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Abstract: Under progressive type II censoring, the credible interval estimation and the credible
region for parameters of two-parameter exponential distribution based on the Bayesian approach
are presented in this paper. Two methods of Bayesian credible region are proposed under a given
confidence level. We also presented the predictive interval of the future observation under this type
of censoring. In order to compare the performance of our proposed Bayesian credible interval and
region with the existing non-Bayesian methods, we conduct a simulation study by the Monte Carlo
method to find the corresponding coverage probabilities. This research is related to the topic of
asymmetrical probability distributions and applications across disciplines. Finally, one engineering
example is used to demonstrate the Bayesian credible interval estimation methods proposed in
this paper.

Keywords: progressive type II censored sample; two-parameter exponential distribution; Bayesian
estimation; interval estimation; credible intervals; credible regions

1. Introduction

In many practical cases, the experimenters can only collect progressive type II censored
sample instead of complete sample for some factors of experimental designs. The advantage
of progressive type II censoring is to allow for the immediate removal of products in the
lifetime test. See Balakrishnan and Aggarwala [1] for the details of this censoring scheme
and the brief introduction of this censoring scheme is given as follows: Suppose that the
experimenters put n units of item on the life test. Once the first failure time X1 is collected,
we remove r1 units out of the remaining n− 1 surviving units. When the second failure time
X2 is collected, we remove r2 units out of the remaining n − 2 − r1 surviving units. Repeat
the same process until the mth failure time Xm is collected and the experiment is terminated.
The remaining rm = n− r1 − . . .− rm−1 −m units will be automatically removed. When
the experiment is ended, we have collected a progressive type II censored sample given
by X1 < X2 < · · · < Xm under the progressive censoring scheme of (r1, . . . , rm). For
this type of censored sample, Cohen [2] and Cohen and Norgaard [3] had conducted
research on the statistical inference for the parameters of some lifetime distribution. Wu [4]
proposed the interval estimation for scale parameter and the confidence region for the two
parameters of two-parameter exponential distribution under doubly type II censoring. The
necessity to find the confidence region for two parameters is because some characteristics
of exponential distribution is related to these two parameters. Wu [5] developed the
Bayesian interval estimation and predictive interval for the right type II censored sample.
For Bayesian inferences, Wang et al. [6] presented the Bayesian infinite mixture models for
wind speed distribution estimation. Mohammed [7] proposed the empirical E-Bayesian
estimation for the parameter of Poisson distribution. Under type II censoring, Heidari
et al. [8] investigated the E-Bayesian and hierarchical Bayesian estimation for Rayleigh
distribution. Arekar [9] proposed the Bayesian estimation of reliability of system of n
s-independent two-state component. Jana and Bera [10] considered the interval estimation
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for the stress–strength reliability with multicomponent for the inverse Weibull distribution.
Under progressive type II censoring, Wu [11] proposed the interval estimation for two
parameters of exponential distribution. In this research, we are planning to present the
Bayesian credible interval for the scale parameter and the Bayesian credible region for two
parameters of exponential distribution under progressive type II censoring in Section 2.
Our Bayesian approach provides the methodology incorporating previous information
with the current data. In addition to this, we proposed the Bayesian prediction interval
for future observation when rm 6= 0. The Bayesian concept of a credible interval is a more
practical concept than the confidence interval. A credible interval is an interval in the
domain of a posterior probability distribution. To multivariate problems, the credible
interval is generalized to the credible region. Lee [12] found that credible intervals are
analogous to confidence intervals in frequentist statistics. Jake [13] claimed that these two
methods are different in philosophical basis. The credible interval treats the estimated
parameter as a random variable and the corresponding bounds as fixed values. The
frequentist confidence interval treats the parameter as a fixed value and the confidence
bounds as random variables. If the prior information of the parameter is available, the
Bayesian approach should be used. If it is informative, the confidence interval should be
used. In Section 3, a simulation study is conducted to compare the performance of our
proposed Bayesian credible interval and region with the existing methods in Wu [11] in
terms of coverage probability. In Section 4, one engineering example is given to illustrate
the proposed Bayesian interval estimation methods. At last, the conclusion is provided in
Section 5.

2. Credible Interval Estimation of Parameters

Suppose that the lifetime distribution of a random variable X is a two-parameter
exponential distribution with location parameter µ and scale parameter θ.

For the progressive type II censored sample X1 < X2 < · · · < Xm from the two-
parameter exponential distribution with the variable transformation of Yi = Xi − µ,
i = 1, . . . , m, we obtain the progressive type II censored sample Y1 < Y2 < · · · < Ym from the
exponential distribution with zero location parameter and scale parameter θ. From Balakr-
ishnan and Aggarwala [1], we transform Y1, Y2, · · · , Ym to Z1 = nY1,
Z2 = (n− r1 − 1)(Y2 −Y1), . . . , Zm = (rm + 1)(Ym −Ym−1).

They indicated that Z1, . . . , Zm are all independent and identically distributed from
the exponential distribution with scale parameter θ. The joint pdf is fZ1,...,Zm(z1, · · · , zm) =

θ−m exp
{
−

m
∑

i=1
zi/θ

}
.

We considered the Bayesian approach that provides the methodology incorporating
previous information with the current data to find the credible interval and credible region
in this section. Similar to Wu et al. [14], we let the random variable λ = 1/θ. Suppose
that the prior distribution of λ is gamma distribution denoted as Γ(a, b). We can find the
posterior pdf of λ as

π(λ|z1, · · · , zm) ∝ λm+a−1 exp

{
−λ(

1
b
+

m

∑
i=1

zi)

}
.

Apparently, the posterior pdf of λ is a gamma distribution denoted as gamma (m + a, W−1),

where W = 1
b +

m
∑

i=1
zi.

Let U = 2λW. From Casella and Berger [15], we can find that the pdf of U has a
chi-squared distribution with 2 (m + a) degrees of freedom.

Two sets of pivotal quantities are considered to build the interval estimation of two pa-
rameters. The first set is h1(µ, θ) = 2λZ1 = 2Z1/θ = 2n(X1 − µ)/θ and

g1(θ) = 2λW − 2λZ1 = 2λ

(
1
b +

m
∑

i=2
zi

)
= 2

(
1
b +

m
∑

i=2
(ri + 1)Xi − (n− r− 1)X1

)
/θ.
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These two pivotal quantities are independent. h1(µ, θ) has a chi-squared distribution
with 2 degrees of freedom and g1(θ) has a chi-squared distribution with 2m + 2a− 2 degrees
of freedom. The second set of two pivotal quantities is h2(µ) =

h1(µ,θ)/2
g1(θ)/(2m+2a−2) = n(m +

a − 1)( X1−µ

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

) and g2(µ, θ) = 2λW = 2
{

1
b +

m
∑

i=1
(ri + 1)(Xi − µ)

}
/θ.

These two quantities are independent where h2(µ) ∼ F(2, 2m + 2a− 2) and g2(µ, θ) ∼
χ2(2m + 2a). The distributions of all pivotal quantities are not related to parameters. Using
the pivotal quantity g1(θ), we can build the credible interval for the scale parameter θ
as follows:

Theorem 1. For the progressive type II censored sample X1, X2, · · · , Xm, the (1− α)100% credible
interval of the scale parameter θ is given by2

{
1
b +

m
∑

i=2
(ri + 1)Xi − (n− r1 − 1)X1

}
χ2

α
2
(2m + 2a− 2)

< θ <

2
{

1
b +

m
∑

i=2
(ri + 1)Xi − (n− r1 − 1)X1

}
χ2

1− α
2
(2m + 2a− 2)

,

where χ2
q(2m+ 2a− 2) is the right-tailed q percentile for chi-squared distribution with 2m + 2a − 2

degrees of freedom.

Proof of Theorem 1. Based on the distribution of the pivotal quantity g1(θ) ∼ χ2(2m− 2),
we have

1− α =P(χ2
1− α

2
(2m + 2a− 2) < g1(θ) < χ2

α
2
(2m + 2a− 2))

= P

 2
{

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

}
χ2

α
2
(2m+2a−2)

< θ <
2
{

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

}
χ2

1− α
2
(2m+2a−2)

.

The proof is thus completed. �

We are going to present two methods of credible region for two parameters by using
two sets of pivotal quantities. Using the first set of pivotal quantities h1(µ, θ) and g1(θ), the
credible region of two parameters is developed in the following theorem called Method 1:

Theorem 2. For the progressive type II censored sample X1, X2, · · · , Xm, the (1− α)100% joint
credible region for parameters θ andµ is presented as(

X1 − χ2
1−
√

1−α
2

(2)θ/(2n) < µ < X1 − χ2
1+
√

1−α
2

(2)θ/(2n), L1 < θ < U1

)
,

where L1 =
2
{

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

}
χ2

1−
√

1−α
2

(2m+2a−2)
, U1 =

2
{

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

}
χ2

1+
√

1−α
2

(2m+2a−2)
and χ2

q(ν) is the

right-tailed q percentile for the chi-squared distribution with ν degrees of freedom.

Proof of Theorem 2. Use the distributions for the first set of pivotal quantities h1(µ, θ) ∼
χ2(2) and g1(θ) ∼ χ2(2m + 2a− 2). Since they are independent, then we have
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1− α =
√

1− α
√

1− α
= P(χ2

1+
√

1−α
2

(2) < h1(µ, θ) < χ2
1−
√

1−α
2

(2))× P(χ2
1+
√

1−α
2

(2m + 2a− 2) < g1(θ) < χ2
1−
√

1−α
2

(2m + 2a− 2))

= P(χ2
1+
√

1−α
2

(2) < h1(µ, θ) < χ2
1−
√

1−α
2

(2), χ2
1+
√

1−α
2

(2m + 2a− 2) < g1(θ) < χ2
1−
√

1−α
2

(2m + 2a− 2))

= P
(

X1 − χ2
1−
√

1−α
2

(2)θ/(2n) < µ < X1 − χ2
1+
√

1−α
2

(2)θ/(2n), L1 < θ < U1

)
.

The proof is thus completed. �

To develop the second method for building the credible region of two parameters, the
second set of pivotal quantities h2(µ) and g2(µ, θ) are used and proposed in the following
theorem called Method 2:

Theorem 3. For the progressive type II censored sample X1, X2, · · · , Xm, the (1− α)100% joint
credible region for parameters θ andµ is presented asL2 < µ < U2,

2
{

1
b +

m
∑

i=1
(ri + 1)(Xi − µ)

}
χ2

1−
√

1−α
2

(2m + 2a)
< θ <

2
{

1
b +

m
∑

i=1
(ri + 1)(Xi − µ)

}
χ2

1+
√

1−α
2

(2m + 2a)

,

where L2 = X1− F1−
√

1−α
2

(2, 2m + 2a− 2)
1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

n(m+a−1) , U2 = X1− F1+
√

1−α
2

(2, 2m +

2a − 2)
1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

n(m+a−1) and Fq(2, 2m + 2a − 2) is the right-tailed q percentile for F
distribution with 2 and 2m+ 2a−2 degrees of freedom.

Proof of Theorem 3. Use the distributions for the second set of pivotal quantities h2(µ) ∼
F(2, 2m + 2a− 2) and g2(µ, θ) ∼ χ2(2m + 2a). Since they are independent, then we have

1− α =
√

1− α
√

1− α =
P(F1+

√
1−α

2

(2, 2m + 2a− 2) < h2(µ) < F1−
√

1−α
2

(2, 2m + 2a− 2))

×P(χ2
1+
√

1−α
2

(2m + 2a) < g2(µ, θ) < χ2
1−
√

1−α
2

(2m + 2a))

= P(F1+
√

1−α
2

(2, 2m + 2a− 2) < h2(µ) < F1−
√

1−α
2

(2, 2m + 2a− 2),

χ2
1+
√

1−α
2

(2m + 2a) < g2(µ, θ) < χ2
1−
√

1−α
2

(2m + 2a))

= P

L2 < µ < U2,
2
{

1
b +

m
∑

i=1
(ri+1)(Xi−µ)

}
χ2

1−
√

1−α
2

(2m+2a)
< θ <

2
{

1
b +

m
∑

i=1
(ri+1)(Xi−µ)

}
χ2

1+
√

1−α
2

(2m+2a)

.

The proof is thus completed. �

The Bayesian credible region using Theorem 2 is called Method 1 and the Bayesian
credible region using Theorem 3 is called Method 2.

We are going to obtain the prediction interval for the future observation Xm+1 based
on the observed progressive type II censored sample X1, . . . , Xm. When rm 6= 0, the
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statistic k = (m+a−1)rm(Xm+1−Xm)

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

which is following an F distribution with 2 and

2m + 2a − 2 degrees of freedom is considered to build the prediction interval for Xm+1 in
the following theorem.

Theorem 4. For the progressive type II censored sample X1, X2, · · · , Xm,the (1− α)100% predic-
tion interval for the future observation Xm+1 is given byXm +

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

(m+a−1)rm
F1− α

2
(2, 2m + 2a− 2),

Xm +

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

(m+a−1)rm
Fα

2
(2, 2m + 2a− 2)



Proof of Theorem 4. Using the distribution of the statistic k ∼ F(2, 2m + 2a− 2), we have

1− α =
P(F1− α

2
(2, 2m + 2a− 2) < k < Fα

2
(2, 2m + 2a− 2))

= P(F1− α
2
(2, 2m + 2a− 2) < (m+a−1)rm(Xm+1−Xm)

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

< Fα
2
(2, 2m + 2a− 2))

= P

Xm +

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

(m+a−1)rm
F1− α

2
(2, 2m + 2a− 2), < Xm+1 <

Xm +

1
b +

m
∑

i=2
(ri+1)Xi−(n−r1−1)X1

(m+a−1)rm
Fα

2
(2, 2m + 2a− 2)

.

The proof is thus obtained. �

3. Simulation Study

The simulated coverage probabilities for the Bayesian credible interval for the scale
parameter in Theorem 1 and the non-Bayesian confidence interval in Wu [11] are found in
this section. In addition, the simulated coverage probabilities for two methods of Bayesian
credible region for two parameters by using Theorem 2 and 3 and the non-Bayesian
confidence region in Wu [11] are also found under the confidence levels of 0.90 and 0.95
with m = 17, 18, and 19 when n = 20 and m = 27, 28, and 29 when n = 30. For each fixed m,
three types of progressive censoring schemes are considered. The simulation algorithm is
described in the following steps:

Step 1: Give the initial values of 1− α =0.90, 0.95, m = 17, 18, and 19 for n = 20 and
m = 27, 28, and 29 for n = 30, µ = 0, θ = 1 for non-Bayesian confidence intervals and
1/θ~Γ(a, b) for Bayesian credible intervals, ci1 = 0, ciw1 = 0, cr1 = 0, crw1 = 0, cr2 = 0,
crw2 = 0, the number of replication run = 100,000.

Step 2: Generate independent random sample of Z1, . . . , Zm from exp(0, θ) distribution.
Step 3: Generate a progressive type II censored sample X1, . . . , Xm by X1 = Z1/n + µ,

X2 = X1 + Z1/(n − r1 − 1), . . . , Xm = Xm − 1 + Zm/(n − r1− . . . − rm – 1 − m + 1).
Step 4: If the value of θ is within the credible interval proposed in Theorem 1,

ci1 = ci1 + 1/run; if the value of θ is within the confidence interval proposed in Wu [11],
ciw1 = ciw1 + 1/run; if the values of (µ, θ) fall into the Bayesian credible region proposed
in Theorem 2 (Method 1) and Theorem 3 (Method 2), we have cr1 = cr1 + 1/run and
cr2 = cr2 + 1/run, respectively; if the values of (µ, θ) fall into the non-Bayesian confidence
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region proposed in Wu [11], we have crw1 = crw1 + 1/run and crw2 = crw2 + 1/run,
respectively.

Step 5: Output ci1 as the coverage probabilities for Bayesian credible interval; output
ciw1 as the coverage probabilities for non-Bayesian confidence interval; output cr1 and
cr2 as the coverage probabilities for Bayesian credible regions based on Method 1 and
Method 2; output crw1 and crw2 as the coverage probabilities for non-Bayesian confidence
regions in Wu [11].

The simulated coverage probabilities for these methods are listed in Table 1 after
100,000 simulation runs. From Table 1, we found that the effect of different censoring scheme
is not significant. For the confidence interval of scale parameter, the Bayesian method with
a = 1 and b = 1 has higher coverage probabilities than the Bayesian method with a = 0.5 and
b = 0.5 and the non-Bayesian method. For confidence region of two parameters, we have
the same conclusion. Comparing two Bayesian methods for confidence regions, Method 1
by using Theorem 2 has higher coverage probabilities than Method 2 by using Theorem 3.
Therefore, Method 1 with a = 1 and b = 1 should be considered to construct the Bayesian
credible intervals.

Table 1. The simulated coverage probabilities for interval estimation of θ and two methods of
confidence region for two parameters. Bayesian (1) and (2) stand for the cases of (a, b) = (0.5, 0.5) and
(a, b) = (1, 1).

Confidence Region

Interval for θ Method 1 Method 2

Bayesian non-
Bayesian Bayesian non-

Bayesian Bayesian non-
Bayesian

n m 1 − α (1) (2) (1) (2) (1) (2)

20 17 Censoring scheme = (r1 = 2, r2 = 1, ri = 0, i ≥ 3 )

0.90 0.902 0.911 0.900 0.930 0.936 0.929 0.927 0.932 0.928
0.95 0.951 0.957 0.950 0.967 0.971 0.967 0.967 0.968 0.967

Censoring scheme = (r8 = . . . = r10 = 1, ri = 0, i 6= 8, 9, 10 )

0.90 0.912 0.889 0.899 0.930 0.937 0.928 0.927 0.933 0.927
0.95 0.950 0.957 0.950 0.967 0.970 0.966 0.967 0.968 0.967

Censoring scheme = (r16 = 1, r17 = 2, ri = 0, i ≤ 15 )

0.90 0.899 0.911 0.899 0.930 0.937 0.929 0.928 0.932 0.928
0.95 0.950 0.957 0.950 0.965 0.971 0.965 0.965 0.969 0.965

20 18 Censoring scheme = (r1 = r2 = 1, ri = 0, i ≥ 3 )

0.90 0.902 0.909 0.900 0.932 0.933 0.930 0.928 0.930 0.928
0.95 0.951 0.958 0.950 0.966 0.970 0.966 0.965 0.968 0.965

Censoring scheme = (r9 = r10 = 1, ri = 0, i 6= 9, 10 )

0.90 0.900 0.911 0.899 0.929 0.935 0.929 0.927 0.931 0.927
0.95 0.950 0.957 0.950 0.965 0.970 0.965 0.964 0.967 0.964

Censoring scheme = (r17 = r18 = 1, ri = 0, i ≤ 16 )

0.90 0.902 0.910 0.900 0.930 0.935 0.929 0.927 0.932 0.927
0.95 0.949 0.957 0.948 0.965 0.970 0.965 0.964 0.968 0.964

20 19 Censoring scheme = (r1 = 1, ri = 0, i ≥ 2 )

0.90 0.902 0.908 0.901 0.930 0.934 0.929 0.927 0.930 0.927
0.95 0.951 0.958 0.951 0.966 0.970 0.966 0.966 0.968 0.966
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Table 1. Cont.

Confidence Region

Interval for θ Method 1 Method 2

Bayesian non-
Bayesian Bayesian non-

Bayesian Bayesian non-
Bayesian

n m 1 − α (1) (2) (1) (2) (1) (2)

Censoring scheme = (r10 = 1, ri = 0, i 6= 10 )

0.90 0.902 0.909 0.900 0.929 0.936 0.929 0.926 0.931 0.926
0.95 0.950 0.957 0.950 0.965 0.970 0.965 0.964 0.967 0.964

Censoring scheme = (r19 = 1, ri = 0, i ≤ 18 )

0.90 0.901 0.911 0.901 0.930 0.936 0.929 0.927 0.932 0.927
0.95 0.950 0.957 0.950 0.966 0.970 0.966 0.965 0.967 0.965

30 27 Censoring scheme = (r1 = 2, r2 = 1, ri = 0, i ≥ 3 )

0.90 0.900 0.906 0.899 0.927 0.929 0.926 0.917 0.912 0.908
0.95 0.950 0.950 0.950 0.965 0.968 0.964 0.960 0.960 0.955

Censoring scheme = (r18 = . . . = r20 = 1, ri = 0, i 6= 18, 19, 20 )

0.90 0.902 0.906 0.900 0.928 0.931 0.926 0.918 0.913 0.908
0.95 0.950 0.953 0.950 0.965 0.967 0.964 0.960 0.960 0.954

Censoring scheme = (r26 = 1, r27 = 2, ri = 0, i ≤ 25 )

0.90 0.900 0.908 0.899 0.926 0.930 0.925 0.917 0.914 0.907
0.95 0.952 0.955 0.951 0.965 0.968 0.965 0.960 0.960 0.955

30 28 Censoring scheme = (r1 = r2 = 1, ri = 0, i ≥ 3 )

0.90 0.900 0.905 0. 899 0.925 0.929 0.924 0.915 0.912 0.906
0.95 0.950 0.953 0.950 0.964 0.967 0.960 0.960 0.960 0.955

Censoring scheme = (r19 = r20 = 1, ri = 0, i 6= 19, 20 )

0.90 0.902 0.907 0.902 0.927 0.928 0.926 0.916 0.915 0.909
0.95 0.951 0.955 0.950 0.966 0.968 0.965 0.961 0.960 0.955

Censoring scheme = (r27 = r28 = 1, ri = 0, i ≤ 26 )

0.90 0.902 0.906 0.902 0.928 0.931 0.927 0.918 0.918 0.910
0.95 0.951 0.954 0.950 0.965 0.966 0.965 0.960 0.960 0.955

30 29 Censoring scheme = (r1 = 1, ri = 0, i ≥ 2 )

0.90 0.901 0.905 0.899 0.926 0.929 0.925 0.915 0.915 0.908
0.95 0.950 0.955 0.950 0.965 0.966 0.964 0.960 0.956 0.954

Censoring scheme = (r20 = 1, ri = 0, i 6= 20 )

0.90 0.902 0.906 0.902 0.927 0.930 0.926 0.917 0.917 0.908
0.95 0.950 0.954 0.950 0.965 0.967 0.965 0.960 0.960 0.954

Censoring scheme = (r29 = 1, ri = 0, i ≤ 28 )

0.90 0.900 0.905 0.898 0.926 0.930 0.924 0.916 0.919 0.907
0.95 0.950 0.955 0.949 0.965 0.968 0.964 0.960 0.960 0.954

4. One Engineering Example

An example in Lawless [16] is considered in this section. The data of this example
consists of the failure times (number of cycles in 1000 times) of 18 ball bearings and it is
listed in Table A1 of Appendix A.

In Figure 1, we have plotted the empirical distribution function (ECDF) for this data
set. We use the Kolmogorov–Smirnov test (KS test) to test if this data set fits the exponential
distribution or not. The p-value for this test is 0.9715 > 0.05 and it shows that this data fits
the exponential distribution. Considering the case of m = 15 and the prefixed censoring
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scheme (r1, r2, r3, · · · , r15) = (0, 0, 0, . . . , 1, 2), the progressive type II censored sample
is given by (X1, · · · , X15) = (0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184,
0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584) (in years). Under a = 1 and b = 1,
by Theorem 1, the 95% confidence interval for θ is obtained as (0.4607652, 1.289184) with
confidence length 0.8284191. By Theorem 2 (Method 1), the 95% joint confidence region for
θ and µ is given by{

max(0, 0.1788− 0.2912857× θ) < µ < 0.1788− 0.008494071× θ
0.4336757 < θ < 1.406493

with area 0.2599622. Applying Theorem 3(Method 2), the confidence region is given by
0 < µ < 0.1781869

2
{

1
b +

m
∑

i=1
(ri+1)(Xi−µ)

}
52.48478 < θ <

2
{

1
b +

m
∑

i=1
(ri+1)(Xi−µ)

}
16.82137

with area 0.03188604. In this case, Method 2 has smaller area than Method 1. In Figure 2a,b,
we plotted the confidence regions for Method 1 and Method 2.
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Theorem 4, the prediction interval for X16 is obtained as (1.067542, 2.567176).

5. Conclusions

The Bayesian credible interval for the scale parameter θ and two Bayesian methods
including Method 1 and Method 2 for obtaining the credible region of θ and µ for the two-
parameter exponential distribution under progressive type II censoring are investigated
in this research. Comparing two Bayesian credible regions with the confidence regions
proposed in Wu [11] by the simulation study under different censoring schemes, we found
that Method 1 with the parameters a = 1 and b = 1 has higher coverage probability than
Method 2. In addition to building the credible interval and credible region for parameters,
we proposed the predictive intervals for the future observation for this distribution under
progressive type II censoring. In the end, we used an engineering example to illustrate all
the proposed methods in this paper.
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Table A1. The data of the failure times (number of cycles in 1000 times) of 18 ball bearings.

0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184 0.6864

0.6888 0.8412 0.9312 0.9864 1.0512 1.0584 1.2792 1.2804 1.7840
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