis on the network from a quantitative perspective. We choose the K-means clustering
method to cluster the selected networks. The results are shown in Table 8. We choose
six statistical indicators, which include ACC, ACC/ACCrand, APL, APL/APLrand, γ and
AD, six geometric indicators including the average Ricci curvature, maximum curvature,
and minimum curvature; and three algebraic eigenvalues including the algebraic connec-
tivity, motif multiplicity, and spectral radius to consist of the feature vector. As can be
observed from the clustering results, the quantitative analysis subdivides the MC1 class
in qualitative classification results, separates the SHS and SHT networks and merges the
MC3 and MC4 classes into MC2. The quantitative classification scheme is basically the
same as the qualitative classification scheme, demonstrating the high credibility of our
qualitative study.

Table 7. Classification criteria from different perspectives.

Perspectives Classes Classification Criteria

Statistical

STC1 Neither a scale-free network nor a small-world network.
STC2 With the small-world effect, without the scale-free effect.
STC3 With both the small-world effect and scale-free effect.
STC4 With the scale-free effect, without the small-world effect.

Geometric GC1 With a positive AOR curvature, network is relatively completed.
GC2 With a negative AOR curvature and high development potential.

Spectral

SPC1 With a concentrated eigenvalue distribution and distribution ranging
beyond the 0∼2 interval.

SPC2 With an eigenvalue distribution between 0 and 2 and symmetry at 1.
SPC3 With a narrow distribution range and scattered.
SPC4 With an irregular eigenvalue distribution.

Multiple

MC1 With the small-world effect, similar Ricci curvature distributions and
concentrated but scattered eigenvalue distributions.

MC2 With the scale-free but no small-world effect, negative average OR
curvature and Laplacian spectrum symmetry at 1.

MC3 With the scale-free effect and a widely distributed and dichotomous
eigenvalue distribution.

MC4 Neither the small-world nor scale-free effect, with average FR and
OR curvatures both close to 0, asymmetrical spectral distribution.

Table 8. Clustering results by K-means (K = 4).

Network Qualitative Quantitative

SHS MC1 QT_MC1
USAA MC1 QT_MC2
SHT MC1 QT_MC3
CNA MC1 QT_MC2
SHM MC1 QT_MC2
OF MC1 QT_MC2

USAP MC2 QT_MC4
ATC MC2 QT_MC4
EUR MC2 QT_MC4
CR MC3 QT_MC4

CUSA MC4 QT_MC4

3.3. Invulnerability Analysis from Different Perspectives

The invulnerability evaluation of networks evaluates their ability to maintain large-
scale connectivity under deliberate or random attacks. The invulnerability of a network
is closely related to the inherent nature of the network itself. Therefore, this section
will evaluate the invulnerability of different classes of urban geographic networks in the
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face of random and deliberate attacks. This experiment cannot only verify whether our
classification criteria are consistent with the common sense but also provide certain method
guidance for the fast determination of important nodes and important edges in the network.

3.3.1. Invulnerability Analysis Based on Nodes’ Attacks

To verify whether the classification results based on the characteristics of the network
structure have practical significance, we selected multiple indicators that can be used to
measure the importance of nodes in the network from three perspectives and adopted
two attack methods to attack nodes in geographic networks and model networks, namely
random attack and deliberate attack. A random attack refers to randomly deleting nodes
in a network. A deliberate attack refers to deleting nodes in a network in a certain order
according to statistical indicators, geometric indicators and algebraic indicators. For the
attacked network, we use the largest connected component (LCC) to represent the connec-
tivity of the network. The relative size of the LCC is the ratio of the number of nodes owned
by the maximal connected subgraph to the number of nodes in the original network.

We remove nodes in the network based on the following criteria: random order; order
of increasing node FR curvature; order of increasing node OR curvature; order of decreasing
node degree; order of decreasing node betweenness centrality; and order of increasing
algebraic connectivity. The experimental results are shown in Figure 4.

Figure 4. LCC curves of geographic networks after node attacks.

The experimental results demonstrate that different types of networks perform dif-
ferently in terms of invulnerability, indicating that our classification results have a certain
reliability. In addition to analyzing the robustness characteristics of each type of network,
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we also compared the ability of the indicators to identify the important nodes from different
perspectives. In maintaining the large-scale connectivity of the network, nodes with high
node degree or high intermediate centrality are more important than nodes with high
negative curvature, and nodes with high negative OR curvature are more important than
nodes with high negative FR curvature. Algebraic connectivity cannot identify important
nodes in the network.

3.3.2. Invulnerability Analysis Based on Edges Attacks

Unlike social networks, which are composed of physical nodes and virtual edges,
geographic networks may have edges that exist in physical spaces, such as road networks.
Therefore, in addition to the node attack experiments, we also examined the invulnerability
of networks to edge attacks.

We removed edges from the network according to the following criteria: random
order, order of increasing FR curvature of the edge, order of increasing OR curvature of
the edge, order of decreasing point degree product at both ends of the edge, and order of
decreasing centrality of the edge. The experimental results are shown in Figure 5.

Figure 5. LCC curves of geographic networks after edge attacks.

In the edge deletion experiment, we observe that networks belonging to distinct classes
exhibit significantly varying levels of invulnerability, indicating that our classification
results have a certain reliability. In addition, we find that OR curvature indicators from the
geometric perspective can quickly identify the important edges in the network.
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4. Discussion

The geographic network analysis based on complex network theory is one of the hot
topics in the field of geosciences. Numerous models and metrics have been developed to
characterize the structural properties of networks. These models and metrics can be cate-
gorized into three categories: statistical perspective, geometric perspective and algebraic
perspective. The majority of existing research explores the complex networks from a single
perspective, resulting in one-sided analysis conclusions. In this paper, we simultaneously
analyze the characteristics of geographic networks from three perspectives and propose
network classification criteria from different perspectives. The topological invulnerability
analysis of networks further verifies the classification results.

While statistical indicators can be used to determine whether a network exhibits the
small-world or scale-free effect, we also discover that there can be significant variances
between networks with identical statistical properties in reality.

As for the geometric perspective, OR curvature enables a more precise differentiation
of the development stages of a network. We calculated two kinds of Ricci curvature for
the nodes and edges in geographic networks and synthetic networks and found that, by
comparing the Ricci curvature distributions of real networks and BA model networks, it is
possible to further refine and distinguish networks with the same statistical characteristics.

From an algebraic perspective, the normalized Laplacian spectrum can reflect the over-
all structural information of geographic networks. It is found that real-world networks can
be distinguished from synthetic networks by comparing the normalized Laplacian spectra.

These three types of perspectives capture the characteristics of geographic networks
and the results generated from classification schemes based on different perspectives are
inconsistent, indicating that various perspectives of complex network analysis complement
each other. Moreover, we discover that statistical indicators outperform geometric indi-
cators in identifying important nodes. In contrast, OR curvature based on the geometric
perspective exceeds betweenness centrality based on the statistical perspective in finding
important edges.

Finally, we propose a classification scheme based on multiple perspectives. The classifi-
cation results can reveal the invulnerability of the geographic network to destruction under
deliberate and random attacks, which can be helpful in urban planning and management.
When constructing roads, for example, designers can use this scheme to determine whether
the existing plan meets the requirement of invulnerability according to the category they
are in and adjust the plan correspondingly.

5. Conclusions

Geographic systems are often modeled as complex networks to capture the essence
of complex phenomena and processes. The key to obtaining the essential features is to
explore the network’s structure. In characterizing the structure of complex geographic
networks, researchers have proposed multiple metrics that can be classified into three major
perspectives based on their mathematical theories: the geometric perspective, the statistical
perspective and the spectral perspective.

In this study, we compared the different performances of the statistical, geometric
and algebraic perspectives in synthetic networks and geographic networks. We found that
the three types of perspectives are distinct in their characterization of network properties.
Therefore, we propose a classification scheme considering all these three perspectives.
In addition, we found that the statistical perspective focuses on the information of the
important nodes in networks while the geometric indicators focus on the information of
the edges in the networks. The findings regarding the focus of the three perspectives in the
article can provide a reference for studying geographic network structure. When designing
models for a downstream tasks, researchers can refer to geographic networks that belong to
the same category under this classification scheme, and models may better transfer between
the geographic networks of the same type.
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However, the present study has a few limitations. In this study, the classification
scheme is limited to unweighted and undirected geographic networks, while there are
many weighted and directed ones in the real world. Moreover, with the rapid growth
of complex network research in recent years, researchers from various domains have
developed a variety of complex network analysis approaches from numerous perspectives,
while only three dominant perspectives on the complexity of geographic networks were
investigated in the present study; it is worth extending our work to the examination of
whether other perspectives are appropriate for further geographic network analysis. Finally,
it is worth mentioning that end-to-end deep learning methods have been widely used to
extract features in remote sensing and transportation fields [37–42]. It undoubtedly also be
helpful for geographic network analysis research.
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