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Abstract: One of the most noticeable characteristics of security issues is the prevalence of “Security
Asymmetry”. The safety of production and even the lives of workers can be jeopardized if risk factors
aren’t detected in time. Today, object detection technology plays a vital role in actual operating
conditions. For the sake of warning danger and ensuring the work security, we propose the Attention-
guided Feature Fusion Network method and apply it to the Helmet Detection in this paper. AFFN
method, which is capable of reliably detecting objects of a wider range of sizes, outperforms previous
methods with an mAP value of 85.3% and achieves an excellent result in helmet detection with an
mAP value of 62.4%. From objects of finite sizes to a wider range of sizes, the proposed method
achieves “symmetry” in the sense of detection.

Keywords: object detection; feature fusion; attention

1. Introduction

Object detection is a fundamental and significant computer vision problem that seeks
to recognize and locate all specified items in symmetric image processing. Convolutional
Neural Network (CNN) and Deep Learning are heavily used in the current object detection
frameworks [1]. Established approaches such as image processing, feature selection, and
classification were used in prior studies. These approaches are classified into two types
based on their detecting stages: one-stage methods and two-stage methods. The one-stage
method is represented by the YOLO series network [2–4], while the two-stage method is
represented by Faster-RCNN [5]. The main difference between the two methods is that the
one-stage method has higher accuracy but lower speed.

In this case, YOLOv3 [4] achieves a very high level of speed. It employs a new back-
bone, DarkNet53, to extract image features. DarkNet53 is a deeper symmetric convolution
neural network composed of several continuous residual structures [6]. This structure may
reduce training difficulty while improving accuracy. YOLOv3’s backbone is DarkNet53,
which includes many residual blocks for extracting image features. YOLOv3 uses the Fea-
ture Pyramid Network (FPN) structure [7] to concatenate two different layers of features
by upsampling a small feature map. In medium and large size objects, YOLOv3 performs
significantly worse [8]. The use of local information is insufficient due to a lack of regional
sampling, resulting in poor performance in some local area detection.

Accidents in the industrial sector are uncommon, but when they do occur, they fre-
quently result in significant losses [9]. When it comes to preserving human health, few
people perceive the impact of protective gear, and it’s possible that it goes unnoticed. Work-
ers’ views of the necessity for safety helmets are inadequate, necessitating the development
of more accurate safety helmet detection technology.
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When two objects with different volumes are placed together, it is difficult to capture
them at the same time. YOLOv3 is based on YOLOv1 and YOLOv2, but it improves
detection accuracy, especially for small objects, while maintaining YOLO’s speed advantage.
When we detect employees wearing safety helmets on the construction site, the disparity
in capture precision may result in omission, resulting in “Security Asymmetry”.

We strive to avoid things being neglected owing to symmetric image capture accuracy
in order to more correctly record objects of varied sizes in the same image. Although
YOLOv3 does not offer a major improvement over YOLOv1 and YOLOv2, it can be used as
a benchmark thanks to its high speed and enhanced accuracy. We are attracted to YOLOv3
high speed [4] and want to integrate it with our model to capture items of a larger range
of sizes.

We consider that YOLOv3 has three different receptive field detectors for detecting
big, medium, and small objects. The receptive field of these detectors is fixed. However,
there are some objects whose scale is between big and medium or medium and small, in
this case, YOLOv3 detectors have difficulty detecting these objects. We want a detector
that can detect objects with scales ranging from large to small. To address this issue, we
propose the Attention-guided Feature Fusion Network (AFFN) structure, which uses an
attention module to guide feature fusion.

By combining our structure with YOLOv3, the goal of responding to any-scale object
in a flexible manner has been attained. Then, we apply our work to helmet detection. Obvi-
ously, the accuracy of target detection has been greatly improved. Due to the use of the AFF
module, our structure outperforms YOLOv3 in both subjective and objective evaluations.

To summarize, the contribution of this work is three-fold:

• The method of feature aggravation is intended for extracting more representative
features in object detection.

• An effective attention mechanism Channel-Spatial Attention Module (CSAM)
guides feature fusion to improve detection accuracy.

• The proposed Attention-guided Feature Fusion Network (AFFN) method is capable
of reliably detecting objects of a wider range of sizes, outperforms YOLOv3 in both
subjective and objective evaluations. Furthermore, we apply our work on helmet
detection and achieve excellent results, which contributed to operation security.

2. Related Work
2.1. Object Detection in Convolution Neural Network

It has been shown that symmetric convolutional neural networks are effective in
a variety of computer vision tasks. Symmetric convolutional neural networks are used
in practically all object detection algorithms today. Two types of DCNN-based detectors
exist: two-stage and one-stage. For the two-stage method, it first uses a convolutional
network, such as VGGNet [10], to develop a region proposal with likely existing items,
after which the area is calibrated and categorized to obtain the final result. Besides, a
series of Region-based Convolutional Neural Networks (R-CNN) [11] approaches include
Fast-RCNN [12] and Faster-RCNN [5], which are two-step algorithms with greater accuracy
but slower speed.

Two-stage detectors introduce a Region-Proposal Network (RPN) to increase the
efficiency of producing proposals and update the prediction positions of proposal regions,
whereas one-stage detectors usually do not produce proposals. YOLO [3,4], for example,
employs a symmetric convolutional neural network to make class and bounding box
predictions directly. SSD, however, uses default anchors to adjust to different shapes of
objects. YOLOv2 [3] has a built-in multi-scale training system and a new network structure
called DarkNet-19. In addition, YOLOv3 [4] proposes a deeper residual network, Darknet-
53, for better detection of small objects. Compared with one-stage and two-stage methods,
proposal-free one-stage methods do not require pre-region classifiers.
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2.2. Feature Aggravation

Feature aggregation is a common method for temporal applications like video com-
prehension [13], image super-resolution [14], and semantic segmentation [15]. The essence
of the feature aggravation is to concatenate the symmetry features of several convolutions
layers to improve the robustness of feature representation [16]. On picture super-resolution,
a residual feature aggravation network [14] was used. Residual aggravation plays an
important role in enhancing depict spatial detail. Feature aggravation was utilized in the
symmetric video object detection task [13] to focus on features near the motion path to
increase per-frame feature, allowing the video detector to capture moving objects faster
and with greater accuracy.

2.3. Attention Mechanism

Attention mechanism is known as a network operator that creates features by fusing
channel or spatial information in the immediate receiving domain [5,17]. Spatial-based
attention, channel-based attention, and channel-spatial attention are examples of common
attention processes. Channel attention learns varying weights on the channel dimension
but constant weights on the plane dimensions, allowing it to focus on diverse parts of
pictures. SENet [18] understands channels through learning. Based on the relationship,
the importance of each typical channel is received. Effective features are louder in the
process of learning. Moreover, in view of the learning results, unrelated features are held
down. Spatial attention learns unique weights on the plane dimension, whereas channel
attention learns the same weights. Cross domain attention is welcomed in recent works [19].
Many researchers are now being conducted using the channel-spatial attention mecha-
nism. Convolutional Block Attention Module (CBAM) [20] extracts features by applying
channel attention and spatial attention sequentially, whereas Bottleneck Attention Module
(BAM) [21] applies spatial attention and channel attention on the features at the same
time to obtain two distinct features, which are then concatenated. By explicitly modeling
channel-wise and spatial feature interdependencies, the Channel-Spatial Attention Module
(CSAM) [22] trains inter-channel and intra-channel feature responses. Gradient-weighted
Class Activation Mapping (Grad-CAM) [23] is a convolutional neural network visualization
that shows the properties learned by the convolutional neural network. Grad-CAM++
suggests an output gradient for weighting the pixel level at a specific position; this ap-
proach gives a measure of the relevance of each pixel in the feature map; and it provides
a better explanation of object placement and the appearance of many objects instances
on a single graph. Moreover, SPNet (Strip Pooling) [24] introduces a novel strip pooling
paradigm that enables the backbone to catch long-distance dependencies successfully. In
addition to spatial and channel dimensions, there is a temporal attention mechanism [25]
that integrates time information to realize an attention summary for data containing time
information. Recently, a new type of attention [26] that can achieve the same impact
as spatial attention without additional parameters has arisen, supporting the study of
attention-free mechanisms.

Attention modules are frequently used to enhance the performance of symmetric
convolutional neural networks. We build Channel-Spatial Attention Module (CSAM) [22]
on YOLOv3, which is a channel-spatial based attention mechanism that applies spatial and
channel attention to the feature map concurrently while maintaining the feature map’s
original size. Single-channel attention and spatial attention are both restricted in their
ability to identify objects. Channel attention always ignores spatial information, whereas
spatial attention focuses on it. Therefore, these strategies have limits. Channel-spatial
attention combines the advantages of channel and spatial attention. It may take into
account both the channel and spatial information selection weights.
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3. Method
3.1. Overall Network

In this section, we introduce the Attention-guided Feature Fusion Network (AFFN),
which is based on YOLOv3 model. The specific implementation path is shown in Figure 1.
The model consists of two main part: feature extraction part and object prediction part.
First, the input image was fed into the feature extraction backbone to get variant scales of
feature maps. DarkNet53 is used as the backbone. Then, different scales of extracted feature
maps are aggravated together with three adjacent feature maps concatenated together
and are input to the attention-guided feature fusion module to get channel and spatial
attention information. The last three feature maps are processed by convolution blocks
and then fused with the output of the attention module before convoluted to generate the
corresponding prediction of objects. Taking the smallest group of generated feature maps
as example, they first go into the convolution blocks, which are shown in Figure 2 and
then are copied into two groups, the first group of feature maps are concatenated with
the attention maps, which is obtained by incorporating the last three scale feature maps.
After that, the concatenated feature maps will be used to generate the first level of object
predictions by a 1 × 1 convolution and 3 × 3 convolution. The second group of feature
maps are then upsampled and build together with the next to last size of the feature maps
to get the second level size of features, following the above same steps.

Feature Extraction

Object Detection
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Figure 1. Demonstration of the Attention Feature Fusion Network (AFFN) architecture. The feature
extraction uses the same DarkNet53 backbone in YOLOv3 with several Residual Blocks. Five different
scales of feature maps are acquired after feature extraction and used in the object detection stage. The
consecutive three groups of feature maps are collected and fused by Attention Feature Fusion (AFF)
module to make full use of their channel and spatial information. Then the generated attention maps
are taken in the corresponding object prediction output step to improve the object detection effect
better. The upsample layer uses the nearest interpolation method to magnify the size of feature maps.
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Conv 3x3
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LeakyReLU(0.1)

Conv Set 1x1

Conv Set 3x3

Conv Set 1x1

Conv Set 3x3

Conv Set 1x1

Conv Blocks

Conv Set

Figure 2. A further demonstration of “Conv Set” and “Conv Blocks” shown in Figure 1. The “Conv
Set” consists of a convolution module, a batch normalization module and a LeakyReLU module with
0.1 as the negative gradient. The “Conv Set” has different size like 1× 1 or 3× 3 depending on the
different kernel size of the inner convolution. Then, the “Conv Blocks” contains several “Conv Set”
with different kernel size.

The core module in the proposed model is the attention-guided feature fusion structure,
which could combine the adjacent three scales of feature maps and fuse them to get a wider
range of object information. The concrete AFFN implementation structure is as following.

3.2. Attention-Guided Feature Fusion Module

Attention-guided feature fusion module can concatenate distinct layers’ features which
are then worsened by downsampling low receptive field ones, thus to concentrate high
receptive field ones. Considering the collected features might be confused, we use a vision
attention module to extract crucial information from aggravated features, which is a guider
focus interest zone. The network operation logic of the AFF module is shown in Figure 3.
We found that whereas single attention mechanisms such as channel attention or spatial
attention focus on a single dimension feature, it is preferable to apply channel attention
and spatial attention to the aggravating feature at the same time. To guide the aggravating
feature, we use Channel-Spatial Attention Module (CSAM) [22]. It may reweight natural
aspects and emphasize crucial characteristics of space and channels. Additionally, it may
reweight natural characteristics and emphasize important ones in space and channels.

3.3. Implementation Detail
3.3.1. Network Structure

The whole network uses Darknet-53 as its backbone, and the entire Attention-guided
Feature Fusion Module (AFFN) structure contains three AFF modules, each of which is
added to the module before the detection results of each scale are produced. With reference
to YOLOv3, after concatenating the results of the convolutional layer with the feature map
of the previous scale, the results are concatenated and fed into the convolutional layer of
the detection result output, which is used to extract feature maps of multiple scales.
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Concatenate

Attention

conv 3x3
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Output

Downsample Convolution Attention ModuleAttentionConv 3x3

Figure 3. Illustration of the Attention-guided Feature Fusion (AFF) module. Three different sizes
of feature maps are convoluted by a 5 × 5 convolution and 3 × 3 convolution separately and
concatenated together. Then they are input into the channel and spatial attention module (CSAM) to
fuse the feature scale information both in the channel and spatial level and get the output.

3.3.2. Loss Function

We utilize the iOU value to identify the detected target and a crucial value of 0.5 for
the expected outcomes. And in order to identify the target function loss during training, we
utilize the same Loss set as in YOLOv3 [4]. The predicted bounding boxes and center offset
are constrained using Binary cross-entropy loss, the width and height of detection boxes are
constrained using MSELoss [4], and the categorization of detection objects is constrained
using Binary cross-entropy loss. Constraints on the confidence error are imposed by the
cross-entropy loss. Otherwise, the ultimate loss function in network optimization is the
total of the losses specified previously.

4. Experiments
4.1. Datasets

To train and assess the performance of our AFFN Module, we use Pascal VOC
datasets [27]. Pascal VOC is a multifunction vision dataset that is used in the Pascal
competition. It supports object identification, detection, and classification. 2007 trainval
and 2012 trainval were assigned as train sets, and 2007 test was assigned as a test set. The
test image’s resolution is set at 544 × 544 pixels and the evaluation metric is mAP0.5.

4.2. Experiment Setting

We train our AFFN structure with pre-trained YOLOv3 weights on Pytorch frame-
work [28]. DarkNet-53 [4] is the backbone we utilize. We train the network for a total of
50 epochs, with an 8 batch size. The Adam [29] optimizer is used to set an initial learning
rate of 1× 10−4 , a weight decay of 5× 10−5, a momentum of 0.9, and to alter the learning
rate dynamically using cosine annealing learning rate.

4.3. Comparison Methods

We compare our AFFN Module with some representative object detection methods,
including one-stage methods: YOLOv3 [4], SSD [30], DSSD [31], and two-stage methods:
Faster-CNN [5], STDN [32], CoupleNet [33], and RFBNet [34].
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4.4. Results on Pascal VOC Datasets
4.4.1. Objective Results

Table 1 shows the objective results. By comparison, our AFFN module is superior to
existing representative methods, which include one-stage methods and two-stage methods
with an mAP value of 85.3%. The YOLOv3 structure, which previously performs best,
achieves an mAP value of 79.3%. When combined with our AFFN method, the performance
of YOLOv3 is greatly improved with an mAP value of 84.3%. This confirms the validity of
our proposed method. Compared with other networks, the AFFN method can achieve the
goal of more accurate object detection.

Table 1. Detection Results on Different Methods.

Algorithm BackBone Test Images
Size Test Set mAP@0.5

Faster-RCNN [5] VGG16 1000 × 1000 VOC 2007 73.2
Faster-RCNN [6] ResNet101 1000 × 1000 VOC 2007 76.4

SSD [30] VGG16 300 × 300 VOC 2007 77.1
DSSD [31] ResNet-101 513 × 513 VOC 2007 81.5
STDN [32] DenseNet-169 513 × 513 VOC 2007 80.9

RFBNet [34] VGG-16 512 × 512 VOC 2007 82.2
CoupleNet [33] ResNet-101 1000 × 1000 VOC 2007 82.7

YOLOv3 [4] DarkNet-53 544 × 544 VOC 2007 79.3
YOLOv3 (Our) DarkNet-53 544 × 544 VOC 2007 84.3

AFFN (Our) DarkNet-53 544 × 544 VOC 2007 85.3

4.4.2. Visual Comparison

Figure 4 shows the visual comparison results. We successfully use the AFFN structure
to capture more features in the images and obtain objective results. Compared with the
existing methods, the AFFN structure can respond to any-scale object in a flexible manner.
YOLOv3 fails to generate clear structures. In contrast, our approach effectively suppresses
such artifacts. For objects that can be detected in all these ten groups of images, our
AFFN structure improves the accuracy by an average of 12% compared with the original
method and increases the accuracy by 28% at the maximum. Moreover, we are successful
in recognizing some items that YOLOv3 fails to detect in the images, such as the sofa in the
third image and the cow in the tenth image.

4.5. Ablation Study

To examine the role of Feature Aggravation (FA) and Channel Spatial Attention
Module (CSAM) in our AFFN structure, we utilize YOLOv3 as a baseline and test various
combinations of these modules. Objective results are shown in Table 2. The candidates are
Feature Aggravation (FA) and Channel-spatial Attention Module (CSAM).

Table 2. Ablation study of AFFN structure on VOC2007test. The resolution of test images is set to
544 × 544 pixels.

Backbone Variant
Candidate VOC2007test

FA CSAM mAP@0.5 mAP@0.75

DarkNet53

A 83.8 42.2
B

√
84.8 44.1

C
√

85.4 45
D

√ √
85.8 45.7
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Figure 4. VOC2007 Testset Results. (The first and the third row are YOLOv3 vs. results. The second
and the fourth row are AFFN results.) We select ten groups of representative detection images. The
differences in each comparison include cat, person, sofa, person, pottedplant, aeroplane, person, sofa,
boat, and cow.

4.5.1. Effectiveness of Feature Aggravation and CSAM Attention Guidance

To determine the efficacy of feature aggravation, we disable the FA module and CSAM
attention guidance module. Then we learn that target detection becomes less effective when
we remove it. Therefore, it is necessary to add these two modules to make the detection
effect better. As shown in Table 2, by comparing the results of “A” and “B”, we discover that
our AFFN structure with FA module obtains better performance. Similarly, by comparing
“A” and “C”, we can see that our structure with CSAM module performs better.

4.5.2. Influence of Different Number Feature Maps on AFFN

We add two, three, and four feature graphs with varying numbers to determine the
influence on AFFN. We add two neighboring feature graphs into AFFN for two feature
graphs. The three one is the same as the aforementioned instances. For the case of four, The
final output keeps the three characteristics’ input. As indicated in the Table 3, the optimum
benefit is obtained by inputting the three neighboring characteristics into AFFN.

Table 3. Effect comparison of adding different numbers of feature maps to AFFN.

Number of Feature Maps mAP@0.5 mAP@0.75

+2 83.93 43.08
+3 85.80 45.70
+4 83.88 43.05
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4.6. Application on Helmet Detection

We apply our work to this task and see what happens. The aim of this training is to
improve workplace safety by detecting people and hard hats. The datasets we use contain
5000 images with bounding box annotations in the Pascal VOC format for these three
classes: Helmet, Person, and Head. The usability test is trained for a total of 50 epochs.
The Adam [29] optimizer is used to specify a 1× 10−4 learning rate and a 1× 10−4 weight
decay. Meanwhile, the freeze and unfreeze epochs are both 25. The evaluation metric is
mAP@0.5.

4.6.1. Visual Comparison

Figure 5 shows the helmet detection results. We employ our AFFN structure to
identify helmets, which are critical pieces of protective equipment in a variety of hazardous
work situations. The present YOLOv3 detector is capable of locking by utilizing deep
convolutional neural network features. We use the AFFN Module with YOLOv3, and it
outperforms YOLOv3 in terms of helmet detection. Compared with YOLOv3, our AFFN
structure can identify the helmets and heads that cannot be identified originally. For
the helmets that can be correctly identified, our AFFN structure improves the average
accuracy of 11%. The very small helmet like the one on the right of the fourth image is also
successfully detected by our model.

Figure 5. Helmet Detection Results. (The first row contains YOLOv3 results and the second row
contains AFFN results).

4.6.2. Evaluation Results

The specific evaluation results are shown in Table 4. The result of YOLOv3 is 61.5,
while our result is 62.4. Obviously, when we used AFFN Module with YOLOv3, the target
detection became more effective.

Table 4. Evaluation Results on Helmet Detection.

Algorithm Backbone Test Images
Size Test Set mAP@0.5

YOLOv3 DarkNet-53 544 × 544 Helmet test set 61.5
AFFN DarkNet-53 544 × 544 Helmet test set 62.4

5. Conclusions

In this paper, we proposed an Attention-guided Feature Fusion Network and proved
its effectiveness in dense object detection training. By applying our work to the helmet
detection, efforts were also being made to enhance workplace security. In the YOLOv3
structure, the recognition impact of target features of three scales is obtained. For the
diversity of objects, we integrated feature images of different sizes and applied a mixed
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attention mechanism of channel and space to integrate feature information of multiple
scales and realize object detection of more scales. Experiment results demonstrated that
the AFFN Module is better than the previous methods, showing obvious superiority in
image feature representation. Three nearby qualities of AFFN let it achieve an 85.3% mAP
value, and the addition of the FA module and CSAM attention guidance module make it
achieve the mAP value of 85.8%. An mAP value of 84.3% can be attained by combining our
AFFN approach with YOLOv3 However, there are still certain concerns, such as insufficient
generality of our research. Our future work aims at combining this approach with other
networks to test its practicality further.
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