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Abstract: Quantum phase transitions materialize as level crossings in the ground-state energy when
the parameters of the Hamiltonian are varied. The resulting ground-state phase diagrams are
straightforward to determine by exact diagonalization on classical computers, but are challenging on
quantum computers because of the accuracy needed and the near degeneracy of the competing states
close to the level crossings. On the other hand, classical computers are limited to small system sizes,
which quantum computers may help overcome. In this work, we use a local adiabatic ramp for state
preparation to allow us to directly compute ground-state phase diagrams on a quantum computer
via time evolution. This methodology is illustrated by examining the ground states of the XY model
with a magnetic field in the z-direction in one dimension. We are able to calculate an accurate phase
diagram on both two- and three-site systems using IBM quantum machines.

Keywords: quantum phase transition; adiabatic evolution; quantum computing; XY model; super-
conducting qubits

1. Introduction

Quantum computers are thought to enable calculations that cannot be carried out on
classical computers [1–5]. For simulating quantum systems, classical computers are limited
to exact diagonalization as there are no good approximation methods available in general.
However, exact diagonalization cannot be employed in large systems, as the Hilbert space
grows exponentially with respect to the system size [3]. One challenging problem in
many-body physics is to determine the zero-temperature phase diagram of finite systems
that have level crossings in the ground state as the parameters in the Hamiltonian are
tuned across the transition [6,7]. Such phase diagrams commonly occur when a system has
competing order parameters [8]. One possible approach to solving this problem is to simply
create circuits for target wave functions that can have their parameters varied to allow for a
variational determination of the approximate ground state. Then, one can determine the
phase diagram by examining the quantum numbers and the symmetries of the variational
wave function. However, such an approach is likely to fail or to be inaccurate; this is
because there are low-lying states near the level crossings and the variational calculations
need to be done with high accuracy to carry out such a program. This becomes especially
complicated if the variational state ansatz does not belong to the subspace corresponding
to the ground-state quantum numbers.

Another approach one could try is to use adiabatic state preparation: start the system
in an easy to prepare state that is the ground state of the Hamiltonian for a given parameter,
and then slowly change the parameters in the Hamiltonian. If we change slowly enough,
the adiabatic theorem guarantees that we stay in the ground state. This approach may
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also have problems, because the time evolution will preserve the symmetry of the wave
function, and level crossings can only occur between states with different symmetries.

However, we can modify the adiabatic state preparation protocol by adding a small
symmetry-breaking field, and we can find the phase transition point by monitoring the
expectation value of the quantum numbers corresponding to the different symmetries on
either side of the phase transition. Now, because the symmetries are only approximate,
a sufficiently slow time evolution will map out the ground-state phase diagram. We
then repeat with different magnitudes of the symmetry-breaking field and extrapolate
the results to the limit where the symmetry-breaking field vanishes. In this fashion, we
can employ adiabatic state preparation to carry out a mapping of the ground-state phase
diagram. It is unlikely that fast forwarding techniques such as QAOA [9] or shortcuts to
adiabaticity [10,11], will help with carrying out this approach because it may require very
accurate optimization near the level crossing, or knowledge of the eigenstates or invariants
of motion, which maybe costly to find.

We test our approach on the ground-state phase diagram of an isotropic 1D XY model
in a magnetic field along the z-direction. This system is a stringent test for such an approach,
because there are N phase transitions for an N-site system in the region where |Bz| ≤ |J|. As
the system size is made larger, the problem becomes increasingly more challenging to solve.
In fact, the model may exhibit a devil’s staircase in the ground-state phase diagram [12].
The conserved symmetry (quantum number) is the z-component of total spin, so we can
monitor the phase diagram by measuring the magnetization of the system.

Our strategy is to start the system in a large Bz field, and to add a small symmetry-
breaking field Bx in a perpendicular direction. The initial state will be taken to be polarized
along the z-direction, which is easy to prepare. We ramp the z-field down, keeping the x-
field fixed, using a local adiabatic ramp [13]. This approach was originally used to generate
the ground state of the transverse-field Ising model in ion-trap quantum simulators. For the
two-site system, we also performed the experiment starting from all spins aligned down
and ramping up the Bz field. We find that for two- and three-site systems, this approach
gives accurate phase diagrams in IBM quantum machines.

2. Materials and Methods

We work with the one-dimensional isotropic XY model with periodic boundary condi-
tions and a magnetic field along the z direction, as shown in Equation (1) for a system with
L spins:

H = −
L

∑
i=1

[
J
4

(
σx

i σx
i+1 + σ

y
i σ

y
i+1

)
+

Bz

2
σz

i

]
. (1)

where σ
x,y,z
i are the usual Pauli matrices obtained by setting (h̄ = 1) in the spin operators

of the ith site, Sx,y,z
i = h̄

2 σ
x,y,z
i . This model can be solved exactly by fermionization using

a Jordan–Wigner (JW) transformation [14] and a subsequent Fourier transformation to
momentum space [15]. The boundary term needs more care as it still has the JW string in it.
Usually, for a large system this term is negligible. Alternatively, we simply consider the
periodic term without a JW string attached, so that the usual Fourier transform yields the
fermionic eigen energies. Then, the fermionic Hamiltonian takes the form

H = ∑
k

(
ωkc†

k ck −
Bz

2

)
(2)

where ωk = (−J cos k + Bz) and k = 2nπ
L , with n = − L

2 + 1, · · · , 0, · · · , L
2 .

For a finite-size system the boundary term matters; this can be dealt with by making
use of the fermionic parity [16]. The system is decoupled into odd and even parity sectors,
where periodic and anti-periodic boundary terms emerge, respectively. This results in the
same form for the fermionic Hamiltonian, but with different momenta for the different
parity sectors. For odd parity sector, the momenta are the ones mentioned above (which
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includes the zero momentum point), whereas for an even parity sector, the momenta are
shifted to k = ± (2n−1)π

L , with n = 1, · · · , L
2 . One challenge with this approach is that each

parity sector has 2L eigenvalues while the exact solution (over both parities) has exactly
2L eigenvalues. To avoid any of these issues, we work in the original spin representation
throughout this paper.

The ground state has many level crossings as a function of the magnetic field Bz. This
is illustrated in Figures 1 and 2. Figure 1 shows the expectation value of the z-component
of spin (also known as the magnetization) as a function of Bz. Each of the vertical steps
on the exact curve corresponds to a level crossing, where the quantum number for the
z-component of spin shifts by one unit; the plot also shows an adiabatic-time evolution,
which will be discussed later. In this work, we show how to obtain these quantum phase
transition points (critical Bz values) on a quantum computer.

2 1 0 1 2 3 4
Bz [J]

4

2

0

2

4

m

with Bx

Exact

Figure 1. Magnetization versus the Bz field for a 10-site system. The blue curve labeled exact shows
the magnetization for the ground state without any Bx field. The red curve shows the magnetization
of a local adiabatic-evolved state from an all-up state with a local ramp of γ = 50 and 1000 Trotter
steps (see Equation (4)). Here, we have set Bx = 0.05J.
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0

2

2 0 2
Bz [J]

2

0

2En
er

gy
[J]

Figure 2. Energy diagram for a two-site (top panel) and three-site (bottom panel) system. The dotted
lines are for the ideal system with Bx = 0; these curves have level crossings. The solid lines are the
energies with Bx = 0.2J, which leads to avoided crossings everywhere for the ground state.

In adiabatic-state preparation, we start from the ground state of a Hamiltonian, which
is easy to prepare, and then we slowly evolve the state using time evolution with a Hamilto-
nian that interpolates from the initial Hamiltonian to the target Hamiltonian. The amount of
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diabatic excitations are determined by how fast the Hamiltonian changes near the avoided-
crossing spectral gaps between the ground and excited states. The initial Hamiltonian can
be thought of as a Hamiltonian with J = 0, or equivalently with Bz � J. Then, the magnetic
field is ramped down to a final value (e.g., zero) where ideally we end up in the ground
state of the final Hamiltonian. However, this cannot occur if there is additional symmetry
in the Hamiltonian. Here, because Sz = ∑i σz

i /2 commutes with H, we can simultaneously
diagonalize both operators and this means the quantum number corresponding to the total
z-component of spin (m) are unchanged during time evolution. Thus, we only stay in the
ground state of a system with definite z-component of spin. This can be seen in Figure 2,
where the dotted lines show a level crossing for a two- and three-site system.

In order to achieve adiabatic-state preparation, we must break the symmetry. We do
so by adding a small Bx field, upon which [Sz, H] 6= 0. This means states that used to have
different m quantum numbers are now coupled together. This can be seen in Figure 2,
where the solid lines show avoided level crossings for a two- and three-site system with
a Bx field. This then allows adiabatic-state preparation to take place, and if we go slow
enough, we will have limited diabatic excitation out of the ground state. Figure 1 shows
that with a Bx field one can traverse through all the magnetization sectors in a 10-site
system. However, the Bx term changes the Hamiltonian and its energy levels. We only
have quantum phase transitions when Bx = 0, which implies we must extrapolate to the
Bx → 0 limit. With the Bx term, the modified Hamiltonian is

H = −
L

∑
i=1

[
J
4

(
σx

i σx
i+1 + σ

y
i σ

y
i+1

)
+

Bx

2
σx

i +
Bz

2
σz

i

]
. (3)

The time evolution is implemented with a local adiabatic ramp [17,18], which is
constructed to yield the same diabatic excitation for each time step of the time evolution.
It does so by ramping faster when the gap to the first excited state is large and more
slowly when the gap is small. It is determined by adjusting the rate dBz

dt according to the
instantaneous energy gap ∆(Bz) such that | dBz

dt | � ∆2(Bz) [18]. This provides the highest
fidelity ramp for a given total time of evolution.

The total time for the local ramp is determined by an adiabaticity parameter (γ). We

require γ� 1 for an adiabatic ramp, where γ = ∆2(Bz)
|dBz(t)/dt| . Starting from a magnetic field

Bz,initial and ramping down to a magnetic field Bz,final the ramp time t is given by

t = −γ
∫ Bz,final

Bz,initial

dBz

∆2(Bz)
. (4)

where ∆ is the energy difference between first excited state and ground state and the
minus sign indicates that we are ramping down. One can either choose the adiabaticity
parameter first, and determine the total time, or one can fix the total time and infer the
adiabaticity parameter. A resulting local adiabatic ramp for a two- and three-site system is
shown in Figure 3. The ramp was implemented via a Trotter product formula. We selected
the adiabaticity parameter and the number of Trotter steps such that we can accurately
determine the different steps in the magnetization; the magnetization then signals the
different regions of the ground-state-phase diagram. Specifically, we fixed γ and increased
the number of steps from a small number of total steps such that the magnetization switches
to the next sector for all the Bx values. The goal is to implement the ramp with a small
total number of steps so that depth of the circuits implemented on the quantum computer
is reduced.

The same strategy is used on a quantum computer. We use the first-order Trotter
product formula for the time-evolution operator from t0 to t:

U(t, t0) ≈ e−iH(t−dt)dte−iH(t−2dt)dt . . . e−iH(t0)dt. (5)
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Then, each Trotter step further is decomposed into two qubit and single qubit gates so that
it can be implemented on the IBM machines using their native gate set.

1

0

1

0.0 0.5 1.0
t/tf

2

0

2B z
[J]

Figure 3. Local adiabatic ramp for a two-site (top panel) and three-site (bottom panel) system. For
the two-site system, the solid line shows a ramp with 200 time steps and the solid circles are for
20 time steps. Here, we have set Bx = 0.02J and γ = 1.5 for two sites. For the three-site system, we
have taken Bx = 0.08J and γ = 2 and the curves are similar (solid line, 200 time steps; solid circles,
50 time steps). The horizontal axis is the fractional time t/t f for the 200 step ramp. We use an Akima
spline interpolator to obtain the ramp in uniform time steps from uniform magnetic field steps used
in evaluating the integral. One can see that the ramp goes slower near the crossing regions.

This procedure yields values for dt that are larger than is typical for Trotter decomposi-
tion; for example, for the two-site system we obtain dt = 8.45/J for Bx = 0.02J (see Figure 4).
However, while the absolute value of dt is large, it is ameliorated by two factors. First, the
non-commuting part of the Hamiltonian is entirely proportional to Bx, which is small, so
that the effective small parameter is really dtBx. Second, the leading-order commutator
arising from the Baker–Campbell–Hausdorff (BCH) expansion of the time evolution from
t1 to t2 when dt

2 < 1 is further suppressed by the slowly varying magnetic field Bz(t) as∣∣∣∣∣ [H(t1)dt, H(t2)dt]
2

∣∣∣∣∣ =
∣∣∣∣∣dt2Bx

4
[Bz(t2)− Bz(t1)]

N

∑
i=1

σ
y
i

∣∣∣∣∣ (6)

Thus, as long dB/dt is not too large, the error arising from Trotterization is manageable—
this is expected because when the Hamiltonian is time independent, it commutes with itself
at all times and no error arises from the BCH expansion. One additional source of Trotter
error arises from the gate decomposition of the time evolution operator—here, the leading
error is similarly proportional to Bx(

dt
2 )

2. This is the leading order in BCH expansion when
dt
2 < 1, e.g., in our three-site experiments (see Figure 5). For two sites and three sites, we

have confirmed empirically that the magnetization goes to the next sector with the given dt
(run on a simulator). The behavior of the crossing points for a 1000 Trotter step evolution is
shown in Figures 6 and 7. For larger systems, one might need to increase the number of
Trotter steps so that dt is small and follows the adiabatic evolution more closely.
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a) b) c)Decreasing Bz - 3 CNOTs  Decreasing Bz Increasing Bz

Figure 4. Magnetization versus Bz data for a two-site system. We use a local adiabatic ramp of
20 time steps with γ = 1.5, starting from the all-up state (a,b) and all-down state (c). Exact denotes the
magnetization curve with Bx = 0. Data (red stars) denotes the values obtained from ibmq_santiago
after measurement error mitigation [19]. The scaled data (green solid circles) are the experimental
data after matching the known end points (see text). The leftmost panel uses the optimal two-qubit
circuit with three CNOTs for the positive magnetization sector. The middle and rightmost panel
uses the Trotterized circuit for the positive and negative magnetization sector respectively. The ramp
with 20 steps turns to have dt = 8.45/J for Bx = 0.02J, dt = 5.3/J for Bx = 0.03, dt = 4.07/J for
Bx = 0.04J, dt = 3.20/J for Bx = 0.05J (see text for discussion). We use first-order Trotterization, as
shown in Figure A4.

a) b)IBM Montreal IBM Casablanca

Figure 5. Experimental data after measurement-error mitigation (red stars) for the magnetization
(positive) versus Bz on a three-site system with a local ramp starting from the ground state of all
spins up on different backends; (a) and ibmq_montreal (b) ibmq_casablanca. Further scaled data (both
backends) are shown as green solid circles. We used 50 time steps and γ = 2 for the ramp. The ramp
with 50 steps turns to have dt = 0.94/J for Bx = 0.07J, dt = 0.80/J for Bx = 0.08J, dt = 0.70/J for
Bx = 0.09J, dt = 0.58/J for Bx = 0.105 (see text for discussion). We used first-order Trotterization, as
shown in Figure A5.
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Figure 6. Estimation of the quantum phase transition for a two-site model using extrapolation to
the Bx → 0 limit. To obtain the critical value for each Bx, we interpolate the data points (scaled) and
determine where the magnetization is equal to 0.5. For the exact simulation (green solid circles), we
have used local adiabatic ramp with 1000 time steps and γ value 1.5. The simulator (blue triangles)
and quantum computer (red solid squares for circuit without optimization and black stars for circuit
with optimization) use 20 time steps. The exact value at Bx = 0.0 is shown explicitly (green solid
circles) to indicate where the actual phase transition is. The initial state has all up spins for the top
panel and all down spins for the bottom panel. The green dotted line shows the quartic fit of the
exact results to the first four data points. The blue dotted line is the quartic fit to the simulator values.
The red dotted line is the linear fit for the quantum computer calculation with no circuit optimization.
Black dotted line is the quartic fit for optimized circuit data with three CNOTs.
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Bx [J]
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Exact
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Figure 7. Estimation of the quantum phase transition for three sites using extrapolation to the Bx → 0
limit. This case is for an initial state with all spins up. To obtain the critical value for each Bx, we use
an interpolation of the scaled data points. Brown triangles correspond to data from ibmq_montreal
and black solid circles for ibmq_casablanca. The corresponding colored dotted lines show the linear fit
for these data points. For exact calculation (green solid circles), we use 1000 time steps and γ = 2.
For the simulator (blue triangles) and the quantum computer, we use 50 steps. The exact value at
Bx = 0.0 is shown explicitly (green solid circles) to indicate where the phase transition is actually
located. The quartic fit to the exact and simulator data points are shown with the green and blue
dotted lines respectively.
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The determination of the phase diagram then proceeds as follows: (i) we initialize
the system in a state that is all up and with the magnetic field equal to Bz initial and with a
fixed value for Bx; (ii) we evolve the system from t0 to t using the local adiabatic ramp for
Bz(t); (iii) at each time step, we measure the magnetization; (iv) using the magnetization,
we determine the critical value of Bz, which corresponds to the midpoint of the step in the
magnetization between two successive m quantum numbers; (v) we repeat these steps for a
different value of Bx; and (vi) we extrapolate the critical Bz field to the limit where Bx → 0.

Extrapolation to find critical Bz can be done by fitting polynomial curves to the data.
The σx operator only connects states with definite m eigenvalues that are shifted by one:
n = m± 1, for 〈n|∑i σx

i |m〉 6= 0. Then, a simple argument using perturbation theory shows
that the perturbed energy eigenvalues are functions of even powers of Bx for small Bx
values. This means that when we try to extrapolate the exact results for the critical Bz field,
we should use a dependence on even powers of Bx only. Hence, we include only quadratic
and quartic terms in the fitting curve for the data generated on a classical computer via
exact diagonalization.

For the data from a quantum computer, we instead fit with a linear regression, because
the noise on the quantum computer changes the behavior from even powers of Bx to a
nearly linear dependence. When quantum computers become capable of doing longer time
runs, with less noise and decoherence, then, we can fit a quadratic polynomial without the
linear term for smaller Bx values to estimate the critical point in a more systematic way.

3. Results

In order to demonstrate the technique, we first examine a two-site system. At large Bz,
the ground state has all spins aligned in the up direction; the calculation starts with this
state. The system is time evolved using the Trotter product formula using a local adiabatic
ramp given in Equation (4). The integral produces t(Bz) with uniform steps in Bz. We
convert to Bz(t) with uniform steps in t by inverting the map and employing an Akima
spline, which preserves the shape (see Figure 3). We choose γ and the number of time
steps such that the time evolution spans the change in magnetization by one full unit (see
Figure 4). We repeat the same procedure to find the time evolution for each Bx value. The
time evolution is implemented in the quantum simulation using two-qubit and single-qubit
gates. We decompose each Trotter step into the XY part, the Bx part, and the Bz part:

U12(t + dt, t) = exp
[

i[
J
4

(
σx

1 σx
2 + σ

y
1 σ

y
2

)
+

1
2

Bx(σ
x
1 + σx

2 ) +
1
2

Bz(t)(σz
1 + σz

2)]dt
]

(7)

≈ exp [i
Bz(t)

2
(σz

1 + σz
2)dt] exp [i

Bx

2
(σx

1 + σx
2 )dt] exp [i

J
4

(
σx

1 σx
2 + σ

y
1 σ

y
2

)
dt] (8)

The XY part is further decomposed to implement in the quantum simulation using
two CNOTs [20], as shown in Figure 8. The Bx part and Bz part are implemented using
single-qubit gates.

Figure 8. Quantum circuit for the evaluation of exp
(
−iHXY

12 dt
)
. This is the time evolution circuit for

the XY part in each Trotter step for the two-site system. w1 = 1−iσx√
2

, w2 = w+
1 , u = exp

(
i J

4 σxdt
)

,

v = exp
(

i J
4 σzdt

)
.

For the two-site case, we decrease Bz from Bz = 1.0J to Bz = 0.0J to go through the
first transition point (we have set J = 1 in all our calculations). We use Bx values given
by 0.02J, 0.03J, 0.04J, and 0.05J (see Figure 4). For the exact curve we use 1000 Trotter
steps, but since we cannot achieve high fidelity in currently available quantum computers
for such a large number of Trotter steps, we look for a similar trend in the crossing point
so that a fewer number of Trotter time steps is sufficient (see Figure 6). For a two-site
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system the time evolution could be implemented with three CNOTs [20] to achieve high
fidelity. But since these short-depth circuits are not available in general for a large system
size, we consider the explicit implementation of a Trotter circuit to enable a comparison
with larger system size. Later, we also show results from a three-CNOTs version of the
circuit. With 20 Trotter steps the simulator data showed reasonable results. We use an
Akima spline to fit the magnetization versus Bz data to have a smooth curve, allowing
us to determine the transition point. From the simulator data we find the crossing points
where the magnetization is equal to 0.5. A quartic fit was performed to the crossing points
from the simulator data and we obtained a critical value of Bz = 0.500J. This result is
reasonable, since performing a quartic fit to the first four data points in the exact curve
yields an extrapolated value equal to 0.498J.

We perform the quantum computer run on the ibmq_santiago. The data obtained
from the quantum computer with measurement-error mitigation [19] is shown in Figure 4.
As a secondary error mitigation technique, we scale the data so that the initial and final
magnetization values of the quantum computer data match that of the quantum simulator.
This stretches and shifts the data so that the end points have the correct values (see Figure 4).
Such scaling is common to correct from decoherence and noise, and it improves the data
analysis [21–24]. Here, scaling is based on the fact that for small Bx values the magnetization
approximately follows steps as a function of Bz. At our initial Bz, the magnetization
corresponds to all spins aligned up; our final magnetization decreases by a single unit
for each transition. When simulator values are difficult to obtain (e.g., for a large N) the
final Bz can be taken where the curve goes flat. The experiment is repeated for different
Bx values and the corresponding crossing points are plotted in the Figure 6. Since the
data obtained was noisy we fitted a linear extrapolation curve to capture the trend in the
quantum computer data. The extrapolated critical Bz value is 0.504J, which is close to the
actual value of transition, which occurs at 0.5J.

For the second case, we examine the transition from m = −1 to m = 0. While, formally,
this should be the same as the case for m = 1 to m = 0, because the |1〉 state of a quantum
computer is the excited state, decoherence effects should be larger for this case. Here, the
initial state has both spins down. The procedure is similar to what we explained above. A
quartic fit to the simulator values obtained a critical value of −0.50J. A quartic fit to the
first four data points of the exact crossings (for γ = 1.5 and 1000 Trotter steps), obtained
an extrapolated value of −0.498J. The data obtained from the IBM quantum computer is
shown in Figure 4. The crossing points were found from the scaled data for each Bx value.
A linear fit to the quantum computer data gave the critical value to be −0.54J.

For the two-site model, we also performed the experiment in an ibmq_santiago machine
after optimizing the circuits with a level-three optimization in the IBM Qiskit transpiler.
This reduced the number of CNOT gates to three for each time step. This is because
any two-qubit unitary operation can be represented using three-CNOT gates [20,25]. The
read-out-corrected data are shown in Figure 4. The crossing points from these fixed-depth
circuits are shown in Figure 6. These values are closer to the simulator values than the
Trotter data, as expected. A quartic fit to these data obtained a critical Bz value of 0.491J
starting from all spins aligned up, and −0.504J starting from all spins aligned down. This
kind of an efficient fixed-depth decomposition is not known in general for more than
two qubits. But for certain models, efficient fixed-depth circuit decompositions can be
found [26]. These type of fixed-depth circuits can improve the performance of our method
by reducing the number of gates in an adiabatic-time evolution as Trotter decomposition
becomes increasingly costly with larger system sizes and more time evolution steps [27].

Now, we move on to the three-site periodic system. We start with all spins up. The
time evolution circuit for the XY part is implemented pairwise using the XY part of the
two-qubit circuit for each Trotter step. The data obtained from the quantum computer
with measurement-error mitigation is shown in Figure 5, along with the scaled data which
matches the end points from the simulator data. The extrapolations are shown in Figure 7.
A quartic fit to the exact values gives the critical Bz value to be 0.999J. A quartic fit to the
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simulator values gives the critical Bz to be 0.982J. The linear fit to the crossings from the
scaled data of the IBM quantum computer give the phase transition point to be 0.971J for
ibmq_montreal and 0.999J for the ibmq_casablanca. The actual transition is at 1.0J. These
fitted values are reasonably close to the actual value.

4. Discussion

In this work, we propose a method for finding zero-temperature phase diagrams that
are robust and can be carried out on quantum computers. The approach requires us to
introduce a symmetry-breaking term into the Hamiltonian, determine approximate phase
diagrams for the symmetry-broken system, and then extrapolate to the limit where the
symmetry-breaking field vanishes. To verify that this approach works, we have worked
out practical details for how to run these circuits on a quantum computer when the number
of spins is two or three. The results from the quantum computers agree well with the exact
results and are able to predict the phase boundaries within a few percent. This illustrates
that the approach used here, based on adiabatic-state preparation, can work on NISQ
machines and has the potential to be able to be applied to larger systems, even ones where
we do not know the phase diagram a priori.

Note that the case we examined here, the XY model in a z-oriented magnetic field,
is probably the most difficult problem to examine, because the number of level crossings
increases with the system size. For most quantum phase transitions between different
symmetry states, the number of phase boundaries should depend only weakly on the
system size.

In order to show that this approach also applies to larger systems, we simulate the
magnetization for a 10-site system in Figure 1 using a similar local adiabatic-time evolution
for 1000 Trotter steps for γ = 50. Extracting the phase transitions using our methodology
works well for such a system, as can be seen by comparing the two lines in the figure.

As the system size increases, finer time-evolution steps are required to prepare the
state due to the higher density of energy eigenstates. This would require the quantum
hardware to have better gate fidelity and less measurement errors so that the overall error
in magnetization remains low. Nevertheless, for larger and more complex systems, using
quantum computers is a potential way to handle quantum-simulation-related problems, as
classical computers cannot deal with very large Hilbert spaces in general [3,5]. Once better
quantum hardware is available, our method could be applied to finding the critical points
for larger quantum systems.
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Appendix A. Experimental Details

The two-site experiments were performed on ibmq_santiago (see Figure A1) and
the three-site experiments were performed on ibmq_montreal and ibmq_casablanca (see
Figures A2 and A3). The two-site experiments without circuit optimization were done on
18 July 2021 (for Figure 4b,c). Three-CNOTs version of two qubits for positive magne-
tization were run on 7 September 2021 (for Figure 4). Three-CNOTs version of two-site
experiments for negative magnetization were run on 7 September 2021 and 14 September
2021. The three-qubit experiments on ibmq_montreal were performed on 7 and 12 July 2021
(for Figure 5a). The three-qubit experiments on ibmq_casablanca were performed on 12 July
2021 (for Figure 5b). The calibration data during the days in which the experiment were
performed along with qasm codes of experiments are given in the supplemental data at
https://doi.org/10.5061/dryad.z8w9ghxdq (accessed on 27 Jan 2022). Relevant calibration
data for the qubits used are also given in the following Tables A1–A6. We chose these
qubits because the corresponding two-qubit CNOT errors were lower than for other qubits
in the layout. Other calibration details of the cloud-based quantum computers are available,
but the overwhelming effect on the results originates in the two-qubit CNOT errors, as
single-qubit errors are usually lower than the CNOT errors. The data shown in the main
figures are after measurement-error mitigation using the builtin routines in QISKIT [19,28].
We further scaled the data to match the end point values to that of quantum simulator, as
mentioned in the main text (see Figures 4 and 5). The circuit diagrams for the two-site and
three-site experiments are shown in Figures A4 and A5, respectively.

Table A1. Calibration data for ibmq_santiago on 18 July 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

3 221.6 86.0 0.006 3-4 0.0049
3-2 0.0061

4 100.0 137.0 0.013 4-3 0.0049

Table A2. Calibration data for ibmq_santiago on 7 September 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

3 65.2 64.3 0.012 3-4 0.0071
3-2 0.0068

4 101.1 158.0 0.019 4-3 0.0071

Table A3. Calibration data for ibmq_santiago on 14 September 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

3 103.1 866.0 0.007 3-4 0.0057
3-2 0.0067

4 115.0 171.0 0.013 4-3 0.0057

https://doi.org/10.5061/dryad.z8w9ghxdq
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Table A4. Calibration data for ibmq_casablanca on 12 July 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

3 80.9 93.4 0.016 3-5 0.0088
3-1 0.0094

4 100.2 59.3 0.022 4-5 0.0083

5 66.5 134.2 0.010
5-6 0.0083
5-4 0.0083
5-3 0.0088

6 85.4 187.2 0.015 6-5 0.0083

Table A5. Calibration data for ibmq_montreal on 7 July 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

0 129.1 46.5 0.012 0-1 0.0063

1 127.2 20.3 0.015
1-4 0.0082
1-2 0.0113
1-0 0.0063

2 71.0 77.1 0.025 3-2 0.0220
2-1 0.0113

4 106.5 156.4 0.013 4-7 0.0071
4-1 0.0082

Table A6. Calibration data for ibmq_montreal on 12 July 2021.

Qubits T1 (µs) T2 (µs) Readout CNOT CNOT
Error Connection Error

0 121.7 68.0 0.016 0-1 0.0066

1 127.2 20.3 0.019
1-4 0.0079
1-2 0.0112
1-0 0.0066

2 89.2 45.3 0.021 2-3 0.0216
2-1 0.0112

4 105.2 103.7 0.012 4-7 0.0107
4-1 0.0079

Figure A1. ibmq_santiago layout. For the two-site experiment shown in Figure 4, qubits 3 and 4 were
used as system qubits.
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Figure A2. ibmq_montreal layout. For the three-site experiment shown in Figure 5, qubits 0,2,4 were
used as system qubits in the QISKIT simulation.

Figure A3. ibmq_casablanca layout. For the three-site experiment shown in Figure 5, qubits 3,4,6 were
used as system qubits in the QISKIT simulation.

UXY(Jdt)
Rx(−Bxdt) Rz(−Bz(t)dt) · · ·

Rx(−Bxdt) Rz(−Bz(t)dt) · · ·

Figure A4. Quantum circuit for the evaluation of magnetization of the two-site system. The time
evolution is performed using Trotterization. The gates boxed with dashed lines show the time-
evolution circuit for each Trotter step, as given in Equation (7). This block is repeated with appropriate

Bz(t) coefficient to get total time evolution. The UXY(Jdt) = exp
[
i J

4

(
σx

1 σx
2 + σ

y
1 σ

y
2

)
dt
]

is the time

evolution of XY part given in Figure 8. The Rx(θ) = exp
(
−i θ

2 σx
)

and Rz(θ) = exp
(
−i θ

2 σz
)

.

UXY(Jdt) UXY(Jdt)
Rx(−Bxdt) Rz(−Bz(t)dt) · · ·

UXY(Jdt)
× × Rx(−Bxdt) Rz(−Bz(t)dt) · · ·

× × Rx(−Bxdt) Rz(−Bz(t)dt) · · ·

Figure A5. Quantum circuit for the evaluation of magnetization of the three-site system. The time
evolution is performed using Trotterization. The gates boxed with dashed lines show the time-
evolution circuit for each Trotter step. This block is repeated with appropriate Bz(t) coefficient to get
total evolution, as described in Equation (5). The UXY(Jdt) is the time evolution of XY part given in

Figure 8. The Rx(θ) = exp
(
−i θ

2 σx
)

and Rz(θ) = exp
(
−i θ

2 σz
)

. The swap gates are used to show
the appropriate connection of qubits for the periodic term.
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