
����������
�������

Citation: Aboshady, D.; Ghannam,

N.; Elsayed, E.; Diab, L. The Malware

Detection Approach in the Design of

Mobile Applications. Symmetry 2022,

14, 839. https://doi.org/10.3390/

sym14050839

Academic Editor: Mihai Postolache

Received: 7 March 2022

Accepted: 14 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

The Malware Detection Approach in the Design of
Mobile Applications
Doaa Aboshady 1,* , Naglaa Ghannam 2, Eman Elsayed 2,3 and Lamiaa Diab 2

1 Department of Mathematics, Faculty of Science, Tanta University, Tanta 31511, Egypt
2 Department of Mathematics, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11884, Egypt;

naglaasaeed@azhar.edu.eg (N.G.); emankaran10@azhar.edu.eg (E.E.); lamiadeiab@azhar.edu.eg (L.D.)
3 School of Computer Science, Canadian International College (CIC), Cairo 11835, Egypt
* Correspondence: doaa_aboshady@science.tanta.edu.eg; Tel.: +20-1119799933

Abstract: Background: security has become a major concern for smartphone users in line with the
increasing use of mobile applications, which can be downloaded from unofficial sources. These
applications make users vulnerable to penetration and viruses. Malicious software (malware) is
unwanted software that is frequently used by cybercriminals to launch cyber-attacks. Therefore,
the motive of the research was to detect malware early before infection by discovering it at the
application-design level and not at the code level, where the virus will have already damaged the
system. Methods: in this article, we proposed a malware detection method at the design level based
on reverse engineering, the unified modeling language (UML) environment, and the web ontology
language (OWL). The proposed method detected “Data_Send_Trojan” malware by designing a
UML model that simulated the structure of the malware. Then, by generating the ontology of the
model, and using RDF query language (SPARQL) to create certain queries, the malware was correctly
detected. In addition, we proposed a new classification of malware that was suitable for design
detection. Results: the proposed method detected Trojan malware that appeared 552 times in a
sample of 600 infected android application packages (APK). The experimental results showed a good
performance in detecting malware at the design level with precision and recall of 92% and 91%,
respectively. As the dataset increased, the accuracy of detection increased significantly, which made
this methodology promising.

Keywords: malware detection; mobile applications; ontology; software quality; UML; revers
engineering

1. Introduction

Producing secure and high-quality software remains an ongoing research challenge.
Software systems must fulfill quality characteristics such as reliability, usability, and main-
tainability. Over the last few years, it was proven that design patterns play a vital role in
software engineering, IoT, security, mobile applications, and many other fields of computer
science [1–4]. A good design pattern produces a perfect software design [1,5]. Most of the
time, software engineers reuse existing design patterns for developing software systems
and for solving similar issues such as errors, high costs, and high time consumption [2,6].
There are many design patterns on the internet for reusing purposes. The use of these
patterns containing undesirable elements will result in poor quality and poor safety. Both
anti-patterns and malware have similar bad factors that cause negative impacts on software
quality [5,7]. Many studies have assessed the negative impact of anti-patterns on change-
proneness, comprehension, reliability, fault proneness, security, performance, and energy
efficiency [8–10]. At the same time, many empirical studies have assessed the negative im-
pact of malware on performance [11,12], reliability [13], energy consumption [14], and other
quality elements [7]. We noted that most of the research detected malware at the source
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code level, which is considered late [15–17]. The proposed approach detected malware at
the design level, which is a new detection method for malware. In addition, the design
level is a phase before the coding phase, which shows the model of the application using
any modeling tool; hence, this will avoid time-consuming use of patterns of applications
from the Internet as new versions containing malware. The proposed approach was a
detection method for malware before coding and installation.

The contribution of the proposed approach is a new detection method at the de-
sign level for malware. According to the joint effects of anti-patterns and malware, the
proposed approach studied the probability of malware detection at the design level as
anti-pattern detection.

Motivated by the research mentioned above, the major contributions of this paper
were fivefold:

• A method for reversing the UML class model of malware using the Modelio modeling
tool was presented.

• A suitable classification method for malware for design detection was presented.
• Existing solutions for anti-pattern detection were investigated to see if they could

detect malware or not.
• A semantic method for detecting malware at the design level was presented.
• The evaluation of the proposed method in a dataset of 600 mobile applications

was described.

The paper is structured as follows. To begin we present the related works. Next,
we present the basic definition of both anti-patterns and malware. Then, the reverse
engineering concept that was used in the proposed research is illustrated. After that,
we describe the details of the proposed methodology, and the results and discussion are
presented. Finally, the conclusions and future work are presented.

2. Related Work

Many previous studies have proven the negative impact of both malware and anti-
patterns on software and its quality. Malware and anti-pattern detection have always
been an active area of research in recent years. Several techniques and methods have been
suggested to counter and reduce the growing amount and sophistication of malware and
anti-patterns. Machine and deep learning techniques have contributed significantly to the
literature for malware detection, as well as anti-pattern detection. We will refer to the latest
of these approaches and learning techniques related to this research.

Malware detection techniques range from early day signature-based detection to
machine and deep learning techniques [11,18,19]. There are distinct basic malware analysis
techniques. In [20–24], the authors proposed a classification of analysis of malware to
static and dynamic and a hybrid of both static and dynamic analyses. This analysis was an
essential step in the malware detection process as it was a way of knowing how malware
performs its function, how to identify it, and how to defeat it. According to [25], research
has shown that the analysis was based on static PE file features of malware samples and
observed that linear SVM models could be useful in detecting the evolution of malware.
After that, the authors of [26] expanded on and improved upon the work in [25] in several
ways. Recently, machine learning and deep learning methods (e.g., support vector machines
(SVM), decision trees (DT)) have been used to detect and classify unknown samples for
malware families due to their scalability, rapidity, and flexibility. In addition, machine
learning and data mining techniques are combined with present detection techniques in
order to facilitate the process of detection [27]. The research in [28] proposed a malware
detection method called MalNet that learnt features automatically from raw data. It learned
from grayscale images and opcode sequences extracted from malware files by using two
deep neural networks: CNN and LSTM. The results showed that MalNet achieved 99.88%
validation accuracy for malware detection. In [29], the authors proposed a hybrid model
based on a deep autoencoder (DAE) and convolutional neural network (CNN) to improve
the accuracy of malware detection compared with traditional machine learning methods.
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In addition [30] provided a malware detection model using a deep convolutional neural
network (CNN) in a metamorphic malware environment.

On the other hand, several studies proposed the detection of designed anti-patterns.
The previous work, [31], introduced 40 types of design anti-patterns that formed the
basis of design anti-pattern detection approaches [32–35]. The approach in [36] presented
the ONTOPYTHO technique to detect smells and anti-patterns on the design of OWL
Ontologies based on a metric method via the semantic web query language, SPARQL,
and Python programming language. In [37], the authors focused on detecting mobile
applications’ anti-patterns and they proposed a method using reverse engineering and
a UML modeling environment. This research presented a comparative study on nine
UML tools and concluded that the Modelio UML modeler was a suitable tool for the
detection process.

In addition, [1] introduced a general method that supported semantic and structural
anti-pattern detection at the design level to automatically detect anti-patterns by using
Modelio, OLED, and Protégé in a specific order to obtain positive results.

According to the symmetry between malware and anti-patterns, and the ability to de-
tect design anti-patterns, the proposed research aimed to detect malware at the design level.

3. Background
3.1. Design Patterns and Malware

According to [38], design patterns are defined as solutions that developers reused for
solving repeated problems in software systems for improving reusability and quality. Every
pattern has its design and the features of the anti-pattern that is resolved. Anti-patterns exist
in various levels in software development, such as design, coding, architecture, community,
organization, environment, collaboration, etc. Anti-pattern examples can be a bad practice,
a wrong reaction to a combination of events, a failure to predict, understand, or control a
project factor, etc. Malware is defined as the class of software that may be called viruses,
worms, and Trojans [39]. Malware is specifically designed to destroy, steal data, hosts
or networks, or generally perform other “bad” or illegal operations on data, hosts, or
networks. We contemplated the question of dealing with malware as an anti-pattern and
creating a base for detecting it at the design level. While, at the same time, treating every
anti-virus as a design pattern for detecting a certain malware and describing them using
any modeling tool. This was a starting point for collecting all malware, its design features,
and the used anti-virus. As a result, we could create a semantic catalog of malware that
allowed developers to detect the existence of malware at the design level rather than later
at the code level. First, we needed to answer the research questions.

3.2. Reverse Engineering

The idea of this research was based on reverse engineering. According to the structure
of android applications, we needed to reverse the source code in order to generate the
design of it. First, we extracted the zip files of the APK that were in the JAR format and
directly dealt with the Dex file, which was decompiled to generate java files. For the
de-compilation, we used the (Android Decompiler-master) to obtain the Dex2jar files. Then,
we used (JD-GUI-1.6.6) to obtain java sources. Using Modelio 3.6, we generated the class
diagram model of the application. According to the results in [1], Modelio was the suitable
UML modeler for reversing the class diagram and for detecting the anti-patterns. This was
performed for un-infected mobile applications, but the question here was, could we do this
for infected applications?

3.3. Reverse the Infected Applications

According to [1,37] the class diagram model of mobile applications was generated
after reversing the java code. It was proven that the applications had many anti-patterns.
According to this, the research reversed a sample of 42 APK in the dataset. Using the
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mentioned tools, we reversed the class diagram model of the applications, as shown in
Figure 1.
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Figure 1. The reversed java classes of APK: (a) using Java Decompiler; (b) using Modileio software.

This research also studied the reversal of thirteen infected programs, as in Table 1.
The research study included the identification of malware across different types, different
sizes, and different languages (C++, Java, Golang). According to this, we could reverse the
infected software.

Table 1. The identification of the malware.

Name Type Size Effects (Threat
Type) Platform File Type (s) Source

Language

Sasser worm Internet worm 15,872 bytes

Operating
system and

system
performance

MS Windows .exe C++

THANATOS
virus

Multi-vector
worm 50 KB Memory and

files locker MS Windows .exe, .pif, .scr C++

ExfilDocs virus Computer virus 2.17 KB Memory MS Windows .exe Golang

Outlook Exfil
virus Computer virus 6 KB Memory MS Windows .exe Golang

Screen Shotter
virus Computer virus 1.72 KB Memory MS Windows .exe Golang
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Table 1. Cont.

Name Type Size Effects (Threat
Type) Platform File Type (s) Source

Language

Dropper virus Computer virus 1.77 KB
System

performance
and memory

MS Windows .exe Golang

Lion worm Internet worm 860,160 bytes System
performance Linux .tgz, .sh, ELF Shell Script

CIH virus Computer virus 1 KB System BIOS
and drives Windows x9 .exe Assembly

Elk Cloner
virus Boot sector -

Floppy disk
drive and
memory

Apple DOS
3.3 OS Apple II Assembly

Beanhive virus File virus 7890 (.cab),
10,204 (.jar)

Java apps and
programs

Java Runtime
Environment .cab, .jar, .class Java

Strangebrew File virus 3894 bytes Java apps and
programs

Java Runtime
Environment .class Java

NetSky worm Mail worm 29,568 bytes Memory and
emails W32 .tmp C++

Mimail worm Mass mailer
worm - Emails MS Windows .htm, .exe, .zip C++

3.4. Malware Identification

From the sample in Table 1, we noted that there were many different types of malware.
Therefore, as a start, we reversed all the types and were ready for detection. However, we
should note that only infected applications could be checked at the design level. This was
because we controlled the software and we could check it before installing it. We knew
that malware, such as worms, infected the system through spam emails, which were not
controlled by the user. Therefore, we could not detect all malware types at the design level.

4. Proposed Methodology

The main purpose of this research was to study the detection of malware at the design
level. To do so, we needed to classify malware according to the way it infected systems.
This helped us to determine the type of malware that the proposed methodology could
detect at the design level.

4.1. Malware Classification

The initial step in the proposed methodology was malware classification. In general,
malware can spread like a virus, a worm, or a Trojan. Every type has its infection method.
Malware may infect your device by a visit to a hacked website, opening spam emails,
downloading infected files or applications, using infected discs, or pressing on any un-
trusted advertisements; these are the malware sources. We tried to detect malware in the
downloaded applications before installing them. The proposed research examined the code
reversed from the APK by generating a class diagram of it.

4.2. Proposed Detection Method

In this section, we propose the detection method for detecting malware at the design
level. The pseudo code of the proposed method is presented in Algorithm 1.
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Algorithm 1. Malware detection algorithm.

Input: APK of mobile applications.
Output: a list of detected malwares

1 Convert classes.dex to classes.de2jar;
2 Reverse the java code to class diagram model;
3 run Modelio checker;
4 if the result is ≥1;
5 print “malware detected”
6 else print “not detected”;
7 convert the model to OWL Ontology;
8 run the reasoner;
9 If the result ≥1;
10 Print “malware detected in ontology”;
11 else run the detection method algorithm;
12 print “Detected Malwares”;
13 else print (“ ”);
14 End.

In addition to reversing the UML class diagram model, we generated the OWL On-
tology of the model using the Ontology editor. The model could then be checked for
anti-patterns and malware for improving quality and security, as proposed in Figure 2.

4.3. Case Study in “Data_Send_Trojan”

To explain the proposed method, we presented a snapshot of it in the case study of
“Data_Send_Trojan”. Data_Send_Trojan is a kind of Trojan virus that always retrieves the
important information of the users. The information most of the time includes credit card
information, email addresses, passwords, instant messaging contact lists, log files, and so
on. It is a part of the Trojan banker. For implementing the proposed method, we used the
UML modeler and Modelio for presenting the class diagram model of the application. In
addition, we examined the ability of Modelio to detect malware at the design level. Next,
by converting the model to the OWL Ontology model and running SPARQL queries, the
detection was performed. Figure 3 presents the UML class diagram model for posing as
Data_Send_Trojan. The model contained three classes: the first class presented the user
information, which was the attributes of the class; the second class presented the class of
the virus containing the operations that would obtain the user information; finally, the third
class presented the hacker that would receive the user information from the virus class.

The main components of an OWL Ontology are classes, datatype properties that
present the attributes in UML models, and object properties, which present the operations.
Every object property has a rang and a domain. The rang presents the class holding the
operation, while the domain presents the class of the values. By converting the UML model
of the virus to OWL Ontology, we obtained the ontology model in Figure 4.
Bank:Bank is the root class of the ontology. It had three subclasses, which were Bank:Data_
send_Trojan, Bank:Hacker, and Bank:Users. There were two object properties, the first was
(Bank:getUserInformation) and the second was (Bank:receiveUserInformation).
Bank:Data_send_Trojan—Bank:getUserInformation (Domain > Range)—–> Bank:Users
Bank:Hacker—Bank:receiveUserInformation (Domain > Range)—–> Bank:Data_send_Trojan
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The range of the (getUserInformation) object property was the (Data_Send _Trojan)
class, which held the object property. While the domain of it was the (Users) class which had
user information as datatype properties. The range of the (receiveUserInformation) object
property was the (Hacker) class, which held the object property. The domain was the class
(Data_send _Trojan), which, in this case, presented the class containing user information.

The challenge was getting all user information and sending it to the hacker class. In
other words, both the object properties had to contain the same values and the same values
must be the user information.
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The next was the SPARQL queries for retrieving the user information and the values
of both object properties.

Q1. SPARQL query for retrieving user information from the (Users) class.

SELECT ?Users ?AccountNumber ?Password ?UserID
WHERE {?Users rdf:type Bank:Users.
?Users Bank:AccountNu ?AccountNumber.
?Users Bank:Password ?Password.
?Users Bank:UserID ?UserID.
}

The result of Q1 is shown in Figure 5.
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Q2. SPARQL query for retrieving (getUserInformation) object property of (Data_send_
Trojan) class.

SELECT ?Users ?Information ?Values
WHERE {?x a owl:ObjectProperty.
?x ?n Bank:Data_send_Trojan.
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?a a owl:ObjectProperty.
?z ?a ?Users.
?Information a owl:DatatypeProperty.
?Users ?Information ?Values.
}

The result of Q2 is shown in Figure 6.
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The result of Q3 is shown in Figure 7.
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We noted from the results in Figures 5–7 that the values of the object properties of
Data_Send_Trojan and the hacker classes were the same user information.

5. Experiments and Results
5.1. Evaluation Measures

To evaluate the detection performance successfully, it was necessary to identify appro-
priate performance metrics. The following five measures were employed to evaluate the
proposed model performance.

True Positive Rate(TPR) =
TP

TP + FN
(1)

False Positive Rate(FPR) =
FP

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Recall = TPR =
TP

TP + FN
(4)

F − measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(5)

where,

TP (true positive): the number of correctly identified benign mobile applications.
FP (false positive): the number of incorrectly identified mobile malware applications.
FN (false negative): the number of incorrectly identified benign mobile applications.
TN (true negative): the number of correctly identified mobile malware applications.

Precision returned the rate of relevant results rather than irrelevant results. Recall was
the sensitivity for the most relevant result. The F-Measure was the value that estimated the
entire system performance by combining precision and recall into a single number. The
maximum value of 1.000 indicated the best result.
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5.2. Result and Discussion

In this section, we assessed how well the proposed approach could predict the security
of android applications. For evaluating the proposed approach, we applied it to a sample
of 600 malware of the CICMalDroid 2020 dataset presented by the Canadian Institute for
Cybersecurity. The CICMalDroid 2020 dataset has 11,598 android samples with five distinct
categories. This dataset can be found in [40].

The (Data_Send_Trojan) malware was detected 552 times by using the general SPARQL
query Q4.

Q4. SPARQL query for detecting the “Data_Send_Trojan” generally.

SELECT ?h
WHERE {?d a owl:ObjectProperty.
?d rdfs:domain ?gg.
?r rdfs:range ?gg.
?y ?d ?v.
?a a owl:Class.
?v rdf:type ?a}

We applied the proposed approach in a sample of 600 Trojan malware using cer-
tain SPARQL queries. We compared the proposed approach to other approaches in the
section of related works [18,19,23,27,29,41] as in Table 2. The related references detected
malware using different methods. References [19,27,29] used a deep convolutional neural
network and two deep learning models, DexCNN and DexCRNN, while reference [18]
used ensemble learning and big data. Reference [23] used social network properties and
community detection while reference [41] used meta-learning. The proposed approach
used a semantic environment for detecting malware. The comparison criteria included the
method of detection, the used dataset, the accuracy, and the detection level. It is worth
noting that there were some limitations that were encountered when applying the proposed
method at the preprocessing and data converting stages; this was because it was performed
semi-manually, one by one, separately and took a long time. This led to the experiment of
the proposed method being on a relatively small number of samples compared to other
research that detected malware at the code level.

Table 2. Comparison among malware detection methods.

Reference Method Data Set Accuracy Detection Level

[27] Deep neural networks
CNN and LSTM 42,386 samples 99.88% Image and Opcode sequence

[18] Ensemble learning and
big data 198,350 Windows files 99.5% Code level

[29]

Deep autoencoder
(DAE) and

convolutional neural
network (CNN).

10,000 benign apps and
13,000 malicious apps (99.80–99.82%) Code level

[19]
Two deep learning

models, DexCNN and
DexCRNN.

16 k 93.4% and 95.8%,
respectively Code level

[23]
Social network
properties and

community detection
60,000 files 97% Code level

[41] meta-learning 414,291 samples (94.5–99.9%) Code level

Proposed Semantic 600 samples 92% and 91%,
respectively Design level
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From Table 3, the proposed model yielded 82.8% TPR, 17.2% FPR, 92% precision, 91%
recall, and 91.4 f-measure, respectively. We considered this result as a good starting point
for detecting malware at the design level. Additionally, Figure 8 illustrates our experimental
receiver operating characteristic (ROC) curve plot of the proposed model. The ROC curve
is a plot of performance measure that was determined by the true-positive rate versus the
false. The X-axis represents the true-positive rate (TPR) and Y-axis represents the false-
positive rate (FPR). The area below the ROC curve, known as AUC, was widely utilized to
evaluate the performance of the malware detection models. A data point in the upper left
corner and the higher AUC value corresponded to optimal and high performance. As can
be seen from Figure 8, the proposed method yielded 91% of the AUC score.

Table 3. Performance of the proposed method.

TPR (%) FPR (%) Precision Recall F-Measure

Proposed model 82.2 17.2 92% 91% 91.4
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According to this result, we could detect malware at the design level. However, the
ability of the used tools in anti-pattern detection to detect malware needs to be verified.
This research used a Modelio checker to check the reversed model against the malware.
However, the result of the check was zero detection, as in Figure 9. We could see the
model and the tool check against any quality problems and the result was zero for errors
and warnings.
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In addition, the researchers used the reasoner of ontology and the ONTOPYTHO
approach that was presented in [37]. ONTOPYTHO was used to detect anti-patterns at
the design of OWL Ontologies and the same result was zero detected, as in Figure 10.
According to these results, the tools that were used to detect anti-patterns at the design
level could not detect malware at the same level.
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6. Conclusions

This study presented a malware detection method based on OWL Ontology, reverse
engineering, and the semantic web query language SPARQL. This method detected mal-
ware in the design of mobile applications. By reversing the source code, the UML class
diagram model was generated. This UML model was converted to OWL Ontology to
detect the malware. To evaluate the method’s performance, a sample of 600 APK mobile
applications were selected from the CICMalDroid 2020 dataset. This sample was infected
by Trojan malware, which appeared 552 times through running special SPARQL queries
on the design of ontologies. The experimental results showed that the proposed method
detected Data_Send_Trojan malware at the design level with 92% precision, 91% recall,
91.4% f-measure, and 91% of the AUC score, respectively. Furthermore, the proposed
method showed that anti-pattern detection tools were not suitable to detect malware. The
proposed method was considered the first method for detecting malware at the design
level, compared to state-of-the-art methods; however, we performed most of the works
manually, which resulted in a small number of implemented samples.

In future research, we will continue to explore the use of other methods to detect other
malware at the design level. In addition, we will try to make a cloud system to do the
conversion steps at the preprocessing automatically instead of manually; this would solve
problems related to the size of the dataset, which will improve the results and be able to
discover a greater number of malware.
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D.A.; data curation, N.G. and E.E.; writing—original draft preparation, D.A.; writing—review and
editing, N.G.; visualization, L.D.; supervision, E.E.; project administration, L.D.; funding acquisition,
D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to security issues.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elsayed, E.K.; ElDahshan, K.A.; El-Sharawy, E.E.; Ghannam, N.E. Reverse engineering approach for improving the quality of

mobile applications. PeerJ Comput. Sci. 2019, 5, e212. [CrossRef] [PubMed]
2. Krupitzer, C.; Temizer, T.; Prantl, T.; Raibulet, C. An Overview of Design Patterns for Self-Adaptive Systems in the Context of the

Internet of Things. IEEE Access 2020, 8, 187384–187399. [CrossRef]
3. Volk, M.J.; Lourentzou, I.; Mishra, S.; Vo, L.T.; Zhai, C.; Zhao, H. Biosystems Design by Machine Learning. ACS Synth. Biol. 2020,

9, 1514–1533. [CrossRef] [PubMed]
4. Li, Q.; Yan, L. Older adults’ use of mobile device: Usability challenges while navigating various interfaces. Behav. Inf. Technol.

2019, 39, 837–861. [CrossRef]
5. Kermansaravi, Z.A.; Rahman, S.; Khomh, F.; Jaafar, F.; Guéhéneuc, Y.-G. Investigating design anti-pattern and design pattern

mutations and their change- and fault-proneness. Empir. Softw. Eng. 2021, 26, 1–47. [CrossRef]
6. Naqvi, B.; Clarke, N.; Porras, J. Incorporating the human facet of security in developing systems and services. Inf. Comput. Secur.

2021, 29, 49–72. [CrossRef]
7. Mercaldo, F.; Di Sorbo, A.; Visaggio, C.A.; Cimitile, A.; Martinelli, F. An exploratory study on the evolution of Android malware

quality. J. Softw. Evol. Process 2018, 30, e1978. [CrossRef]
8. Rasool, G.; Ali, A. Recovering Android Bad Smells from Android Applications. Arab. J. Sci. Eng. 2020, 45, 3289–3315. [CrossRef]
9. Ramadan, Q.; Strüber, D.; Salnitri, M.; Jürjens, J.; Riediger, V.; Staab, S. A semi-automated BPMN-based framework for detecting

conflicts between security, data-minimization, and fairness requirements. Softw. Syst. Model. 2020, 19, 1191–1227. [CrossRef]
10. Politowski, C.; Khomh, F.; Romano, S.; Scanniello, G.; Petrillo, F.; Guéhéneuc, Y.-G.; Maiga, A. A large scale empirical study of the

impact of Spaghetti Code and Blob anti-patterns on program comprehension. Inf. Softw. Technol. 2020, 122, 106278. [CrossRef]

http://doi.org/10.7717/peerj-cs.212
http://www.ncbi.nlm.nih.gov/pubmed/33816865
http://doi.org/10.1109/ACCESS.2020.3031189
http://doi.org/10.1021/acssynbio.0c00129
http://www.ncbi.nlm.nih.gov/pubmed/32485108
http://doi.org/10.1080/0144929X.2019.1622786
http://doi.org/10.1007/s10664-020-09900-0
http://doi.org/10.1108/ICS-11-2019-0130
http://doi.org/10.1002/smr.1978
http://doi.org/10.1007/s13369-020-04365-1
http://doi.org/10.1007/s10270-020-00781-x
http://doi.org/10.1016/j.infsof.2020.106278


Symmetry 2022, 14, 839 15 of 16

11. Darabian, H.; Dehghantanha, A.; Hashemi, S.; Taheri, M.; Azmoodeh, A.; Homayoun, S.; Choo, K.-K.R.; Parizi, R.M. A multiview
learning method for malware threat hunting: Windows, IoT and android as case studies. World Wide Web 2020, 23, 1241–1260.
[CrossRef]

12. Kadiyala, S.P.; Jadhav, P.; Lam, S.-K.; Srikanthan, T. Hardware Performance Counter-Based Fine-Grained Malware Detection.
ACM Trans. Embed. Comput. Syst. 2020, 19, 1–17. [CrossRef]

13. Sebastio, S.; Baranov, E.; Biondi, F.; Decourbe, O.; Given-Wilson, T.; Legay, A.; Puodzius, C.; Quilbeuf, J. Optimizing symbolic
execution for malware behavior classification. Comput. Secur. 2020, 93, 101775. [CrossRef]

14. Maevsky, D.A.; Maevskaya, E.J.; Stetsuyk, E.D.; Shapa, L.N. Malicious Software Effect on the Mobile Devices Power Consumption.
In Structural Equation Modelling; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 155–171.

15. Akram, J.; Mumtaz, M.; Jabeen, G.; Luo, P. DroidMD: An efficient and scalable Android malware detection approach at source
code level. Int. J. Inf. Comput. Secur. 2021, 15, 299. [CrossRef]

16. Tang, J.; Li, R.; Jiang, Y.; Gu, X.; Li, Y. Android malware obfuscation variants detection method based on multi-granularity opcode
features. Futur. Gener. Comput. Syst. 2021, 129, 141–151. [CrossRef]

17. Darem, A.; Abawajy, J.; Makkar, A.; Alhashmi, A.; Alanazi, S. Visualization and deep-learning-based malware variant detection
using OpCode-level features. Future Gener. Comput. Syst. 2021, 125, 314–323. [CrossRef]

18. Gupta, D.; Rani, R. Improving malware detection using big data and ensemble learning. Comput. Electr. Eng. 2020, 86, 106729.
[CrossRef]

19. Ren, Z.; Wu, H.; Ning, Q.; Hussain, I.; Chen, B. End-to-end malware detection for android IoT devices using deep learning.
Ad Hoc Netw. 2020, 101, 102098. [CrossRef]

20. Wressnegger, C.; Freeman, K.; Yamaguchi, F.; Rieck, K. Automatically Inferring Malware Signatures for Anti-Virus Assisted
Attacks. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United
Arab Emirates, 2–6 April 2017; pp. 587–598.

21. Abusitta, A.; Li, M.Q.; Fung, B.C. Malware classification and composition analysis: A survey of recent developments. J. Inf. Secur.
Appl. 2021, 59, 102828. [CrossRef]

22. Singh, J.; Thakur, D.; Gera, T.; Shah, B.; Abuhmed, T.; Ali, F. Classification and Analysis of Android Malware Images Using
Feature Fusion Technique. IEEE Access 2021, 9, 90102–90117. [CrossRef]

23. Reddy, V.; Kolli, N.; Balakrishnan, N. Malware detection and classification using community detection and social network
analysis. J. Comput. Virol. Hacking Tech. 2021, 17, 333–346. [CrossRef]

24. Willems, C.; Holz, T.; Freiling, F. Toward Automated Dynamic Malware Analysis Using CWSandbox. IEEE Secur. Priv. 2007, 5,
32–39. [CrossRef]

25. Wadkar, M.; Di Troia, F.; Stamp, M. Detecting malware evolution using support vector machines. Expert Syst. Appl. 2020,
143, 113022. [CrossRef]

26. Paul, S.; Stamp, M. Word Embedding Techniques for Malware Evolution Detection. In Malware Analysis Using Artificial Intelligence
and Deep Learning; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; pp. 321–343.

27. Sharma, N.; Arora, B. Data Mining and Machine Learning Techniques for Malware Detection. In Advances in Intelligent Systems
and Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 557–567.

28. Yan, J.; Qi, Y.; Rao, Q. Detecting Malware with an Ensemble Method Based on Deep Neural Network. Secur. Commun. Netw. 2018,
2018, 1–16. [CrossRef]

29. Wang, W.; Zhao, M.; Wang, J. Effective android malware detection with a hybrid model based on deep autoencoder and
convolutional neural network. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3035–3043. [CrossRef]

30. Catak, F.O.; Ahmed, J.; Sahinbas, K.; Khand, Z.H. Data augmentation based malware detection using convolutional neural
networks. PeerJ Comput. Sci. 2021, 7, e346. [CrossRef]

31. Brown, W.H.; Malveau, R.C.; McCormick, H.W.; Mowbray, T.J. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998.

32. Mann, C. Object-Oriented Metrics in Practice: Using Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Kybernetes 2007, 36. [CrossRef]

33. Moha, N.; Gueheneuc, Y.-G.; Duchien, L.; Le Meur, A.-F. DECOR: A Method for the Specification and Detection of Code and
Design Smells. IEEE Trans. Softw. Eng. 2010, 36, 20–36. [CrossRef]

34. Van Emden, E.; Moonen, L. Java quality assurance by detecting code smells. In Proceedings of the Ninth Working Conference on
Reverse Engineering, Richmond, VA, USA, 29 October–1 November 2002; pp. 97–106.

35. Settas, D.; Cerone, A.; Fenz, S. Enhancing ontology-based antipattern detection using Bayesian networks. Expert Syst. Appl. 2012,
39, 9041–9053. [CrossRef]

36. Elsayed, E.K.; Ghannam, N.E. Metric Method for Long Life Semantic Applications. Int. J. Intell. Eng. Syst. 2019, 12, 25–36.
[CrossRef]

37. El-Dahshan, K.A.; Elsayed, E.K.; Ghannam, N.E. Comparative Study for Detecting Mobile Application’s Anti-Patterns. In
Proceedings of the 2019 8th International Conference on Software and Information Engineering, Cairo, Egypt, 9–12 April 2019.

38. Svensson, R.; Tatrous, A.; Palma, F. Defining Design Patterns for IoT APIs. In Proceedings of the Communications in Computer
and Information Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 443–458.

http://doi.org/10.1007/s11280-019-00755-0
http://doi.org/10.1145/3403943
http://doi.org/10.1016/j.cose.2020.101775
http://doi.org/10.1504/IJICS.2021.116310
http://doi.org/10.1016/j.future.2021.11.005
http://doi.org/10.1016/j.future.2021.06.032
http://doi.org/10.1016/j.compeleceng.2020.106729
http://doi.org/10.1016/j.adhoc.2020.102098
http://doi.org/10.1016/j.jisa.2021.102828
http://doi.org/10.1109/ACCESS.2021.3090998
http://doi.org/10.1007/s11416-021-00387-x
http://doi.org/10.1109/MSP.2007.45
http://doi.org/10.1016/j.eswa.2019.113022
http://doi.org/10.1155/2018/7247095
http://doi.org/10.1007/s12652-018-0803-6
http://doi.org/10.7717/peerj-cs.346
http://doi.org/10.1108/k.2007.06736eae.001
http://doi.org/10.1109/TSE.2009.50
http://doi.org/10.1016/j.eswa.2012.02.049
http://doi.org/10.22266/ijies2019.1231.03


Symmetry 2022, 14, 839 16 of 16

39. Mat, S.R.; Razak, M.F.; Kahar, M.N.; Arif, J.M.; Mohamad, S.; Firdaus, A. Towards a systematic description of the field using
bibliometric analysis: Malware evolution. Scientometrics 2021, 9, 1–43. [CrossRef] [PubMed]

40. Mahdavifar, S.; Kadir, A.F.A.; Fatemi, R.; Alhadidi, D.; Ghorbani, A.A. Dynamic Android Malware Category Classification using
Semi-Supervised Deep Learning. In Proceedings of the 18th IEEE International Conference on Dependable, Autonomic, and
Secure Computing (DASC), Calgary, AB, Canada, 17–24 August 2020; Available online: https://www.unb.ca/cic/datasets/
maldroid-2020.html (accessed on 10 March 2021).

41. Jia, Z.; Yao, Y.; Wang, Q.; Wang, X.; Liu, B.; Jiang, Z. Trojan Traffic Detection Based on Meta-learning. In Proceedings of the Swarm,
Evolutionary, and Memetic Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; pp. 167–180.

http://doi.org/10.1007/s11192-020-03834-6
http://www.ncbi.nlm.nih.gov/pubmed/33583978
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html

	Introduction 
	Related Work 
	Background 
	Design Patterns and Malware 
	Reverse Engineering 
	Reverse the Infected Applications 
	Malware Identification 

	Proposed Methodology 
	Malware Classification 
	Proposed Detection Method 
	Case Study in “Data_Send_Trojan” 

	Experiments and Results 
	Evaluation Measures 
	Result and Discussion 

	Conclusions 
	References

